1
|
Kök HI, Kick M, Akbas O, Stammkötter S, Greuling A, Stiesch M, Walther F, Junker P. Reduction of stress-shielding and fatigue-resistant dental implant design through topology optimization and TPMS lattices. J Mech Behav Biomed Mater 2025; 165:106923. [PMID: 39952086 DOI: 10.1016/j.jmbbm.2025.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
To improve longevity and performance of dental implants by reducing stress-shielding, a modification of the internal structure of the implant can be a solution. In this paper the inner design of the implant is generated either using a topology optimization approach or an approach based on TPMS lattice structures. These approaches aim to maintain long-term stability and to reduce stress-shielding. For both approaches, the mechanostat model was applied to investigate the influence of the inner structure to the surrounding bone tissue and compare the standard uniform implant. For the investigation an ANSYS model was used with material parameters obtained from a mechanical test of additively manufactured Ti6Al4V. Compared to the uniform implant, the topology-optimized implant showed 20% less stress-shielding, and the implant with triply periodic minimal surface structures (TPMS) showed 15% less stress-shielding. Further, the long-term-stability was investigated by introducing a high-cycle fatigue material model. Despite a change in the internal structure and a 45% reduction in the mass of the topology-optimized implant, the cycle numbers specified in the DIN EN ISO 14801 standard were fulfilled.
Collapse
Affiliation(s)
- Hüray Ilayda Kök
- Leibniz University Hannover, Institute of Continuum Mechanics, Hannover, Germany.
| | - Miriam Kick
- Leibniz University Hannover, Institute of Continuum Mechanics, Hannover, Germany
| | - Osman Akbas
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Sebastian Stammkötter
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Frank Walther
- Chair of Materials Test Engineering (WPT), TU Dortmund University, Dortmund, Germany
| | - Philipp Junker
- Leibniz University Hannover, Institute of Continuum Mechanics, Hannover, Germany
| |
Collapse
|
2
|
Özcan C, Lestriez P, Özcan M, Josset Y. Finite element analysis of dental structures: the role of mandibular kinematics and model complexity. FRONTIERS IN DENTAL MEDICINE 2024; 5:1461909. [PMID: 39917700 PMCID: PMC11797913 DOI: 10.3389/fdmed.2024.1461909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/29/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction This study observed the consequences of integrating mandibular kinematics in maxillary and mandibular teeth contact in a finite element analysis (FEA), and investigate the level of simplification of the dental models in FEA. The purpose of this study was to compare the results of finite element analysis obtained from simple to more complex dental models incorporating mandibular motion during loading phase. Methods Six models were generated for this study. The simplest models consisted of only the crown of the tooth and an antagonist tooth with either the same properties or rigid body properties while the subsequent models incorporated the root of the study tooth and the surrounding bone. The most complex model involved the hyperelastic ligament and the other anatomical elements of the tooth and surrounding bone. Mandibular movement data recorded with the Modjaw® system (Modjaw-Technologie) were used to bring the teeth into contact and generate the loading in all models where the stresses exerted on tooth structures during the chewing process were evaluated. Results von Mises stress and the shear stress obtained in all models, exceeded the ultimate compression strength of the materials, except for the model with the hyperelastic periodontal ligament. The forces applied to the tooth were extremely different depending on the addition or removal of anatomical elements despite the systematic study of the same teeth. Discussion The inclusion of mandibular kinematics in the finite element analysis requires the modelling of a complex dental model as simplification generated an overestimation of the forces and stresses on the structures. Finite element dental models allow for the observation and prevention of restorative failures by numerical methods but misinterpretations caused by poorly designed models have clinical implications on estimating performance of dental restorations.
