1
|
Rohit S, Patel M, Jagtap Y, Shah U, Patel A, Patel S, Solanki N. Structural Insights of PD-1/PD-L1 Axis: An In silico Approach. Curr Protein Pept Sci 2024; 25:638-650. [PMID: 38706351 DOI: 10.2174/0113892037297012240408063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Interaction of PD-1 protein (present on immune T-cell) with its ligand PD-L1 (over-expressed on cancerous cell) makes the cancerous cell survive and thrive. The association of PD-1/PD-L1 represents a classical protein-protein interaction (PPI), where receptor and ligand binding through a large flat surface. Blocking the PD-1/PDL-1 complex formation can restore the normal immune mechanism, thereby destroying cancerous cells. However, the PD-1/PDL1 interactions are only partially characterized. OBJECTIVE We aim to comprehend the time-dependent behavior of PD-1 upon its binding with PD-L1. METHODS The current work focuses on a molecular dynamics simulation (MDs) simulation study of apo and ligand bound PD-1. RESULTS Our simulation reveals the flexible nature of the PD-1, both in apo and bound form. Moreover, the current study also differentiates the type of strong and weak interactions which could be targeted to overcome the complex formation. CONCLUSION The current article could provide a valuable structural insight about the target protein (PD-1) and its ligand (PD-L1) which could open new opportunities in developing small molecule inhibitors (SMIs) targeting either PD-1 or PD-L1.
Collapse
Affiliation(s)
- Shishir Rohit
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Yogesh Jagtap
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Umang Shah
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Swayamprakash Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| |
Collapse
|
2
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
3
|
Gerace D, Zhou Q, Kenty JHR, Veres A, Sintov E, Wang X, Boulanger KR, Li H, Melton DA. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep Med 2023; 4:100879. [PMID: 36599351 PMCID: PMC9873825 DOI: 10.1016/j.xcrm.2022.100879] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Immunological protection of transplanted stem cell-derived islet (SC-islet) cells is yet to be achieved without chronic immunosuppression or encapsulation. Existing genetic engineering approaches to produce immune-evasive SC-islet cells have so far shown variable results. Here, we show that targeting human leukocyte antigens (HLAs) and PD-L1 alone does not sufficiently protect SC-islet cells from xenograft (xeno)- or allograft (allo)-rejection. As an addition to these approaches, we genetically engineer SC-islet cells to secrete the cytokines interleukin-10 (IL-10), transforming growth factor β (TGF-β), and modified IL-2 such that they promote a tolerogenic local microenvironment by recruiting regulatory T cells (Tregs) to the islet grafts. Cytokine-secreting human SC-β cells resist xeno-rejection and correct diabetes for up to 8 weeks post-transplantation in non-obese diabetic (NOD) mice. Thus, genetically engineering human embryonic SCs (hESCs) to induce a tolerogenic local microenvironment represents a promising approach to provide SC-islet cells as a cell replacement therapy for diabetes without the requirement for encapsulation or immunosuppression.
