1
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zheng X, Lu R, Pan D, Peng L, He R, Hu Y, Chen J, Tang J, Rong X, Teng S, Wang Y, Liu F, Xie T, Wu C, Tang Y, Liu W, Qu X. Regulatory T and CXCR3+ Circulating Tfh Cells Concordantly Shape the Neutralizing Antibody Responses in Individuals Who Have Recovered from Mild COVID-19. J Infect Dis 2024; 230:28-37. [PMID: 39052730 DOI: 10.1093/infdis/jiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.
Collapse
Affiliation(s)
- Xingyu Zheng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rui Lu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Dong Pan
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Liting Peng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rongzhang He
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jun Chen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jinyong Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xiaohan Rong
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - You Wang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Fen Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Tianyi Xie
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Chanfeng Wu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yinggen Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Wenpei Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowang Qu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Movsisyan M, Truzyan N, Kasparova I, Chopikyan A, Sawaqed R, Bedross A, Sukiasyan M, Dilbaryan K, Shariff S, Kantawala B, Hakobjanyan G, Petrosyan G, Hakobyan A, Yenkoyan K. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci Rep 2024; 14:13417. [PMID: 38862731 PMCID: PMC11167004 DOI: 10.1038/s41598-024-64414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that gave rise to COVID-19 infection produced a worldwide health crisis. The virus can cause a serious or even fatal disease. Comprehending the complex immunological responses triggered by SARS-CoV-2 infection is essential for identifying pivotal elements that shape the course of the disease and its enduring effects on immunity. The span and potency of antibody responses provide valuable perspicuity into the resilience of post-infection immunity. The analysis of existing literature reveals a diverse controversy, confining varying data about the persistence of particular antibodies as well as the multifaceted factors that impact their development and titer, Within this study we aimed to understand the dynamics of anti-SARS-CoV-2 antibodies against nucleocapsid (anti-SARS-CoV-2 (N)) and spike (anti-SARS-CoV-2 (N)) proteins in long-term immunity in convalescent patients, as well as the factors influencing the production and kinetics of those antibodies. We collected 6115 serum samples from 1611 convalescent patients at different post-infection intervals up to 21 months Study showed that in the fourth month, the anti-SARS-CoV-2 (N) exhibited their peak mean value, demonstrating a 79% increase compared to the initial month. Over the subsequent eight months, the peak value experienced a modest decline, maintaining a relatively elevated level by the end of study. Conversely, anti-SARS-CoV-2 (S) exhibited a consistent increase at each three-month interval over the 15-month period, culminating in a statistically significant peak mean value at the study's conclusion. Our findings demonstrate evidence of sustained seropositivity rates for both anti-SARS-CoV-2 (N) and (S), as well as distinct dynamics in the long-term antibody responses, with anti-SARS-CoV-2 (N) levels displaying remarkable persistence and anti-SARS-CoV-2 (S) antibodies exhibiting a progressive incline.
Collapse
Affiliation(s)
- Mariam Movsisyan
- Department of Allergology and Clinical Immunology, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Nune Truzyan
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Irina Kasparova
- Department of Histology, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Armine Chopikyan
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
- Department of Public Health and Healthcare Organization, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Ra'ed Sawaqed
- General Medicine Faculty, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Alexandra Bedross
- General Medicine Faculty, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Meline Sukiasyan
- Department of Allergology and Clinical Immunology, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Karen Dilbaryan
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Sanobar Shariff
- General Medicine Faculty, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Burhan Kantawala
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Gohar Hakobjanyan
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
- Laboratory-Diagnostic Center of Heratsi Clinical Hospital, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Gayane Petrosyan
- Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
- Laboratory-Diagnostic Center of Heratsi Clinical Hospital, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Armine Hakobyan
- Department of Allergology and Clinical Immunology, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University Named After Mkhitar Heratsi, 0025, Yerevan, Armenia.