Collapse
Affiliation(s)
- Canan Özcan
- Laboratoire Matériaux et Ingénierie Mécanique (MATIM), Département d’odontologie conservatrice, UFR d’odontologie, Université de Reims Champagne-Ardenne, Pôle Médecine bucco-Dentaire, CHU de Reims, Reims, France
| | - Philippe Lestriez
- Laboratoire Matériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne-Ardenne, Reims, France
| | - Mutlu Özcan
- Clinic for Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Yannick Josset
- Laboratoire Matériaux et Ingénierie Mécanique (MATIM), Département d’odontologie conservatrice, UFR d’odontologie, Université de Reims Champagne-Ardenne, Pôle Médecine bucco-Dentaire, CHU de Reims, Reims, France
| |
Collapse
|
3
|
Akbas O, Greuling A, Stiesch M. The effects of different grading approaches in additively manufactured dental implants on peri-implant bone stress: A finite element analysis. J Mech Behav Biomed Mater 2024; 154:106530. [PMID: 38552334 DOI: 10.1016/j.jmbbm.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Additive manufacturing enables local grading of the stiffness of dental implants through targeted adjustment of the manufacturing parameters to meet patient specific requirements. The extent to which such a manufacturing approach affects the interaction between the implant body and the surrounding bone, and what grading is optimal, is currently insufficiently investigated. This study investigates the effect of different Young's modulus grading approaches on stresses in the peri-implant bone via finite element analysis. The implant geometry was kept constant and in the case of the implant a node-dependent elastic modulus was assigned. In this way, a vertical, a radial and three torus based grading approaches were created and examined. A load was then applied directly to the occlusal surface of the implant crown. It was found that a local grading utilizing a torus shape was most favourable in terms of an effective stress peak reduction. The best torus shape tested achieved a 22 % reduction of maximum principal stress and 6 % reduction of minimum principal stress compared to the uniform material. In clinical settings, this may provide benefits in situations of overload. Based on the results, a graded stiffness in dental implants appears to be of interest for developing advanced, patient-specific implant solutions.
Collapse
Affiliation(s)
- Osman Akbas
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Roffmann O, Stiesch M, Greuling A. Preventing stress singularities in peri-implant bone - a finite element analysis using a graded bone model. Comput Methods Biomech Biomed Engin 2024; 27:547-557. [PMID: 36942632 DOI: 10.1080/10255842.2023.2190832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
In finite element analysis bone is often treated as two-layered material that has a discontinuity between the cortical and cancellous bone, which leads to a singularity and incorrect stresses. The goal of this study was to eliminate this singularity and to create a more realistic representation of bone which also considers the transition zone between cortical and cancellous bone as observed in natural bone. This was achieved by modelling bone as a graded material and inserting node-specific values for Young's modulus in the finite element simulation, whereas the transition zone thickness was derived from a CT scan. The modelling was performed semi-automatically, and the maximum principal stresses of the new approach were compared to those of a conventional approach. The new approach was found to effectively avoid singularities and provides more accurate predictions of stress in areas of the bone transition zone. As the approach is automatable and causes rather small overhead it is recommended for use in future work, when the problem at hand requires evaluating stresses close to the former singularity.
Collapse
Affiliation(s)
- Oliver Roffmann
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Abo-Alazm EAE, Abdou A, Hassouneh L, Safy RK. Reliability of an Innovative Slab Shear versus Microtensile Bond Strength Test: Mechanical and Finite Element Analysis. Eur J Dent 2024; 18:182-195. [PMID: 37059444 PMCID: PMC10959604 DOI: 10.1055/s-0043-1763498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the efficiency of slab shear bond strength test (Slab_SBS) versus the microtensile in evaluation of the bond strength of different substrates. MATERIALS AND METHODS Forty-eight extracted caries-free human third molars were utilized for teeth specimens' preparation. After flattening of all molars' occlusal table, the specimens were divided into two groups based on the type of utilized restorative material: nanohybrid resin composite and resin-modified glass ionomer (RMGI). Each group was further subdivided into three subgroups according to the subsequently applied bond strength test and specimen width; microtensile bond strength test (μTBS), Slab_SBS [2 mm] and Slab_SBS [3 mm]. Both testing methods were additionally applied on CAD/CAM specimens, nanohybrid resin composite blocks (composite-to-composite), and ceramic blocks (ceramic-to-ceramic). CAD/CAM specimens were prepared and cemented and then sectioned and subdivided as followed for teeth specimens' preparation. Pretest failures (PTF), bond strength, and failure mode of each specimen were recorded. Representative three-dimensional (3D) finite element analysis (FEA) models were developed to simulate μTBS and Slab_SBS specimens. Data were statistically analyzed using Shapiro-Wilk test and Weibull analysis. RESULTS Pretest failures were only noted in the μTBS subgroups. Slab_SBS provided comparable bond strength to the μTBS of all substrates with adhesive mode of failure. CONCLUSION Slab_SBS is easier to prepare with consistent and predictable outcome with no pretest failures during specimen preparation and better stress distribution.
