1
|
Escarcega JD, Okamoto RJ, Alshareef AA, Johnson CL, Bayly PV. Effects of anatomy and head motion on spatial patterns of deformation in the human brain. Ann Biomed Eng 2024:10.1007/s10439-024-03671-1. [PMID: 39739082 DOI: 10.1007/s10439-024-03671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE To determine how the biomechanical vulnerability of the human brain is affected by features of individual anatomy and loading. METHODS To identify the features that contribute most to brain vulnerability, we imparted mild harmonic acceleration to the head and measured the resulting brain motion and deformation using magnetic resonance elastography (MRE). Oscillatory motion was imparted to the heads of adult participants using a lateral actuator (n = 24) or occipital actuator (n = 24) at 20 Hz, 30 Hz, and 50 Hz. Displacement vector fields and strain tensor fields in the brain were obtained from MRE measurements. Anatomical images, as well as displacement and strain fields from each participant were rigidly and deformably aligned to a common atlas (MNI-152). Vulnerability of the brain to deformation was quantified by the ratio of strain energy (SE) to kinetic energy (KE) for each participant. Similarity of deformation patterns between participants was quantified using strain field correlation (CV). Linear regression models were used to identify the effect of similarity of brain size, shape, and age, as well as similarity of loading, on CV. RESULTS The SE/KE ratio decreased with frequency and was larger for participants undergoing lateral, rather than occipital, actuation. Head rotation about the inferior-superior axis was correlated with larger SE/KE ratio. Strain field correlations were primarily affected by the similarity of rigid-body motion. CONCLUSION The motion applied to the skull is the most important factor in determining both the vulnerability of the brain to deformation and the similarity between strain fields in different individuals.
Collapse
Affiliation(s)
- Jordan D Escarcega
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA
| | - Ahmed A Alshareef
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Jordan J, Jaitner N, Meyer T, Bramè L, Ghrayeb M, Köppke J, Böhm O, Chandia SK, Zaburdaev V, Chai L, Tzschätzsch H, Mura J, Braun J, Hagemann AIH, Sack I. Rapid Stiffness Mapping in Soft Biologic Tissues With Micrometer Resolution Using Optical Multifrequency Time-Harmonic Elastography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410473. [PMID: 39686564 DOI: 10.1002/advs.202410473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Rapid mapping of the mechanical properties of soft biological tissues from light microscopy to macroscopic imaging can transform fundamental biophysical research by providing clinical biomarkers to complement in vivo elastography. This work introduces superfast optical multifrequency time-harmonic elastography (OMTHE) to remotely encode surface and subsurface shear wave fields for generating maps of tissue stiffness with unprecedented detail resolution. OMTHE rigorously exploits the space-time propagation characteristics of multifrequency time-harmonic waves to address current limitations of biomechanical imaging and elastography. Key solutions are presented for stimulation, wave decoding, and stiffness reconstruction of shear waves at multiple harmonic frequencies, all tuned to provide consistent stiffness values across resolutions from microns to millimeters. OMTHE's versatility is demonstrated by simulations, phantoms, Bacillus subtilis biofilms, zebrafish embryos and adult zebrafish, reflecting the diversity of biological systems from a mechanics perspective. By zooming in on stiffness details from coarse to finer scales, OMTHE has the potential to advance mechanobiology and offers a way to perform biomechanics-based tissue histology that consistently matches in vivo time-harmonic elastography in patients.
Collapse
Affiliation(s)
- Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Noah Jaitner
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Luca Bramè
- Department of Hematology/Oncology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mnar Ghrayeb
- The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91901, Israel
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91901, Israel
| | - Julia Köppke
- Department of Hematology/Oncology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Oliver Böhm
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Liraz Chai
- The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91901, Israel
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91901, Israel
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Joaquin Mura
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Santiago, 8330015, Chile
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Anja I H Hagemann
- Department of Hematology/Oncology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| |
Collapse
|
3
|
Greiner A, Reiter N, Hinrichsen J, Kainz MP, Sommer G, Holzapfel GA, Steinmann P, Comellas E, Budday S. Model-driven exploration of poro-viscoelasticity in human brain tissue: be careful with the parameters! Interface Focus 2024; 14:20240026. [PMID: 39649453 PMCID: PMC11620825 DOI: 10.1098/rsfs.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/10/2024] Open
Abstract
The brain is arguably the most complex human organ and modelling its mechanical behaviour has challenged researchers for decades. There is still a lack of understanding on how this multiphase tissue responds to mechanical loading and how material parameters can be reliably calibrated. While previous viscoelastic models with two relaxation times have successfully captured the response of brain tissue, the Theory of Porous Media provides a continuum mechanical framework to explore the underlying physical mechanisms, including interactions between solid matrix and free-flowing interstitial fluid. Following our previously published experimental testing protocol, here we perform finite element simulations of cyclic compression-tension loading and compression-relaxation experiments on human brain white and gray matter specimens. The solid volumetric stress proves to be a crucial factor for the overall biphasic tissue behaviour as it strongly interferes with porous effects controlled by the permeability. An inverse parameter identification reveals that poroelasticity alone is insufficient to capture the time-dependent material behaviour, but a poro-viscoelastic formulation captures the response of brain tissue well. We provide valuable insights into the individual contributions of viscous and porous effects. However, due to the strong coupling between porous, viscous, and volumetric effects, additional experiments are required to reliably determine all material parameters.