- Department of Biochemistry, Yerevan State Medical University Named After Mkhitar Heratsi, Yerevan, Armenia.
| |
Collapse
|
4
|
Collins E, Galipeau Y, Arnold C, Bhéreur A, Booth R, Buchan AC, Cooper C, Crawley AM, McCluskie PS, McGuinty M, Pelchat M, Rocheleau L, Saginur R, Gravel C, Hawken S, Langlois MA, Little J. Clinical and serological predictors of post COVID-19 condition-findings from a Canadian prospective cohort study. Front Public Health 2024; 12:1276391. [PMID: 38784593 PMCID: PMC11111987 DOI: 10.3389/fpubh.2024.1276391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction More than 3 years into the pandemic, there is persisting uncertainty as to the etiology, biomarkers, and risk factors of Post COVID-19 Condition (PCC). Serological research data remain a largely untapped resource. Few studies have investigated the potential relationships between post-acute serology and PCC, while accounting for clinical covariates. Methods We compared clinical and serological predictors among COVID-19 survivors with (n = 102 cases) and without (n = 122 controls) persistent symptoms ≥12 weeks post-infection. We selected four primary serological predictors (anti-nucleocapsid (N), anti-Spike, and anti-receptor binding domain (RBD) IgG titres, and neutralization efficiency), and specified clinical covariates a priori. Results Similar proportions of PCC-cases (66.7%, n = 68) and infected-controls (71.3%, n = 87) tested positive for anti-N IgG. More cases tested positive for anti-Spike (94.1%, n = 96) and anti-RBD (95.1%, n = 97) IgG, as compared with controls (anti-Spike: 89.3%, n = 109; anti-RBD: 84.4%, n = 103). Similar trends were observed among unvaccinated participants. Effects of IgG titres on PCC status were non-significant in univariate and multivariate analyses. Adjusting for age and sex, PCC-cases were more likely to be efficient neutralizers (OR 2.2, 95% CI 1.11-4.49), and odds was further increased among cases to report deterioration in quality of life (OR 3.4, 95% CI 1.64-7.31). Clinical covariates found to be significantly related to PCC included obesity (OR 2.3, p = 0.02), number of months post COVID-19 (OR 1.1, p < 0.01), allergies (OR 1.8, p = 0.04), and need for medical support (OR 4.1, p < 0.01). Conclusion Despite past COVID-19 infection, approximately one third of PCC-cases and infected-controls were seronegative for anti-N IgG. Findings suggest higher neutralization efficiency among cases as compared with controls, and that this relationship is stronger among cases with more severe PCC. Cases also required more medical support for COVID-19 symptoms, and described complex, ongoing health sequelae. More data from larger cohorts are needed to substantiate results, permit subgroup analyses of IgG titres, and explore for differences between clusters of PCC symptoms. Future assessment of IgG subtypes may also elucidate new findings.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anne Bhéreur
- Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Ronald Booth
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Arianne C. Buchan
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michaeline McGuinty
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Raphael Saginur
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chris Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Kawasuji H, Morinaga Y, Nagaoka K, Tani H, Yoshida Y, Yamada H, Takegoshi Y, Kaneda M, Murai Y, Kimoto K, Niimi H, Yamamoto Y. High interleukin-6 levels induced by COVID-19 pneumonia correlate with increased circulating follicular helper T cell frequency and strong neutralization antibody response in the acute phase of Omicron breakthrough infection. Front Immunol 2024; 15:1377014. [PMID: 38694512 PMCID: PMC11061453 DOI: 10.3389/fimmu.2024.1377014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Background Acute immune responses to coronavirus disease 2019 (COVID-19) are influenced by variants, vaccination, and clinical severity. Thus, the outcome of these responses may differ between vaccinated and unvaccinated patients and those with and without COVID-19-related pneumonia. In this study, these differences during infection with the Omicron variant were investigated. Methods A total of 67 patients (including 47 vaccinated and 20 unvaccinated patients) who were hospitalized within 5 days after COVID-19 symptom onset were enrolled in this prospective observational study. Serum neutralizing activity was evaluated using a pseudotyped virus assay and serum cytokines and chemokines were measured. Circulating follicular helper T cell (cTfh) frequencies were evaluated using flow cytometry. Results Twenty-five patients developed COVID-19 pneumonia on hospitalization. Although the neutralizing activities against wild-type and Delta variants were higher in the vaccinated group, those against the Omicron variant as well as the frequency of developing pneumonia were comparable between the vaccinated and unvaccinated groups. IL-6 and CXCL10 levels were higher in patients with pneumonia than in those without it, regardless of their vaccination status. Neutralizing activity against the Omicron variant were higher in vaccinated patients with pneumonia than in those without it. Moreover, a distinctive correlation between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions was observed only in vaccinated patients. Conclusions The present study demonstrates the existence of a characteristic relationship between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions in Omicron breakthrough infection.