Collapse
Affiliation(s)
| | - Ahmed Abdou
- Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt
| | - Layla Hassouneh
- Department of Conservative Dentistry, Jordan University of Science and Technology, Ar-Ramtha, Jordan
| | - Rehab Khalil Safy
- Department of Conservative Dentistry, Suez Canal University, Ismailia Governorate, Egypt
| |
Collapse
|
6
|
Thadathil Varghese J, Islam F, Farrar P, Prentice L, Prusty BG. Multi-response optimisation analysis of material properties in dental restorative composites under the influence of thermal and thermomechanical stimuli - A 3D finite element study. J Mech Behav Biomed Mater 2024; 150:106363. [PMID: 38169207 DOI: 10.1016/j.jmbbm.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES Restored teeth undergo more damage than intact teeth. Therefore, the scientific investigation of their mechanical and physical behaviour under varying oral conditions is vital. The current study is to numerically investigate the stresses on a class-II mesio-occluso-distal (MOD) restored molar due to thermal and thermomechanical stimuli with varying input properties such as coefficient of thermal expansion and elastic properties. This is performed to optimise the dental restoration material, thereby reducing the stresses and failure of the restoration. METHODS An upper molar was scanned using μ-CT for segmenting and modelling the enamel and dentine. A class-II MOD cavity was then prepared on the model, after which non-manifold meshing was generated. The coefficient of thermal expansion (CTE) and elastic modulus (E) properties of the restoration were varied from 20 × 10-6 °C-1 to 55 × 10-6 °C-1 and 5 GPa-20 GPa, respectively. After the material properties and boundary conditions were set for the finite element (FE) analysis, the thermal and thermomechanical loading analyses were performed to demonstrate the influence of input parameters on the stress. The maximum values of principal stresses on the restoration-enamel junction and the restoration were evaluated. The results were statistically processed using analysis of variance, response surface methodology (RSM) and optimisation analysis to estimate the most optimum inputs for minimising principal stresses. RESULTS The study reveals that the location of principal stress occurs at the restoration-enamel junction (REJ) and the restoration changes based on the composite material value of E and CTE due to thermal and thermomechanical stimuli. The REJ showed higher principal stress than restoration during the application of both thermal and thermomechanical stimuli, making it more vulnerable to fracture and failure. Moreover, the study showed non-linear variations in the values and locations of principal stresses due to thermal and thermomechanical stimuli with the change in the property of the restoration composite used. Finally, this study derived an optimised restorative value for CTE and E due to the application of thermal and simultaneous thermal and mechanical stimuli. CONCLUSION This study highlights the importance of choosing the suitable material properties of the restoration composite by dental clinicians to repair a large class MOD cavity. The findings from this study also suggest that the difference in the values of E and CTE in a dental restoration composite when compared with the enamel causes a lack of uniformity in mechanical and thermal properties, thereby forming stress concentrations at the interfaces. The study establishes two optimised CTE and E values for the MOD restoration composite as 25 × 10-6 °C-1 and 20 GPa and 37 × 10-6 °C-1 and 5 GPa, respectively.