Collapse
Affiliation(s)
- Alexander Greiner
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reiter
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Hinrichsen
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel P. Kainz
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Trøndelag, Norway
| | - Paul Steinmann
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, Glasgow, UK
| | - Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
- International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Bayerl C, Safraou Y, Reiter R, Proß V, Lehmann K, Kühl AA, Shahryari M, Hamm B, Sack I, Makowski MR, Braun J, Asbach P. Investigation of hepatic inflammation via viscoelasticity at low and high mechanical frequencies - A magnetic resonance elastography study. J Mech Behav Biomed Mater 2024; 160:106711. [PMID: 39244991 DOI: 10.1016/j.jmbbm.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To study the potential of viscoelastic parameters such as liver stiffness, loss tangent (marker of viscous properties) and viscoelastic dispersion to detect hepatic inflammation by in-vivo and ex-vivo MR elastography (MRE) at low and high vibration frequencies. METHODS 15 patients scheduled for liver tumor resection surgery were prospectively enrolled in this IRB-approved study and underwent multifrequency in-vivo MRE (30-60Hz) at 1.5-T prior to surgery. Immediately after liver resection, tumor-free tissue specimens were examined with ex-vivo MRE (0.8-2.8 kHz) at 0.5-T and histopathologic analysis including NAFLD activity score (NAS) and inflammation score (I-score) as sum of histological sub-features of inflammation. RESULTS In-vivo, in regions where tissue samples were obtained, the loss tangent correlated with the I-score (R = 0.728; p = 0.002) and c-dispersion (stiffness dispersion over frequency) correlated with lobular inflammation (R = -0.559; p = 0.030). In a subgroup of patients without prior chemotherapy, c-dispersion correlated with I-score also in the whole liver (R = -0.682; p = 0.043). ROC analysis of the loss tangent for predicting the I-score showed a high AUC for I ≥ 1 (0.944; p = 0.021), I ≥ 2 (0.804; p = 0.049) and I ≥ 3 (0.944; p = 0.021). Ex-vivo MRE was not sensitive to inflammation, whereas strong correlations were observed between fibrosis and stiffness (R = 0.589; p = 0.021), penetration rate (R = 0.589; p = 0.021), loss tangent (R = -0.629; p = 0.012), and viscoelastic model parameters (spring-pot powerlaw exponent, R = -0.528; p = 0.043; spring-pot shear modulus, R = 0.589; p = 0.021). CONCLUSION Our results suggest that c-dispersion of the liver is sensitive to inflammation when measured in-vivo in the low dynamic range (30-60Hz), while at higher frequencies (0.8-2.8 kHz) viscoelastic parameters are dominated by fibrosis.