Collapse
Affiliation(s)
- Dario Gerace
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Quan Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Jennifer Hyoje-Ryu Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Adrian Veres
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Xi Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Kyle R Boulanger
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Hongfei Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Nguyen TT, Pham DV, Park J, Phung CD, Nepal MR, Pandit M, Shrestha M, Son Y, Joshi M, Jeong TC, Park PH, Choi DY, Chang JH, Kim JH, Kim JR, Kim IK, Yong CS, Kim JO, Sung JH, Jiang HL, Kim HS, Yook S, Jeong JH. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation. SCIENCE ADVANCES 2022; 8:eabn8614. [PMID: 36001671 PMCID: PMC9401619 DOI: 10.1126/sciadv.abn8614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyeung Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youlim Son
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Mili Joshi
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Ryong Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Il-Kug Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
- Epibiotech Co. Ltd., Incheon, 21983, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8. PLoS One 2022; 17:e0260565. [PMID: 35452465 PMCID: PMC9032342 DOI: 10.1371/journal.pone.0260565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
TLR7 and TLR8 are key members of the Toll-like receptor family, playing crucial roles in the signaling pathways of innate immunity, and thus become attractive therapeutic targets of many diseases including infections and cancer. Although TLR7 and TLR8 show a high degree of sequence homology, their biological response to small molecule binding is very different. Aiming to understand the mechanism of selective profiles of small molecule modulators against TLR7 and TLR8, we carried out molecular dynamic simulations on three imidazoquinoline derivatives bound to the receptors separately. They are Resiquimod (R), Hybrid-2 (H), and Gardiquimod (G), selective agonists of TLR7 and TLR8. Our MD trajectories indicated that in the complex of TLR7-R and TLR7-G, the two chains forming the TLR7 dimer tended to remain “open” conformation, while the rest systems maintained in the closed format. The agonists R, H, and G developed conformational deviation mainly on the aliphatic tail. Furthermore, we attempted to quantify the selectivity between TLR7 and TLR8 by binding free energies via MM-GBSA method. It showed that the three selected modulators were more favorable for TLR7 than TLR8, and the ranking from the strongest to the weakest was H, R and G, aligning well with experimental data. In the TLR7, the flexible and hydrophobic aliphatic side chain of H has stronger van der Waals interactions with V381 and F351 but only pick up interaction with one amino acid residue i.e. Y353 of TLR8. Unsurprisingly, the positively charged side chain of G has less favorable interaction with I585 of TLR7 and V573 of TLR8 explaining G is weak agonist of both TLR7 and TLR8. All three imidazoquinoline derivatives can form stable hydrogen bonds with D555 of TLR7 and the corresponding D543 of TLR8. In brief, the set of total 400ns MD studies sheds light on the potential selectivity mechanisms of agonists towards TLR7 and TLR8, indicating the van der Waals interaction as the driving force for the agonists binding, thus provides us insights for designing more potent and selective modulators to cooperate with the hydrophobic nature of the binding pocket.
Collapse
|
6
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
7
|
Liu L, Liu Y, Xia Y, Wang G, Zhang X, Zhang H, Xu Y, Yuan Y, Liu S, Wang Y. Synergistic killing effects of PD-L1-CAR T cells and colorectal cancer stem cell-dendritic cell vaccine-sensitized T cells in ALDH1-positive colorectal cancer stem cells. J Cancer 2021; 12:6629-6639. [PMID: 34659553 PMCID: PMC8517999 DOI: 10.7150/jca.62123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are characterized by self-renewal and unlimited proliferation, providing a basis for tumor occurrence, metastasis, and recurrence. Because CSCs are highly resistant to conventional chemotherapy and radiotherapy, various immunotherapies, particularly chimeric antigen receptor T cell (CAR-T) therapy and dendritic cell (DC)-based vaccine therapy, are currently being developed. Accordingly, in this study, we evaluated programmed cell death ligand-1 (PD-L1) expression in colorectal CSCs (CCSCs) and non-CCSCs and designed a combination immunotherapy synchronously utilizing PD-L1-CAR-T cells together with CCSC-DC vaccine-sensitized T cells for the treatment of colorectal cancer. PD-L1-CAR-T cells specifically recognized the PD-L1 molecule on CCSCs by binding to the extracellular domain of programmed cell death-1. The CCSC-DC vaccine was prepared using CCSC lysates. We found that aldehyde dehydrogenase 1 (ALDH1)-positive CCSCs were abundant in samples from patient tumor tissues and cancer cell lines. Moreover, PD-L1 was highly expressed in ALDH1-positive CCSCs compared with that in non-CCSCs. Monotherapy with PD-L1-CAR-T cells or CCSC-DC vaccine only elicited moderate tumor remission both in vitro and in vivo. However, combination therapy markedly killed cancer cells and relieved the tumor burden in mice. Our findings may provide a novel strategy for the clinical treatment of colorectal malignancy.
Collapse
Affiliation(s)
- Liu Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yuanyuan Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yang Xia
- Taizhou People's Hospital/The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, P.R. China
| | - Guanlong Wang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Xiushan Zhang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Huan Zhang
- Linquan County People's Hospital, Linquan 236400, P.R. China
| | - Yang Xu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yuan Yuan
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Shangquan Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yi Wang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| |
Collapse
|
8
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
9
|
Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:648580. [PMID: 33968039 PMCID: PMC8100438 DOI: 10.3389/fimmu.2021.648580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.