Collapse
Affiliation(s)
- Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Yoshihiro Yoshida
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Hiroshi Yamada
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yusuke Takegoshi
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Makito Kaneda
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yushi Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kou Kimoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
6
|
Joudaki N, Ghafouri S, Bavarsad K, Farhadi F, Nasab MA, Afzalzadeh S, Moradzadegan H, Kahyesh RS. Evaluation of antibody titers in COVID-19 patients with cerebral or pulmonary symptoms and mild symptoms. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:124-131. [PMID: 38682065 PMCID: PMC11055446 DOI: 10.18502/ijm.v16i1.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives This study aimed to compare the production of antibodies in three different groups of patients with COVID-19. These groups included patients with pulmonary and cerebral symptoms, as well as those with mild symptoms. Materials and Methods Blood samples were collected from 80 patients admitted to COVID-19-specific hospitals. The patients had various forms of SARS-CoV-2 disease, including those with pulmonary symptoms, brain involvement, and those with positive PCR test results but mild symptoms. The enzyme-linked immunosorbent assay (ELISA) technique was used to determine the levels of IgM and IgG antibody titers. Results The levels of IgM and IgG antibody production differed significantly between groups of patients experiencing pulmonary symptoms and cerebral symptoms, with mild symptom patients also showing differences (P=0.0068), (P=0.0487), (P<0.0001), and (P=0.0120), respectively. Furthermore, there was no significant relationship between IgM antibody secretion and age or pulmonary involvement (P=0.1959). However, there was a direct and significant relationship between age and brain involvement (P=0.0317). Conclusion The findings of this study revealed that the risk of central nervous system involvement increases with age and that older people have lower antibody levels than younger people. Consequently, strengthening the immune systems of people over the age of 78 during this pandemic through vaccination and nutrition is very effective in reducing mortality in this age group.
Collapse
Affiliation(s)
- Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samireh Ghafouri
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farbod Farhadi
- Department of Surgery, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marzieh Abbasi Nasab
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Afzalzadeh
- Department of Infectios Disease, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Moradzadegan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Salehi Kahyesh
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Patra A, Bala A, Khan MR, Mukherjee AK. A Correlation Study to Comprehend the SAR-CoV-2 Viral Load, Antiviral Antibody Titer, and Severity of COVID-19 Symptoms Post-infection Amongst the Vaccinated Population in Kamrup District of As sam, Northeast India. Endocr Metab Immune Disord Drug Targets 2024; 24:1414-1421. [PMID: 38231052 DOI: 10.2174/0118715303281124231213110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND As per the recommendation of the United States Food and Drug Administration, more research is needed to determine the antibody titer against COVID-19 vaccination. OBJECTIVE The study aimed to understand the relationship between the antibody titer to the demographics, infection severity, and cycle threshold (CT) values of confirmed COVID-19 patients. METHODS Initially, we obtained consent from 185 populations and included sixty RT-PCRpositive COVID-19 patients from Kamrup District in the Northeast State of Assam, India. The vaccination status was recorded and tested for the level of serum immunoglobulin (IgG). The CT values, gender, and clinical symptoms-based scoring (CSBS) correlated with their IgG value. RESULTS Around 48% of participants gained an antibody titer more than the threshold value and showed CT values between 18-25. Moreover, the maximum distributed score above the average was found between the CT values 18-25. CONCLUSION The IgG titer value differs significantly amongst the vaccinated population, which may depend upon their genetic and demographic variability.