Collapse
Affiliation(s)
- Christian Bayerl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Yasmine Safraou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Rolf Reiter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Vanessa Proß
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kai Lehmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin Core Unit, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mehrgan Shahryari
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcus R Makowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany; Technical University of Munich (TUM), Germany; School of Medicine & Klinikum Rechts der Isar, Department of Diagnostic and Interventional Radiology, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Asbach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
5
|
Meyer T, Castelein J, Schattenfroh J, Sophie Morr A, Vieira da Silva R, Tzschätzsch H, Reiter R, Guo J, Sack I. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:1-14. [PMID: 39645347 DOI: 10.1016/j.pnmrs.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 12/09/2024]
Abstract
Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion - all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues are discussed. Applications of MRE measurement in both humans and animal models are presented, with emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated tissue changes.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Netherlands; Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Rafaela Vieira da Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | - Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
6
|
Palnitkar H, Reiter R, Majumdar S, Crutison J, Lin S, Royston TJ, Klatt D. 1-Norm waveform analysis for MR elastography-based quantification of inhomogeneity: Effects of the freeze-thaw cycle and Alzheimer's disease. J Mech Behav Biomed Mater 2024; 157:106636. [PMID: 38908327 DOI: 10.1016/j.jmbbm.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Despite its success in the mechanical characterization of biological tissues, magnetic resonance elastography (MRE) uses ill-posed wave inversions to estimate tissue stiffness. 1-Norm has been recently introduced as a mathematical measure for the scattering of mechanical waves due to inhomogeneities based on an analysis of the delineated contours of wave displacement. PURPOSE To investigate 1-Norm as an MRE-based quantitative biomarker of mechanical inhomogeneities arising from microscopic structural tissue alterations caused by the freeze-thaw cycle (FTC) or Alzheimer's disease (AD). METHODS In this proof-of-concept study, we prospectively investigated excised porcine kidney (n = 6), liver (n = 6), and muscle (n = 6) before vs. after the FTC at 500-2000 Hz and excised murine brain of healthy controls (n = 3) vs. 5xFAD species with AD (n = 3) at 1200-1800 Hz using 0.5 T tabletop MRE. 1-Norm analysis was compared with conventional wave inversion. RESULTS While the FTC reduced both stiffness and inhomogeneity in kidney, liver, and muscle tissue, AD led to lower brain stiffness but more pronounced mechanical inhomogeneity. CONCLUSION Our preliminary results show that 1-Norm is sensitive to tissue mechanical inhomogeneity due to FTC and AD without relying on ill-posed wave inversion techniques. 1-Norm has the potential to be used as an MRE-based diagnostic biomarker independent of stiffness to characterize abnormal conditions that involve changes in tissue mechanical inhomogeneity.
Collapse
Affiliation(s)
- Harish Palnitkar
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60607, United States; Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, United States.
| | - Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| | - Shreyan Majumdar
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| | - Joseph Crutison
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| | - Shujun Lin
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| | - Thomas J Royston
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| | - Dieter Klatt
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 830 South Wood Street, Chicago, IL, 60612, United States.
| |
Collapse
|
7
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
8
|
Braun J, Bernarding J, Snellings J, Meyer T, Dantas de Moraes PA, Safraou Y, Wells RG, Guo J, Tzschätzsch H, Zappe A, Pagel K, Sauer IM, Hillebrandt KH, Sack I. On the relationship between viscoelasticity and water diffusion in soft biological tissues. Acta Biomater 2024; 182:42-53. [PMID: 38729549 DOI: 10.1016/j.actbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI) are complementary imaging techniques that detect disease based on viscoelasticity and water mobility, respectively. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering the clinical translation of combined DWI-MRE markers. We used DWI-MRE to study 129 biomaterial samples including native and cross-linked collagen, glycosaminoglycans (GAGs) with different sulfation levels, and decellularized specimens of pancreas and liver, all with different proportions of solid tissue, or solid fractions. We developed a theoretical framework of the relationship between mechanical loss and tissue-water mobility based on two parameters, solid and fluid viscosity. These parameters revealed distinct DWI-MRE property clusters characterizing weak, moderate, and strong water-network interactions. Sparse networks interacting weakly with water, such as collagen or diluted decellularized tissue, resulted in marginal changes in water diffusion over increasing solid viscosity. In contrast, dense networks with larger solid fractions exhibited both free and hindered water diffusion depending on the polarity of the solid components. For example, polar and highly sulfated GAGs as well as native soft tissues hindered water diffusion despite relatively low solid viscosity. Our results suggest that two fundamental properties of tissue networks, solid fraction and network polarity, critically influence solid and fluid viscosity in biological tissues. Since clinical DWI and MRE are sensitive to these viscosity parameters, the framework we present here can be used to detect tissue remodeling and architectural changes in the setting of diagnostic imaging. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of biological tissues provide a wealth of information on the vital state of cells and host matrix. Combined measurement of viscoelasticity and water diffusion by medical imaging is sensitive to tissue microarchitecture. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering full exploitation of these properties as a combined clinical biomarker. Therefore, we analyzed the parameter space accessible by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) and developed a theoretical framework for the relationship between water mobility and mechanical parameters in biomaterials. Our theory of solid material properties related to particle motion can be translated to clinical radiology using clinically established MRE and DWI.