Collapse
Affiliation(s)
- Nina B Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, United States
| | - Imran Mohammad
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y Moreno-Nieves
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ievgen Koliesnik
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Guiteras J, De Ramon L, Crespo E, Bolaños N, Barcelo-Batllori S, Martinez-Valenzuela L, Fontova P, Jarque M, Torija A, Bestard O, Resina D, Grinyó JM, Torras J. Dual and Opposite Costimulatory Targeting with a Novel Human Fusion Recombinant Protein Effectively Prevents Renal Warm Ischemia Reperfusion Injury and Allograft Rejection in Murine Models. Int J Mol Sci 2021; 22:ijms22031216. [PMID: 33530581 PMCID: PMC7865252 DOI: 10.3390/ijms22031216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Many studies have shown both the CD28-D80/86 costimulatory pathway and the PD-1-PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models-rat renal IRI and allogeneic kidney transplant. The Surface Plasmon Resonance assay demonstrated the avidity and binding of HYBRI to its targets. HYBRI treatment in the models exerted a high functional and morphological improvement. HYBRI produced a significant amelioration of renal function on day one and two after bilateral warm ischemia and on days seven and nine after transplant, clearly prolonging the animal survival in a life-sustaining renal allograft model. In both models, a significant reduction in histological damage and CD3 and CD68 infiltrating cells was observed. HYBRI decreased the circulating inflammatory cytokines and enriched the FoxP3 peripheral circulating, apart from reducing renal inflammation. In conclusion, the dual and opposite costimulatory targeting with that novel protein offers a good microenvironment profile to protect the ischemic process in the kidney and to prevent the kidney rejection, increasing the animal's chances of survival. HYBRI largely prevents the progression of inflammation in these rat models.
Collapse
Affiliation(s)
- Jordi Guiteras
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Fundació Bosch i Gimpera, University of Barcelona, 08028 Barcelona, Spain
| | - Laura De Ramon
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Elena Crespo
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Nuria Bolaños
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Silvia Barcelo-Batllori
- Molecular Interactions Unit, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) Scientific-Technical Services, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Laura Martinez-Valenzuela
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Pere Fontova
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Marta Jarque
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Alba Torija
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - David Resina
- Bioingenium S.L., Barcelona Science Park, 08028 Barcelona, Spain;
| | - Josep M Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| |
Collapse
|
11
|
Mittal L, Srivastava M, Kumari A, Tonk RK, Awasthi A, Asthana S. Interplay among Structural Stability, Plasticity, and Energetics Determined by Conformational Attuning of Flexible Loops in PD-1. J Chem Inf Model 2021; 61:358-384. [PMID: 33433201 DOI: 10.1021/acs.jcim.0c01080] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynamics and plasticity of the PD-1/PD-L1 axis are the bottlenecks for the discovery of small-molecule antagonists to perturb this interaction interface significantly. Understanding the process of this protein-protein interaction (PPI) is of fundamental biological interest in structure-based drug designing. Food and Drug Administration (FDA)-approved anti-PD-1 monoclonal antibodies (mAbs) are the first-in-class with distinct binding modes to access this axis clinically; however, their mechanistic aspects remain elusive. Here, we have unveiled the interactive interfaces with PD-L1 and mAbs to investigate the native plasticity of PD-1 at global (structural and dynamical) and local (residue side-chain orientations) levels. We found that the structural stability and coordinated Cα movements are increased in the presence of PD-1's binding partners. The rigorous analysis of these PPIs using computational biophysical approaches revealed PD-1's intrinsic plasticity, its concerted loops' movement (BC, FG, and CC'), distal side-chain motions, and the thermodynamic landscape, which are perturbed remarkably from its unbound to bound states. Based on intra-/inter-residues' contact networks and energetics, the hot-spots have been identified that were found to be essential to arrest the dynamical motions of PD-1 significantly for the rational design of therapeutic agents by mimicking the mAbs mechanism.