Collapse
Affiliation(s)
| | | | | | | | - B Gangadhara Prusty
- School of Mechanical and Manufacturing Engineering, UNSW, NSW, 2052, Australia; ARC Centre for Automated Manufacture of Advanced Composites, UNSW, Sydney, NSW, 2052, Australia; Australian Composite Manufacturing CRC, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Ouldyerou A, Mehboob H, Mehboob A, Merdji A, Aminallah L, Mukdadi OM, Barsoum I, Junaedi H. Biomechanical performance of resin composite on dental tissue restoration: A finite element analysis. PLoS One 2023; 18:e0295582. [PMID: 38128035 PMCID: PMC10734934 DOI: 10.1371/journal.pone.0295582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
This study investigates the biomechanical performance of various dental materials when filled in different cavity designs and their effects on surrounding dental tissues. Finite element models of three infected teeth with different cavity designs, Class I (occlusal), Class II mesial-occlusal (MO), and Class II mesio-occluso-distal (MOD) were constructed. These cavities were filled with amalgam, composites (Young's moduli of 10, 14, 18, 22, and 26 GPa), and glass carbomer cement (GCC). An occlusal load of 600 N was distributed on the top surface of the teeth to carry out simulations. The findings revealed that von Mises stress was higher in GCC material, with cavity Class I (46.01 MPa in the enamel, 23.61 MPa in the dentin), and for cavity Class II MO von Mises stress was 43.64 MPa, 39.18 MPa in enamel and dentin respectively, while in case of cavity Class II MOD von Mises stress was 44.67 MPa in enamel, 27.5 in the dentin. The results showed that higher stresses were generated in the non-restored tooth compared to the restored one, and increasing Young's modulus of restorative composite material decreases stresses in enamel and dentin. The use of composite material showed excellent performance which can be a good viable option for restorative material compared to other restorative materials.
Collapse
Affiliation(s)
- Abdelhak Ouldyerou
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| | - Ali Mehboob
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali Merdji
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Laid Aminallah
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria
| | - Osama M. Mukdadi
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States of America
| | - Imad Barsoum
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Engineering Mechanics, Royal Institute of Technology – KTH, Teknikringen, Stockholm, Sweden
| | - Harri Junaedi
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Babaei B, Prusty BG. Enhancing the mechanical stability of restored teeth with interfacial cracks: Finite element analysis. J Mech Behav Biomed Mater 2023; 148:106191. [PMID: 37847958 DOI: 10.1016/j.jmbbm.2023.106191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES This study aims to enhance the mechanical stability of restored molar teeth with class II occlusal-distal (OD) cavities. We seek to achieve this goal through a comprehensive investigation of three primary factors: (1) the choice of restoration material properties, (2) internal cavity geometries, and (3) the impact of double-layered restoration configurations. METHODS To achieve our objectives, we initiated by creating two-dimensional (2D) models of restored teeth featuring class II OD cavities, utilizing scanned and segmented images of maxillary molar teeth. We drew 2D profiles of dentine and enamel, which were then imported into finite element analysis (FEA) software. To explore various cavity geometries, we implemented a total of thirteen different designs, encompassing straight, oblique, grooved, curved, and double-layered configurations. We utilized a semi-circular stone to simulate the application of contact load on the restored tooth. We applied identical boundary conditions and contact loading across all models. To assign material properties, we developed a Python code, enabling the automatic assignment of seven elastic moduli ranging from 2 GPa to 26 GPa to the restoration materials. Meanwhile, constant material properties were assigned to the enamel and dentine. In total, we conducted 133 FEA simulations to comprehensively analyse the effects of the aforementioned factors on the strength and performance of restored molar teeth. RESULTS Our analysis revealed two key factors significantly influencing the mechanical resistance of treated teeth, particularly in the presence of a crack or debonding: (1) the marginal geometry of the OD cavity and (2) the elastic modulus of the restorative material. However, altering the internal cavity angle and implementing a double-layered restoration did not significantly influence the restored tooth's overall strength and performance in the face of crack or debonding situations. SIGNIFICANCE The findings of this study have substantial implications for designing and restoring class II OD cavities to enhance resistance to cracks or debonding. The use of curved marginal geometries in restoration design can significantly improve fracture resistance, with double-curved geometries reducing stress concentrations by approximately 43% compared to straight cavities. These results offer valuable guidance for strengthening the structural integrity of restored teeth, calling for further experimental investigations to explore practical applications and benefits.