Collapse
Affiliation(s)
- Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | | | - Joachim Snellings
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Yasmine Safraou
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Rebecca G Wells
- Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | - Andreas Zappe
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Kevin Pagel
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, CCM | CVK, Experimental Surgery, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Karl H Hillebrandt
- Department of Surgery, CCM | CVK, Experimental Surgery, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
9
|
Hartmann B, Fleischhauer L, Nicolau M, Jensen THL, Taran FA, Clausen-Schaumann H, Reuten R. Profiling native pulmonary basement membrane stiffness using atomic force microscopy. Nat Protoc 2024; 19:1498-1528. [PMID: 38429517 DOI: 10.1038/s41596-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/27/2023] [Indexed: 03/03/2024]
Abstract
Mammalian cells sense and react to the mechanics of their immediate microenvironment. Therefore, the characterization of the biomechanical properties of tissues with high spatial resolution provides valuable insights into a broad variety of developmental, homeostatic and pathological processes within living organisms. The biomechanical properties of the basement membrane (BM), an extracellular matrix (ECM) substructure measuring only ∼100-400 nm across, are, among other things, pivotal to tumor progression and metastasis formation. Although the precise assignment of the Young's modulus E of such a thin ECM substructure especially in between two cell layers is still challenging, biomechanical data of the BM can provide information of eminent diagnostic potential. Here we present a detailed protocol to quantify the elastic modulus of the BM in murine and human lung tissue, which is one of the major organs prone to metastasis. This protocol describes a streamlined workflow to determine the Young's modulus E of the BM between the endothelial and epithelial cell layers shaping the alveolar wall in lung tissues using atomic force microscopy (AFM). Our step-by-step protocol provides instructions for murine and human lung tissue extraction, inflation of these tissues with cryogenic cutting medium, freezing and cryosectioning of the tissue samples, and AFM force-map recording. In addition, it guides the reader through a semi-automatic data analysis procedure to identify the pulmonary BM and extract its Young's modulus E using an in-house tailored user-friendly AFM data analysis software, the Center for Applied Tissue Engineering and Regenerative Medicine processing toolbox, which enables automatic loading of the recorded force maps, conversion of the force versus piezo-extension curves to force versus indentation curves, calculation of Young's moduli and generation of Young's modulus maps, where the pulmonary BM can be identified using a semi-automatic spatial filtering tool. The entire protocol takes 1-2 d.
Collapse
Affiliation(s)
- Bastian Hartmann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Lutz Fleischhauer
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany
- Center for Nanoscience, Munich, Germany
| | - Monica Nicolau
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Hartvig Lindkær Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Florin-Andrei Taran
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hauke Clausen-Schaumann
- Munich University of Applied Sciences, Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, Munich, Germany.
- Center for Nanoscience, Munich, Germany.
| | - Raphael Reuten
- Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Regan K, LeBourdais R, Banerji R, Zhang S, Muhvich J, Zheng S, Nia HT. Multiscale elasticity mapping of biological samples in 3D at optical resolution. Acta Biomater 2024; 176:250-266. [PMID: 38160857 PMCID: PMC10922809 DOI: 10.1016/j.actbio.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The mechanical properties of biological tissues have emerged as an integral determinant of tissue function in health and disease. Nonetheless, characterizing the elasticity of biological samples in 3D and at high resolution remains challenging. Here, we present a µElastography platform: a scalable elastography system that maps the elastic properties of tissues from cellular to organ scales. The platform leverages the use of a biocompatible, thermo-responsive hydrogel to deliver compressive stress to a biological sample and track its resulting deformation. By surrounding the specimen with a reference hydrogel of known Young's modulus, we are able to map the absolute values of elastic properties in biological samples. We validate the experimental and computational components of the platform using a hydrogel phantom and verify the system's ability to detect internal mechanical heterogeneities. We then apply the platform to map the elasticity of multicellular spheroids and the murine lymph node. With these applications, we demonstrate the platform's ability to map tissue elasticity at internal planes of interest, as well as capture mechanical heterogeneities neglected by most macroscale characterization techniques. The µElastography platform, designed to be implementable in any biology lab with access to 3D microscopy (e.g., confocal, multiphoton, or optical coherence microscopy), will provide the capability to characterize the mechanical properties of biological samples to labs across the large community of biological sciences by eliminating the need of specialized instruments such as atomic force microscopy. STATEMENT OF SIGNIFICANCE: Understanding the elasticity of biological tissues is of great importance, but characterizing these properties typically requires highly specialized equipment. Utilizing stimulus-responsive hydrogels, we present a scalable, hydrogel-based elastography method that uses readily available reagents and imaging modalities to generate resolved maps of internal elasticity within biomaterials and biological samples at optical resolution. This new approach is capable of detecting internal stiffness heterogeneities within the 3D bulk of samples and is highly scalable across both imaging modalities and biological length scales. Thus, it will have significant impact on the measurement capabilities of labs studying engineered biomaterials, mechanobiology, disease progression, and tissue engineering and development.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Robert LeBourdais
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Carnicer-Lombarte A, Barone DG, Wronowski F, Malliaras GG, Fawcett JW, Franze K. Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury. Biomaterials 2023; 303:122393. [PMID: 37977006 DOI: 10.1016/j.biomaterials.2023.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Damiano G Barone
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Filip Wronowski
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK; Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Prague, Czech Republic
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK; Institute of Medical Physics and Micro-Tissue Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany.