Collapse
Affiliation(s)
- Lovika Mittal
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), Delhi 110017, India
| | - Mitul Srivastava
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Anita Kumari
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Delhi 110017, India
| | - Amit Awasthi
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
12
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
13
|
Immune Checkpoint Blockade in Cancer Immunotherapy: Mechanisms, Clinical Outcomes, and Safety Profiles of PD-1/PD-L1 Inhibitors. Arch Immunol Ther Exp (Warsz) 2020; 68:36. [DOI: 10.1007/s00005-020-00601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
|
14
|
Gedeon PC, Champion CD, Rhodin KE, Woroniecka K, Kemeny HR, Bramall AN, Bernstock JD, Choi BD, Sampson JH. Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Expert Rev Clin Pharmacol 2020; 13:1147-1158. [PMID: 32862726 DOI: 10.1080/17512433.2020.1817737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite maximal surgical resection and chemoradiation, glioblastoma (GBM) continues to be associated with significant morbidity and mortality. Novel therapeutic strategies are urgently needed. Given success in treating multiple other forms of cancer, checkpoint inhibitor immunotherapy remains foremost amongst novel therapeutic strategies that are currently under investigation. AREAS COVERED Through a systematic review of both published literature and the latest preliminary data available from ongoing clinical studies, we provide an up-to-date discussion on the immune system in the CNS, a detailed mechanistic evaluation of checkpoint biology in the CNS along with evidence for disruption of these pathways in GBM, and a summary of available preclinical and clinical data for checkpoint blockade in GBM. We also include a discussion of novel, emerging targets for checkpoint blockade which may play an important role in GBM immunotherapy. EXPERT OPINION Evidence indicates that while clinical success of checkpoint blockade for the treatment of GBM has been limited to date, through improved preclinical models, optimization in the context of standard of care therapies, assay standardization and harmonization, and combinatorial approaches which may include novel targets for checkpoint blockade, checkpoint inhibitor immunotherapy may yield a safe and effective therapeutic option for the treatment of GBM.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Cosette D Champion
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center , Durham, NC, USA
| | - Karolina Woroniecka
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| | - Hanna R Kemeny
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Alexa N Bramall
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| |
Collapse
|
15
|
Lyu N, Wang K, Zhang F, Qin H, Zhao Y, Wu R, Si Y, Wang L. Recognition of PDL1/L2 by different induced-fit mechanisms of PD1: a comparative study of molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:1276-1287. [DOI: 10.1039/c9cp05531b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The different binding mechanism for PD1/PDL1 and PD1/PDL2 complexes.
Collapse
Affiliation(s)
- Nan Lyu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Kai Wang
- School of Agriculture and Biology
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510000
- P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Haimei Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yubing Si
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Laiyou Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
16
|
Philips EA, Garcia-España A, Tocheva AS, Ahearn IM, Adam KR, Pan R, Mor A, Kong XP. The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. J Biol Chem 2019; 295:4372-4380. [PMID: 31882544 DOI: 10.1074/jbc.ac119.011747] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) is an inhibitory receptor on T lymphocytes that is critical for modulating adaptive immunity. As such, it has been successfully exploited for cancer immunotherapy. Programmed death ligand 1 (PD-L1) and PD-L2 are ligands for PD-1; the former is ubiquitously expressed in inflamed tissues, whereas the latter is restricted to antigen-presenting cells. PD-L2 binds to PD-1 with 3-fold stronger affinity compared with PD-L1. To date, this affinity discrepancy has been attributed to a tryptophan (W110PD-L2) that is unique to PD-L2 and has been assumed to fit snuggly into a pocket on the PD-1 surface. Contrary to this model, using surface plasmon resonance to monitor real-time binding of recombinantly-expressed and -purified proteins, we found that W110PD-L2 acts as an "elbow" that helps shorten PD-L2 engagement with PD-1 and therefore lower affinity. Furthermore, we identified a "latch" between the C and D β-strands of the binding face as the source of the PD-L2 affinity advantage. We show that the 3-fold affinity advantage of PD-L2 is the consequence of these two opposing features, the W110PD-L2 "elbow" and a C-D region "latch." Interestingly, using phylogenetic analysis, we found that these features evolved simultaneously upon the emergence of placental mammals, suggesting that PD-L2-affinity tuning was part of the alterations to the adaptive immune system required for placental gestation.