Collapse
Affiliation(s)
- Behzad Babaei
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - B Gangadhara Prusty
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; ARC Centre for Automated Manufacture of Advanced Restorations, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Hassouneh L, Matoug-Elwerfelli M, Al-Omari T, Setzer FC, Nagendrababu V. Assessment of biomechanical behavior of immature non-vital incisors with various treatment modalities by means of three-dimensional quasi-static finite element analysis. Sci Rep 2023; 13:17491. [PMID: 37840093 PMCID: PMC10577137 DOI: 10.1038/s41598-023-44609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
The objectives of this study were to evaluate the stress distribution and risk of fracture of a non-vital immature maxillary central incisor subjected to various clinical procedures using finite element analysis (FEA). A three-dimensional model of an immature central incisor was developed, from which six main models were designed: untreated immature tooth (C), standard apical plug (AP), resin composite (RC), glass-fibre post (GFP), regeneration procedure (RET), and regeneration with induced root maturation (RRM). Mineral trioxide aggregate (MTA) or Biodentine® were used as an apical or coronal plug. All models simulated masticatory forces in a quasi-static approach with an oblique force of 240 Newton at a 120° to the longitudinal tooth axis. The maximum principal stress, maximum shear stress, risk of fracture, and the strengthening percentage were evaluated. The mean maximum principal stress values were highest in model C [90.3 MPa (SD = 4.4)] and lowest in the GFP models treated with either MTA and Biodentine®; 64.1 (SD = 1.7) and 64.0 (SD = 1.6) MPa, respectively. Regarding the shear stress values, the dentine tooth structure in model C [14.4 MPa (SD = 0.8)] and GFP models [15.4 MPa (SD = 1.1)] reported significantly higher maximum shear stress values compared to other tested models (p < 0.001), while no significant differences were reported between the other models (p > 0.05). No significant differences between MTA and Biodentine® regarding maximum principal stress and maximum shear stress values for each tested model (p > 0.05). A maximum strain value of 4.07E-03 and maximum displacement magnitude of 0.128 mm was recorded in model C. In terms of strengthening percentage, the GFP models were associated with the highest increase (22%). The use of a GFP improved the biomechanical performance and resulted in a lower risk of fracture of a non-vital immature maxillary central incisor in a FEA model.
Collapse
Affiliation(s)
- Layla Hassouneh
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Taher Al-Omari
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Frank C Setzer
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkateshbabu Nagendrababu
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
10
|
Sakhabutdinova L, Kamenskikh AA, Kuchumov AG, Nosov Y, Baradina I. Numerical Study of the Mechanical Behaviour of Wedge-Shaped Defect Filling Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207387. [PMID: 36295452 PMCID: PMC9611093 DOI: 10.3390/ma15207387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with direct restorations of teeth with non-carious cervical lesions (NCCL). NCCL defects are capable of gradual growth and are accompanied by the degradation of the surrounding tissue. Direct restorative treatment, in which the cavity is filled with a cementing agent, is considered to be an accessible and common treatment option. The study included simulations of the teeth without lesions, the teeth with V and U lesions and the tooth-restorative system. Parameterised numerical tooth models were constructed. Two cases with defect depths of 0.8 mm and ~1.7 mm and three variants with fillet radii of the defect end of 0.1, 0.2 and 0.3 mm were considered. The effect of two biomaterials for restorations was studied, namely Herculite XRV (Kerr Corp, Orange, CA, USA) and Charisma (Heraeus Kulzer GmbH, Hanau, Germany). The models were deformed with a vertical load of 100 to 1000 N from the antagonist tooth. The tooth-restorative system was considered, taking into consideration the contact interaction in the interface areas with the tooth tissues. Within the limits of the research, the character of the distribution of the deformation characteristics and their dependence on the level of loading, the depth of the defect and the radius of the curvature of the "wedge" were established.