| |
Collapse
|
14
|
Klostermeier S, Li A, Hou HX, Green U, Lennerz JK. Exploring the Skin Brain Link: Biomarkers in the Skin with Implications for Aging Research and Alzheimer's Disease Diagnostics. Int J Mol Sci 2023; 24:13309. [PMID: 37686115 PMCID: PMC10487444 DOI: 10.3390/ijms241713309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are challenging to diagnose. Currently the field must rely on imperfect diagnostic modalities. A recent study identified differences in several key bio-mechano-physiological parameters of the skin between AD patients and healthy controls. Here, we visually align these differences with the relevant histological, aging, and embryological paradigms to raise awareness for these potential biomarkers. In a study conducted by Wu et al., a series of n = 41 patients (n = 29 with AD and n = 12 healthy controls) were evaluated, demonstrating that AD patients exhibit a less acidic skin pH, increased skin hydration, and reduced skin elasticity compared to healthy controls. We constructed a visual overview and explored the relevant paradigms. We present a visual comparison of these factors, highlighting four paradigms: (1) the findings emphasize a shared ectodermal origin of the brain and the skin; (2) functional systems such as micro-vascularization, innervation, eccrine excretory functions, and the extracellular matrix undergo distinct changes in patients with AD; (3) the human skin mirrors the alterations in brain stiffness observed in aging studies; (4) assessment of physiological features of the skin is cost-effective, accessible, and easily amenable for monitoring and integration with cognitive assessment studies. Understanding the relationship between aging skin and aging brain is an exciting frontier, holding great promise for improved diagnostics. Further prospective and larger-scale investigations are needed to solidify the brain-skin link and determine the extent to which this relationship can be leveraged for diagnostic applications.
Collapse
Affiliation(s)
- Stefanie Klostermeier
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Annie Li
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Helen X. Hou
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Ula Green
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Jochen K. Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| |
Collapse
|
15
|
Fuhs T, Flachmeyer B, Krueger M, Blietz A, Härtig W, Michalski D. Combining atomic force microscopy and fluorescence-based techniques to explore mechanical properties of naive and ischemia-affected brain regions in mice. Sci Rep 2023; 13:12774. [PMID: 37550347 PMCID: PMC10406906 DOI: 10.1038/s41598-023-39277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Knowledge of the brain's structure and function is essential for understanding processes in health and disease. Histochemical and fluorescence-based techniques have proven beneficial in characterizing brain regions and cellular compositions in pre-clinical research. Atomic force microscopy (AFM) has been introduced for mechanical tissue characterization, which may also help investigate pathophysiological aspects in disease-related models such as stroke. While combining AFM and fluorescence-based techniques, this study explored the mechanical properties of naive and ischemic brain regions in mice. Ischemia-affected regions were identified by the green signal of fluorescein isothiocyanate-conjugated albumin. A semi-automated protocol based on a brain atlas allowed regional allocations to the neocortex, striatum, thalamus, hypothalamus, hippocampus, and fiber tracts. Although AFM led to varying measurements, intra-individual analyses indicated a gradually increased tissue stiffness in the neocortex compared to subcortical areas, i.e., the striatum and fiber tracts. Regions affected by ischemia predominantly exhibited an increased tissue stiffness compared to those of the contra-lateral hemisphere, which might be related to cellular swelling. This study indicated intra-individual differences in mechanical properties among naive and ischemia-affected brain regions. The combination of AFM, semi-automated regional allocations, and fluorescence-based techniques thus qualifies for mechanical characterizations of the healthy and disease-affected brain in pre-clinical research.
Collapse
Affiliation(s)
- Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
- Institute for Physical Chemistry, Faculty of Chemistry and Physics, Technical University Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Bianca Flachmeyer
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Alexandra Blietz
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|