Collapse
Affiliation(s)
- Elliot A Philips
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Antonio Garcia-España
- Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Anna S Tocheva
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032
| | - Ian M Ahearn
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| | - Kieran R Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
17
|
Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. Molecular cloning, expression and characterization of Pekin duck programmed death-1. Gene 2019; 702:182-193. [PMID: 30910561 DOI: 10.1016/j.gene.2019.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
Programmed death-1 (PD-1) has a pivotal role in the attenuation of adaptive immune responses and peripheral tolerance. Here we describe the identification of the Pekin duck programmed death-1 orthologue (duPD-1). The duPD-1 cDNA encodes a 283-amino acid polypeptide that has an amino acid identity of 70%, 32% and 31% with chicken, murine and human PD-1, respectively. The duck PD-1 gene shares five conserved exons with chicken, murine and human PD-1 genes. A cluster of putative regulatory elements within the conserved region B (CR-B) of the basal promotor is conserved. Homology modeling was most compatible with the two β-sheet IgV domain structure of murine PD-1. Contact residues, shown to be critical for binding of the respective human and murine PD-1 ligands are mostly conserved between avian and mammalian species, whereas residues that define the cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM) are highly conserved across higher vertebrates and frog. Constitutive expression of duPD-1 transcripts was predominantly found in lymphocyte-rich tissues, and mitogen-stimulation of duck peripheral blood mononuclear cells transiently increased duPD-1 mRNA expression. A soluble duPD-1 protein was expressed and shown to engage the identified duck PD-1 ligands. Our observations show considerable evolutionary conservation between mammalian and avian PD-1 orthologues. This work will facilitate further investigation of the role of PD-1 signaling in adaptive immunity in the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health.
Collapse
Affiliation(s)
- Qingxia Yao
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karl P Fischer
- Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - D Lorne Tyrrell
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Klaus S Gutfreund
- Dept. of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:156. [PMID: 30975211 PMCID: PMC6460662 DOI: 10.1186/s13046-019-1094-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
Abstract
Cancer is currently the second leading cause of death globally and is expected to be responsible for approximately 9.6 million deaths in 2018. With an unprecedented understanding of the molecular pathways that drive the development and progression of human cancers, novel targeted therapies have become an exciting new development for anti-cancer medicine. These targeted therapies, also known as biologic therapies, have become a major modality of medical treatment, by acting to block the growth of cancer cells by specifically targeting molecules required for cell growth and tumorigenesis. Due to their specificity, these new therapies are expected to have better efficacy and limited adverse side effects when compared with other treatment options, including hormonal and cytotoxic therapies. In this review, we explore the clinical development, successes and challenges facing targeted anti-cancer therapies, including both small molecule inhibitors and antibody targeted therapies. Herein, we introduce targeted therapies to epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), anaplastic lymphoma kinase (ALK), BRAF, and the inhibitors of the T-cell mediated immune response, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1)/ PD-1 ligand (PD-1 L).
Collapse
Affiliation(s)
- N A Seebacher
- Faculty of Medicine, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A E Stacy
- Faculty of Medicine, The University of Notre Dame, Darlinghurst, New South Wales, 2010, Australia
| | - G M Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia
| | - A M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,UNSW Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia.
| |
Collapse
|
19
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. A quantum biochemistry approach to investigate checkpoint inhibitor drugs for cancer. NEW J CHEM 2019. [DOI: 10.1039/c8nj05561k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigate the coupling profiles of the receptor PD-1 in complex with its natural ligand PDL1 and two inhibitor drugs.