Collapse
Affiliation(s)
- Lyaysan Sakhabutdinova
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Anna A. Kamenskikh
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Alex G. Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Yuriy Nosov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | | |
Collapse
|
11
|
The Restored Premolars Biomechanical Behavior: FEM and Experimental Moiré Analyses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study applied the finite element method (FEM) and the moiré strip projection method to evaluate the biomechanical behavior of healthy and endodontic-treated premolar teeth. The finite element method and the moiré strip projection method were applied to evaluate the influence of restored materials in association with cervical lesions and were considered as strain estimates for a tooth sample with 21 units, under loads of 25, 50, 75, and 100 N, frontal and oblique applied. The focused cases were: tooth H healthy; tooth A-MOD amalgam; tooth AL-MOD amalgam + lesion; tooth ALR-MOD amalgam + injury restored; tooth R-MOD resin; tooth RL-MOD resin + lesion; tooth RLR-MOD resin + injury restored. The results obtained by FEM simulation can be considered perfectly validated by the results presented by the experimental moiré projection analysis, demonstrating that the FEM numerical analysis can be used to evaluate the biomechanical behavior of healthy and endodontically treated teeth. Developing an alternative protocol to generate FEM three-dimensional models will lead to a ready and inexpensive tool since there is no need for costly equipment for tooth extraction prognosis.
Collapse
|
12
|
The influence of dental restoration depth, internal cavity angle, and material properties on biomechanical resistance of a treated molar tooth. J Mech Behav Biomed Mater 2022; 133:105305. [DOI: 10.1016/j.jmbbm.2022.105305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
|
13
|
Thadathil Varghese J, Babaei B, Farrar P, Prentice L, Prusty BG. Influence of thermal and thermomechanical stimuli on a molar tooth treated with resin-based restorative dental composites. Dent Mater 2022; 38:811-823. [PMID: 35450702 DOI: 10.1016/j.dental.2022.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES In-vivo experimental techniques to understand the biomechanical behavior of a restored tooth, under varying oral conditions, is very limited because of the invasive nature of the study and complex tooth geometry structure. Therefore, 3D-Finite element analyses are used to understand the behavior of a restored tooth under varying oral conditions. In this study, the distribution of maximum principal stress (MaxPS) and the location of MaxPS on a restored tooth using six different commercially available dental resin composites under the influence of thermal and thermomechanical stimuli are performed. METHODS An intact tooth was scanned using µ-CT and segmented to obtain separate geometric models of the tooth, including enamel and dentine. Then, a class II mesial-occlusal-distal (MOD) cavity was constructed for the tooth model. The restored tooth model was further meshed and imported to the commercial Finite Element (FE) software ANSYS. Thermal hot and cold stimuli at 50 °C and 2 °C, respectively, were applied on the occlusal and lingual surface of the tooth model with the tooth's ambient temperature set at 37 °C. A uniform loading of 400 N was applied on the occlusal surface of the tooth to imitate the masticatory forces during the cyclic thermal stimuli. RESULTS The results of this study showed that the restorative materials with higher thermal conductivity showed a lower temperature gradient between the restoration and enamel, during the application of thermal stimuli, leading to a higher value of MaxPS on the restoration. Moreover, on applying thermal stimuli, the location of MaxPS at the restoration-enamel junction (REJ) changes based on the value of the coefficient of thermal expansion (CTE). The MaxPS distribution on the application of simultaneous thermal and mechanical stimuli was not only dependent on the elastic modulus of restorative materials but also their thermal properties such as the CTE and thermal conductivity. The weakest part of the restoration was at the REJ, as it experienced the peak stress level during the application of thermomechanical stimuli. SIGNIFICANCE The findings from this study suggest that restorative materials with lower values of elastic modulus, lower coefficient of thermal expansion and higher values of thermal conductivity result in lower stresses on the restoration. The outcomes from this study also suggest that the thermal and mechanical properties of a restorative material can have a considerable effect on the selection of restorative materials by dental clinicians over conventional restorative materials.
