1
|
Smallbone P, Louw A, Purtill D. Laboratory methods of monitoring disease response after allogeneic haematopoietic stem cell transplantation for myelofibrosis. Pathology 2024; 56:24-32. [PMID: 38071159 DOI: 10.1016/j.pathol.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 01/24/2024]
Abstract
The era of molecular prognostication in myelofibrosis has allowed comprehensive assessment of disease risk and informed decisions regarding allogeneic haematopoietic stem cell transplantation (HSCT). However, monitoring disease response after transplantation is difficult, and limited by disease and sample-related factors. The emergence of laboratory techniques sensitive enough to monitor measurable residual disease is promising in predicting molecular and haematological relapse and guiding management. This paper summarises the existing literature regarding methods for detecting and monitoring disease response after HSCT in myelofibrosis and explores the therapeutic use of measurable residual disease (MRD) assays in transplant recipients. Laboratory assessment of disease response in myelofibrosis post-allogeneic transplant is limited by disease and treatment characteristics and by the sensitivity of available conventional molecular assays. The identification of MRD has prognostic implications and may allow early intervention to prevent relapse. Further applicability is limited by mutation-specific assay variability, a lack of standardisation and sample considerations.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Haematology, Fiona Stanley Hospital, Perth, WA, Australia; PathWest, Fiona Stanley Hospital, Perth, WA, Australia.
| | - Alison Louw
- PathWest, Fiona Stanley Hospital, Perth, WA, Australia
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, WA, Australia; PathWest, Fiona Stanley Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
3
|
Shelton DN, Bhagavatula P, Sepulveda N, Beppu L, Gandhi S, Qin D, Hauenstein S, Radich J. Performance characteristics of the first Food and Drug Administration (FDA)-cleared digital droplet PCR (ddPCR) assay for BCR::ABL1 monitoring in chronic myelogenous leukemia. PLoS One 2022; 17:e0265278. [PMID: 35298544 PMCID: PMC8929598 DOI: 10.1371/journal.pone.0265278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematopoietic stem cell malignancy that accounts for 15-20% of all cases of leukemia. CML is caused by a translocation between chromosomes 9 and 22 which creates an abnormal fusion gene, BCR::ABL1. The amount of BCR::ABL1 transcript RNA is a marker of disease progression and the effectiveness of tyrosine kinase inhibitor (TKI) treatment. This study determined the analytical and clinical performance of a droplet digital PCR based assay (QXDx BCR-ABL %IS Kit; Bio-Rad) for BCR::ABL1 quantification. The test has a limit of detection of MR4.7 (0.002%) and a linear range of MR0.3-4.7 (50-0.002%IS). Reproducibility of results across multiple sites, days, instruments, and users was evaluated using panels made from BCR::ABL1 positive patient samples. Clinical performance of the assay was evaluated on patient samples and compared to an existing FDA-cleared test. The reproducibility study noted negligible contributions to variance from site, instrument, day, and user for samples spanning from MR 0.7-4.2. The assay demonstrated excellent clinical correlation with the comparator test using a Deming regression with a Pearson R of 0.99, slope of 1.037 and intercept of 0.1084. This data establishes that the QXDx™ BCR-ABL %IS Kit is an accurate, precise, and sensitive system for the diagnosis and monitoring of CML.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Polymerase Chain Reaction/methods
- Protein Kinase Inhibitors/therapeutic use
- Reproducibility of Results
- United States
- United States Food and Drug Administration
Collapse
Affiliation(s)
- Dawne N. Shelton
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Prasanthi Bhagavatula
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Nathan Sepulveda
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shital Gandhi
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Dahui Qin
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Scott Hauenstein
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Digital-droplet PCR assays for IDH, DNMT3A and driver mutations to monitor after allogeneic stem cell transplantation minimal residual disease of myelofibrosis. Bone Marrow Transplant 2022; 57:510-512. [PMID: 35046544 PMCID: PMC8907061 DOI: 10.1038/s41409-022-01566-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
|
5
|
Guy A, Bidet A, Ling C, Caumont C, Boureau L, Viallard JF, Parrens M. Novel findings of splenic extramedullary hematopoiesis during primary myelofibrosis, post-essential thrombocythemia, and post-polycythemia vera myelofibrosis. Virchows Arch 2021; 479:755-764. [PMID: 33934231 DOI: 10.1007/s00428-021-03110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 01/14/2023]