Collapse
Affiliation(s)
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|
20
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
21
|
Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS One 2018; 13:e0206232. [PMID: 30356330 PMCID: PMC6200280 DOI: 10.1371/journal.pone.0206232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory immune checkpoint receptor that negatively regulates the functioning of T cell. Although the direct targets of PD-1 were not identified, its inhibitory action on the TCR signaling pathway was known much earlier. Recent experiments suggest that the PD-1 inhibits the TCR and CD28 signaling pathways at a very early stage ─ at the level of phosphorylation of the cytoplasmic domain of TCR and CD28 receptors. Here, we develop a mathematical model to investigate the influence of inhibitory effect of PD-1 on the activation of early TCR and CD28 signaling molecules. Proposed model recaptures several quantitative experimental observations of PD-1 mediated inhibition. Model simulations show that PD-1 imposes a net inhibitory effect on the Lck kinase. Further, the inhibitory effect of PD-1 on the activation of TCR signaling molecules such as Zap70 and SLP76 is significantly enhanced by the PD-1 mediated inhibition of Lck. These results suggest a critical role for Lck as a mediator for PD-1 induced inhibition of TCR signaling network. Multi parametric sensitivity analysis explores the effect of parameter uncertainty on model simulations.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
22
|
Acúrcio RC, Scomparin A, Conniot J, Salvador JAR, Satchi-Fainaro R, Florindo HF, Guedes RC. Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. J Med Chem 2018; 61:10957-10975. [DOI: 10.1021/acs.jmedchem.8b00541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, and Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
Konstantinidou M, Zarganes-Tzitzikas T, Magiera-Mularz K, Holak TA, Dömling A. Immune Checkpoint PD-1/PD-L1: Is There Life Beyond Antibodies? Angew Chem Int Ed Engl 2018; 57:4840-4848. [PMID: 29178534 PMCID: PMC6280658 DOI: 10.1002/anie.201710407] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Indexed: 12/27/2022]
Abstract
The PD-1/PD-L1 interaction has emerged as a significant target in cancer immunotherapy. Current medications include monoclonal antibodies, which have shown impressive clinical results in the treatment of several types of tumors. The cocrystal structure of human PD-1 and PD-L1 is expected to be a valuable starting point for the design of novel inhibitors, along with the recent crystal structures with monoclonal antibodies, small molecules, and macrocycles.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen (The Netherlands)
| | - Tryfon Zarganes-Tzitzikas
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen (The Netherlands)
| | | | - Tad A. Holak
- Jagiellonian University Ingardena 3, 30-060 Krakow (Poland), Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried (Germany)
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen (The Netherlands)
| |
Collapse
|
24
|
Konstantinidou M, Zarganes-Tzitzikas T, Magiera-Mularz K, Holak TA, Dömling A. Der Immuncheckpoint PD-1/PD-L1: Gibt es Therapieoptionen jenseits der Antikörper? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Markella Konstantinidou
- Department of Drug Design; University of Groningen; A. Deusinglaan 1 9713 AV Groningen Niederlande
| | | | | | - Tad A. Holak
- Fakultät für Chemie; Jagiellonen-Universität; Ingardena 3 30-060 Krakau Polen
- Max-Planck-Institut für Biochemie; Am Klopferspitz 18a 82152 Martinsried Deutschland
| | - Alexander Dömling
- Department of Drug Design; University of Groningen; A. Deusinglaan 1 9713 AV Groningen Niederlande
| |
Collapse
|
25
|
Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target 2018; 27:244-256. [PMID: 29448849 DOI: 10.1080/1061186x.2018.1440400] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has been increasingly utilised to treat advanced malignancies. The signalling network of immune checkpoints has attracted considerable attention. Immune checkpoint inhibitors are revolutionising the treatment options and expectations for patients with cancer. The reported clinical success of targeting the T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immune modulation. Indeed, antibodies binding to PD-1 or PD-L1 have shown remarkable efficacy. However, antibody drugs have many disadvantages, such as their production cost, stability, and immunogenicity and, therefore, small-molecule inhibitors of PD-1 and its ligand PD-L1 are being introduced. Small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability, thereby providing additional methods for cancer treatment and achieving better therapeutic effects. In this review, we first discuss how PD-1/PD-L1-targeting inhibitors modulate the relationship between immune cells and tumour cells in tumour immunotherapy. Second, we discuss how the immunomodulatory potential of these inhibitors can be exploited via rational combinations with immunotherapy and targeted therapy. Third, this review is the first to summarise the current clinical and preclinical evidence regarding small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint, considering features and responses related to the tumours and to the host immune system.
Collapse
Affiliation(s)
- Kui Li
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| | - Hongqi Tian
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| |
Collapse
|
26
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Sci Rep 2018; 8:1840. [PMID: 29382901 PMCID: PMC5789983 DOI: 10.1038/s41598-018-20325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.
Collapse
Affiliation(s)
- Ana Beatriz M L A Tavares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - José X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil.
| |
Collapse
|
27
|
Abstract
Binding site identification and druggability evaluation are two essential steps in structure-based drug design. A druggable binding site tends to have high binding affinity to drug-like molecules. Predicting such sites can have a significant impact on a drug design campaign. This chapter focuses on summarizing the different methods that are used to predict druggable binding sites. The chapter also discusses the importance of including protein flexibility in the search process and the use of molecular dynamics simulations to address this aspect. Case studies from the literature are also summarized and discussed. We hope that this chapter would provide an overview on the different methods employed in binding site identification evaluation.