Collapse
Affiliation(s)
- Jerrin Thadathil Varghese
- School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Australia.
| | - Behzad Babaei
- School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Australia
| | | | | | - B Gangadhara Prusty
- School of Mechanical and Manufacturing Engineering, University of New South Wales, NSW 2052, Australia; ARC Centre for Automated Manufacture of Advanced Composites, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Sellan PLB, Campaner LM, Tribst JPM, Dal Piva AMDO, de Andrade GS, Borges ALS, Bresciani E, Lanzotti A, Ausiello P. Functional or Nonfunctional Cusps Preservation for Molars Restored with Indirect Composite or Glass-Ceramic Onlays: 3D FEA Study. Polymers (Basel) 2021; 13:polym13213831. [PMID: 34771387 PMCID: PMC8587095 DOI: 10.3390/polym13213831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023] Open
Abstract
Evidence regarding the effect of the onlay preparation design for different CAD/CAM restorative materials considering the preservation of cusps is lacking. Molars were 3D-modeled in four preparation designs for onlay restoration: traditional design with functional cusp coverage (TFC), non-retentive design with functional cusp coverage (NFC), traditional design with non-functional cusp coverage (TNFC) and non-retentive design with non-functional cusp coverage (NNFC). The restorations were simulated with two CAD/CAM restorative materials: LD—lithium disilicate (IPS e.max CAD) and RC—resin composite (GrandioBloc). A 100 N axial load was applied to the occlusal surface, simulating the centric contact point. Von Mises (VM) and maximum principal (Pmax) stress were evaluated for restorations, cement layer and dental substrate. The non-retentive preparation design reduced the stress concentration in the tooth structure in comparison to the conventional retentive design. For LD onlays, the stress distribution on the restoration intaglio surface showed that the preparation design, as well as the prepared cusp, influenced the stress magnitude. The non-retentive preparation design provided better load distribution in both restorative materials and more advantageous for molar structure. The resin composite restoration on thenon-functional cusp is recommended when the functional cusp is preserved in order to associate conservative dentistry and low-stress magnitude.
Collapse
Affiliation(s)
- Pablo Lenin Benitez Sellan
- School of Dentistry, Universidad Espíritu Santo, Samborondón 092301, Ecuador;
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12220-690, Brazil; (L.M.C.); (A.L.S.B.); (E.B.)
| | - Larissa Mendes Campaner
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12220-690, Brazil; (L.M.C.); (A.L.S.B.); (E.B.)
| | - João Paulo Mendes Tribst
- Department of Dental Materials, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (J.P.M.T.); (A.M.d.O.D.P.)
| | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (J.P.M.T.); (A.M.d.O.D.P.)
| | - Guilherme Schmitt de Andrade
- Department of Dentistry, Center for Biological and Health Sciences, Western Paraná State University (Unioeste), Cascavel 85819-110, Brazil;
| | - Alexandre Luiz Souto Borges
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12220-690, Brazil; (L.M.C.); (A.L.S.B.); (E.B.)
| | - Eduardo Bresciani
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo 12220-690, Brazil; (L.M.C.); (A.L.S.B.); (E.B.)
| | - Antonio Lanzotti
- Fraunhofer JL IDEAS, Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Pietro Ausiello
- School of Dentistry, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|