Collapse
Affiliation(s)
- Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Asis Bala
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Ashis K Mukherjee
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
8
|
Zirou C, Gumeni S, Bellos I, Ntanasis-Stathopoulos I, Sklirou AD, Bagratuni T, Korompoki E, Apostolakou F, Papassotiriou I, Trougakos IP, Terpos E. Longitudinal Analysis of Antibody Response Following SARS-CoV-2 Infection Depending on Disease Severity: A Prospective Cohort Study. Viruses 2023; 15:2250. [PMID: 38005927 PMCID: PMC10674840 DOI: 10.3390/v15112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Severe coronavirus disease 19 (COVID-19) is characterized by a dysregulated inflammatory response, with humoral immunity playing a central role in the disease course. The objective of this study was to assess the immune response and the effects of vaccination in recovered individuals with variable disease severity up to one year following natural infection. METHODS A prospective cohort study was conducted including patients with laboratory-confirmed COVID-19. Disease severity was classified as mild, moderate, and severe based on clinical presentation and outcomes. Anti-RBD (receptor binding domain) and neutralizing antibodies were evaluated at multiple timepoints during the first year after COVID-19 diagnosis. RESULTS A total of 106 patients were included; of them, 28 were diagnosed with mild, 38 with moderate, and 40 with severe disease. At least one vaccine dose was administered in 58 individuals during the follow-up. Participants with mild disease presented significantly lower anti-RBD and neutralizing antibodies compared to those with moderate and severe disease up to the 3rd and 6th months after the infection, respectively. After adjusting for covariates, in the third month, severe COVID-19 was associated with significantly higher anti-RBD (β: 563.09; 95% confidence intervals (CI): 257.02 to 869.17) and neutralizing (β: 21.47; 95% CI: 12.04 to 30.90) antibodies. Among vaccinated individuals, at the 12th month, a history of moderate disease was associated with significantly higher anti-RBD levels (β: 5615.19; 95% CI: 657.92 to 10,572.46). CONCLUSIONS Severe COVID-19 is associated with higher anti-RBD and neutralizing antibodies up to 6 months after the infection. Vaccination of recovered patients is associated with a remarkable augmentation of antibody titers up to one year after COVID-19 diagnosis, regardless of disease severity.
Collapse
Affiliation(s)
- Christina Zirou
- Department of Internal Medicine, Sotiria General and Chest Diseases Hospital of Athens, 11527 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis Bellos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Filia Apostolakou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
9
|
Nagaoka K, Kawasuji H, Takegoshi Y, Murai Y, Kaneda M, Kimoto K, Morimoto S, Tani H, Niimi H, Morinaga Y, Yamamoto Y. Predictive values of immune indicators on respiratory failure in the early phase of COVID-19 due to Delta and precedent variants. Front Immunol 2023; 14:1197436. [PMID: 37731495 PMCID: PMC10507327 DOI: 10.3389/fimmu.2023.1197436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Background Immune response indicators in the early phase of COVID-19, including interferon and neutralizing responses against SARS-CoV-2, which predict hypoxemia remains unclear. Methods This prospective observational study recruited patients hospitalized with COVID-19 (before emergence of omicron variant). As the immune indicators, we assessed the serum levels of IFN-I/III, IL-6, CXCL10 and VEGF, using an ELISA at within 5 days after the onset of symptoms, and serum neutralizing responses using a pseudovirus assay. We also assessed SARS-CoV-2 viral load by qPCR using nasal-swab specimens and serum, to assess the association of indicators and viral distribution. Results The study enrolled 117 patients with COVID-19, of which 28 patients developed hypoxemia. None received vaccine before admission. Serum IFN-I levels (IFN-α and IFN-β), IL-6, CXCL10, LDH and CRP were significantly higher in patients who developed hypoxemia. A significant association with nasopharyngeal viral load was observed only for IFN-I. The serum levels of IFN-α, IL-6, CXCL10 were significantly associated with the presence of RNAemia. Multivariable analysis showed higher odds ratio of IFN-α, with cut-off value of 107 pg/ml, in regard to hypoxemia (Odds ratio [OR]=17.5; 95% confidence interval [CI], 4.7-85; p<0.001), compared to those of IL-6, >17.9 pg/ml (OR=10.5; 95% CI, 2.9-46; p<0.001). Conclusions This study demonstrated that serum IFN-α levels in the early phase of SARS-CoV-2 infection strongly predict hypoxemic respiratory failure in a manner different from that of the other indicators including IL-6 or humoral immune response, and instead sensitively reflect innate immune response against SARS-CoV-2 invasion.