Collapse
Affiliation(s)
- Tianhua Feng
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Shi D, Zhou S, Liu X, Zhao C, Liu H, Yao X. Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: A molecular modeling perspective. Biochim Biophys Acta Gen Subj 2017; 1862:576-588. [PMID: 29203283 DOI: 10.1016/j.bbagen.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/13/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated. METHODS Molecular modeling methods including molecular dynamics simulation, per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-residue contact analysis were used to qualitatively and quantitatively analyze the interactions between PD-L1 and different protein ligands. RESULTS The results of virtual alanine scanning mutagenesis suggest that Y56, Q66, M115, D122, Y123, R125 are the hotspot residues on PD-L1. The residue-residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F and G strands while monoclonal antibodies like avelumab and BMS-936559 mainly interact with PD-L1 by CDR2 and CDR3 loops of the heavy chain. CONCLUSIONS A structurally similar β-hairpin peptide with 13 or 14 residues was extracted from each protein ligand and these β-hairpin peptides were found tightly binding to the putative hotspot residues on PD-L1. GENERAL SIGNIFICANCE This study recognizes the hotspot residues on PD-L1 and uncovers the common structural and energetic basis of different protein ligands binding to PD-L1. These results will be valuable for the design of small molecule or peptide inhibitors targeting on PD-L1.
Collapse
Affiliation(s)
- Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Shuangyan Zhou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Chenxi Zhao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
29
|
Jin X, Lee K, Kim NH, Kim HS, Yook JI, Choi J, No KT. Natural products used as a chemical library for protein-protein interaction targeted drug discovery. J Mol Graph Model 2017; 79:46-58. [PMID: 29136547 DOI: 10.1016/j.jmgm.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022]
Abstract
Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kyungro Lee
- Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jiwon Choi
- Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea.
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
30
|
Ahmed M, Barakat K. When theory meets experiment: the PD-1 challenge. J Mol Model 2017; 23:308. [PMID: 29019005 DOI: 10.1007/s00894-017-3482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022]
Abstract
Applying atomistic computational modeling to drug discovery has proven to be a hugely successful approach, allowing drug-receptor interactions to be predicted and drugs to be optimized for potency, selectivity, and safety. However, when it comes to predicting protein-protein interactions and to rationally designing regulators of these interactions, computational tools often fail. Here, we report one of the rare instances where state-of-the-art computer simulations, guided by experiment, were able to correctly predict one of the most sophisticated protein-protein interactions. We revisit our previous discovery of the complex of human PD-1 with the ligand PD-L1 and compare our earlier findings with the recently published crystal structure of the same complex. Side-by-side comparison of the model of the complex with its crystal structure reveals outstanding agreement and suggests that our protein-protein prediction workflow could be applied to similar problems.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada. .,Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Ahmed M, Barakat K. The Too Many Faces of PD-L1: A Comprehensive Conformational Analysis Study. Biochemistry 2017; 56:5428-5439. [PMID: 28898057 DOI: 10.1021/acs.biochem.7b00655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the current study, we focused on the immune-checkpoints PD-1 pathway and in particular on the ligand PD-L1. We studied the conformational dynamics of PD-L1 through principal component analysis of existing crystal structures combined with classical and accelerated molecular dynamics simulations. We identified the maximum structural displacements that take place in all PD-L1 crystal structures and in the molecular dynamics trajectories. We found that these displacements are attributed to specific flexible regions in the protein. We also investigated the conformational preference for small molecule binding and highlighted a methionine residue at the binding site, which plays a key role in drug binding. The binding mechanism of PD-L1 to other binding partners is also discussed in detail from a computational perspective. We hope that the data presented here support the ongoing efforts to discover effective therapies targeting the PD-1 immune-checkpoint pathway.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, and ‡Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, and ‡Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 2017; 22:249-269. [DOI: 10.1016/j.drudis.2016.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022]
|
33
|
Hasani HJ, Barakat KH. Protein-Protein Docking. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Protein-protein docking algorithms are powerful computational tools, capable of analyzing the protein-protein interactions at the atomic-level. In this chapter, we will review the theoretical concepts behind different protein-protein docking algorithms, highlighting their strengths as well as their limitations and pointing to important case studies for each method. The methods we intend to cover in this chapter include various search strategies and scoring techniques. This includes exhaustive global search, fast Fourier transform search, spherical Fourier transform-based search, direct search in Cartesian space, local shape feature matching, geometric hashing, genetic algorithm, randomized search, and Monte Carlo search. We will also discuss the different ways that have been used to incorporate protein flexibility within the docking procedure and some other future directions in this field, suggesting possible ways to improve the different methods.