Abstract
BCR-ABL-fusion-negative myeloproliferative neoplasms (MPNs) with myelofibrosis (MF) include primary MF, post-polycythemia vera MF and post-essential thrombocythemia MF. Clonal extramedullary hematopoiesis (EMH) can occur during MPN pathogenesis. Although histopathological bone-marrow (BM) features during clonal EMH have been investigated, those of the spleen have been poorly described. We analyzed splenectomy samples from 28 patients with MF and BM samples from 20 of them. Slides were stained with hematoxylin and eosin, reticulin, and trichrome, with immunohistochemical labeling of glycophorin A, myeloperoxidase, CD61, CD34, and CD117. We also subjected splenectomy and BM samples from six patients and spleen samples from seven patients to next-generation sequencing (NGS). Megakaryocyte-rich spleen nodules (MRSNs), seen in seven of the 28 patients, were significantly associated with megakaryocyte proliferation in the spleen (p = 0.04). We devised a grading system for spleen fibrosis (SF) and found that SF was increased in 20 of 28 patients. Notably, patients with SF were more likely to have MRSNs, suggesting that megakaryocytes might participate in SF, as previously described in BM. Comparisons of spleen and BM NGS findings of six patients' specimens revealed identical mutational status in the two organs for half of the patients. We observed additional mutations in the spleen of two patients. However, the meaning of this finding remains unknown since there was a long interval between BM and spleen samplings (68 and 82 months, respectively).
Collapse
Affiliation(s)
- Alexandre Guy
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France. .,Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.
| | - Audrey Bidet
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Catherine Ling
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Charline Caumont
- Tumor Biology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Lisa Boureau
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Jean-François Viallard
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France.,Internal Medicine Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Marie Parrens
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM U1053, University of Bordeaux, 33076, Bordeaux, France
| |
Collapse
|
6
|
Feldman T, Bercovich A, Moskovitz Y, Chapal-Ilani N, Mitchell A, Medeiros JJF, Biezuner T, Kaushansky N, Minden MD, Gupta V, Milyavsky M, Livneh Z, Tanay A, Shlush LI. Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining. Nat Commun 2021; 12:2455. [PMID: 33911081 PMCID: PMC8080710 DOI: 10.1038/s41467-021-22803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.
Collapse
Affiliation(s)
- Tzah Feldman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Michael Milyavsky
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel.
| |
Collapse
|
7
|
Moncada A, Pancrazzi A. Lab tests for MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:187-220. [PMID: 35153004 DOI: 10.1016/bs.ircmb.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular laboratory investigations for myeloproliferative neoplasm (MPN) can ideally be divided into two distincts groups, those for the detection of the BCR-ABL rearrangement (suspect of chronic myeloid leukemia) and those for the variants determination of the driver genes of the negative Philadelphia forms (MPN Ph neg). The BCR-ABL detection is based on RT-Polymerase Chain Reaction techniques and more recently on droplet digital PCR (ddPCR). For this type of analysis, combined with chromosome banding analysis (CBA) and Fluorescent in situ hybridization (FISH), it is essential to quantify BCR-ABL mutated copies by standard curve method. The investigation on driver genes for MPN Ph neg forms includes activity for erythroid forms such as Polycythemia Vera (test JAK2V617F and JAK2 exon 12), for non-erythroid forms such as essential thrombocythemia and myelofibrosis (test JAK2V617F, CALR exon 9, MPL exon 10), for "atypical" ones such as mastocytosis (cKIT D816V test) and for hypereosinophilic syndrome (FIP1L1-PDGFRalpha test). It's crucial to assign prognosis value through calculating allelic burden of JAK2 V617F variant and determining CALR esone 9 variants (type1/1like, type2/2like and atypical ones). A fundamental innovation for investigating triple negative cases for JAK2, CALR, MPL and for providing prognostic score is the use of Next Generation Sequencing panels containing high molecular risk genes as ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2. This technique allows to detect additional or subclonal mutations which are usually acquired in varying sized sub-clones of hematopoietic progenitors. These additional variants have a prognostic significance and should be indagated to exclude false negative cases.