Collapse
Affiliation(s)
- K. Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - H. Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Y. Takegoshi
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Y. Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - M. Kaneda
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - K. Kimoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - S. Morimoto
- Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H. Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - H. Niimi
- Clinical Research Center for Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Y. Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Y. Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
10
|
Spicuzza L, Campagna D, Di Maria C, Sciacca E, Mancuso S, Vancheri C, Sambataro G. An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023; 9:375-401. [PMID: 37091823 PMCID: PMC10113162 DOI: 10.3934/microbiol.2023020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee PI, Hsueh PR. Multisystem inflammatory syndrome in children: A dysregulated autoimmune disorder following COVID-19. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:236-245. [PMID: 36720670 PMCID: PMC9841678 DOI: 10.1016/j.jmii.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a dysregulated autoimmune-mediated illness in genetically susceptible patients following COVID-19 with an interval of 2-6 weeks. The median age of patients with MIS-C is 6-11 years. Most common manifestations are involvement of gastrointestinal tract, cardiovascular system, hematological system, and mucocutaneous system. Respiratory tract, neurological system, musculoskeletal system, and kidney are less frequently affected. Mucocutaneous manifestations and coronary artery abnormalities characteristic for Kawasaki disease (KD) may be observed in a significant proportion of MIS-C patients that may make the differential diagnosis be difficult for some patients, especially in the post-pandemic era. The mortality rate is 1-3%. Management and prognosis of MIS-C are similar to that of KD. MIS-C and KD may share a common pathogenic process. Based on the observation of MIS-C-like illness in uninfected neonates, i.e. multisystem inflammatory syndrome in neonates, both MIS-C and KD may be a consequence of dysregulated, over-exaggerated humoral immune responses triggered by a specific infectious agent.
Collapse
Affiliation(s)
- Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Children's Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
13
|
Immunity after COVID-19 Recovery and Vaccination: Similarities and Differences. Vaccines (Basel) 2022; 10:vaccines10071068. [PMID: 35891232 PMCID: PMC9322013 DOI: 10.3390/vaccines10071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with a robust immune response. The development of systemic inflammation leads to a hyperinflammatory state due to cytokine release syndrome during severe COVID-19. The emergence of many new SARS-CoV-2 variants across the world deteriorates the protective antiviral immunity induced after infection or vaccination. The innate immune response to SARS-CoV-2 is crucial for determining the fate of COVID-19 symptomatology. T cell-mediated immunity is the main factor of the antiviral immune response; moreover, SARS-CoV-2 infection initiates a rapid B-cell response. In this paper, we present the current state of knowledge on immunity after COVID-19 infection and vaccination. We discuss the mechanisms of immune response to various types of vaccines (nucleoside-modified, adenovirus-vectored, inactivated virus vaccines and recombinant protein adjuvanted formulations). This includes specific aspects of vaccination in selected patient populations with altered immune activity (the elderly, children, pregnant women, solid organ transplant recipients, patients with systemic rheumatic diseases or malignancies). We also present diagnostic and research tools available to study the anti-SARS-CoV-2 cellular and humoral immune responses.
Collapse
|