Collapse
|
34
|
Liu A, Dong L, Wei XL, Yang XH, Xiao JH, Liu ZQ. Development of amino- and dimethylcarbamate-substituted resorcinol as programmed cell death-1 (PD-1) inhibitor. Eur J Pharm Sci 2016; 88:50-8. [DOI: 10.1016/j.ejps.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/26/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
|
35
|
Gentile F, Tuszynski JA, Barakat KH. New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J Mol Graph Model 2016; 65:71-82. [PMID: 26939044 DOI: 10.1016/j.jmgm.2016.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/13/2016] [Accepted: 02/21/2016] [Indexed: 01/05/2023]
Abstract
Many cancer chemotherapy agents act by targeting the DNA of cancer cells, causing substantial damage within their genome and causing them to undergo apoptosis. An effective DNA repair pathway in cancer cells can act in a reverse way by removing these drug-induced DNA lesions, allowing cancer cells to survive, grow and proliferate. In this context, DNA repair inhibitors opened a new avenue in cancer treatment, by blocking the DNA repair mechanisms from removing the chemotherapy-mediated DNA damage. In particular, the nucleotide excision repair (NER) involves more than thirty protein-protein interactions and removes DNA adducts caused by platinum-based chemotherapy. The excision repair cross-complementation group 1 (ERCC1)-xeroderma pigmentosum, complementation group A (XPA) protein (XPA-ERCC1) complex seems to be one of the most promising targets in this pathway. ERCC1 is over expressed in cancer cells and the only known cellular function so far for XPA is to recruit ERCC1 to the damaged point. Here, we build upon our recent advances in identifying inhibitors for this interaction and continue our efforts to rationally design more effective and potent regulators for the NER pathway. We employed in silico drug design techniques to: (1) identify compounds similar to the recently discovered inhibitors, but more effective at inhibiting the XPA-ERCC1 interactions, and (2) identify different scaffolds to develop novel lead compounds. Two known inhibitor structures have been used as starting points for two ligand/structure-hybrid virtual screening approaches. The findings described here form a milestone in discovering novel inhibitors for the NER pathway aiming at improving the efficacy of current platinum-based therapy, by modulating the XPA-ERCC1 interaction.
Collapse
Affiliation(s)
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Kang L, Pan J, Wu J, Hu J, Sun Q, Tang J. Anti-HBV Drugs: Progress, Unmet Needs, and New Hope. Viruses 2015; 7:4960-77. [PMID: 26389937 PMCID: PMC4584298 DOI: 10.3390/v7092854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future.
Collapse
Affiliation(s)
- Lei Kang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaqian Pan
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaofen Wu
- Department of Pharmacy, Ningbo Medical Treatment Center Lihuili Hospital, 57 Xingning Road, Ningbo 315040, China.
| | - Jiali Hu
- Department of Pharmacy, The Third Staff Hospital of Baogang Group, 15 Qingnian Road, Baotou 014010, China.
| | - Qian Sun
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jing Tang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
37
|
Kassem S, Ahmed M, El-Sheikh S, Barakat KH. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods. J Mol Graph Model 2015; 62:105-117. [PMID: 26407139 DOI: 10.1016/j.jmgm.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/06/2015] [Accepted: 09/10/2015] [Indexed: 11/17/2022]
Abstract
Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations.
Collapse
Affiliation(s)
- Summer Kassem
- Department of Physics, American University in Cairo, Cairo, Egypt
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Salah El-Sheikh
- Department of Physics, American University in Cairo, Cairo, Egypt
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|