Collapse
Affiliation(s)
- Alice Moncada
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy
| | - Alessandro Pancrazzi
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy.
| |
Collapse
|
8
|
The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22073371. [PMID: 33806036 PMCID: PMC8038093 DOI: 10.3390/ijms22073371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.
Collapse
|
9
|
Rumi E, Trotti C, Vanni D, Casetti IC, Pietra D, Sant’Antonio E. The Genetic Basis of Primary Myelofibrosis and Its Clinical Relevance. Int J Mol Sci 2020; 21:E8885. [PMID: 33255170 PMCID: PMC7727658 DOI: 10.3390/ijms21238885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
Among classical BCR-ABL-negative myeloproliferative neoplasms (MPN), primary myelofibrosis (PMF) is the most aggressive subtype from a clinical standpoint, posing a great challenge to clinicians. Whilst the biological consequences of the three MPN driver gene mutations (JAK2, CALR, and MPL) have been well described, recent data has shed light on the complex and dynamic structure of PMF, that involves competing disease subclones, sequentially acquired genomic events, mostly in genes that are recurrently mutated in several myeloid neoplasms and in clonal hematopoiesis, and biological interactions between clonal hematopoietic stem cells and abnormal bone marrow niches. These observations may contribute to explain the wide heterogeneity in patients' clinical presentation and prognosis, and support the recent effort to include molecular information in prognostic scoring systems used for therapeutic decision-making, leading to promising clinical translation. In this review, we aim to address the topic of PMF molecular genetics, focusing on four questions: (1) what is the role of mutations on disease pathogenesis? (2) what is their impact on patients' clinical phenotype? (3) how do we integrate gene mutations in the risk stratification process? (4) how do we take advantage of molecular genetics when it comes to treatment decisions?
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.T.); (D.V.); (I.C.C.)
- Hematology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Chiara Trotti
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.T.); (D.V.); (I.C.C.)
| | - Daniele Vanni
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.T.); (D.V.); (I.C.C.)
| | - Ilaria Carola Casetti
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.T.); (D.V.); (I.C.C.)
- Hematology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Daniela Pietra
- Hematology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | |
Collapse
|
10
|
Verger E, Maslah N, Schlageter M, Chomienne C, Kiladjian J, Giraudier S, Cassinat B. Pitfalls in CALR exon 9 mutation detection: A single‐center experience in 571 positive patients. Int J Lab Hematol 2020; 42:827-832. [DOI: 10.1111/ijlh.13282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Emmanuelle Verger
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Nabih Maslah
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Marie‐Helene Schlageter
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Christine Chomienne
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
| | - Jean‐Jacques Kiladjian
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
- Centre d’Investigations Cliniques Hopital Saint‐Louis Paris France
| | - Stephane Giraudier
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
| | - Bruno Cassinat
- Laboratoire de Biologie Cellulaire AP‐HP Hopital Saint‐Louis Paris France
- Université de Paris U1131 INSERM IRSL Paris France
- Laboratoire d’Excellence GR‐Ex Paris France
| |
Collapse
|
11
|
Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A Reliable Tool for Analyzing and Monitoring Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21093141. [PMID: 32365599 PMCID: PMC7247671 DOI: 10.3390/ijms21093141] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The digital polymerase chain reaction (dPCR) is considered to be the third-generation polymerase chain reaction (PCR), as it yields direct, absolute and precise measures of target sequences. dPCR has proven particularly useful for the accurate detection and quantification of low-abundance nucleic acids, highlighting its advantages in cancer diagnosis and in predicting recurrence and monitoring minimal residual disease, mostly coupled with next generation sequencing. In the last few years, a series of studies have employed dPCR for the analysis of hematologic malignancies. In this review, we will summarize these findings, attempting to focus on the potential future perspectives of the application of this promising technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Correspondence: ; Tel.: +39-(0)80-5478031; Fax: +39-(0)80-5508369
| |
Collapse
|
12
|
Zhang L, Yang F, Feng S. Allogeneic hematopoietic stem-cell transplantation for myelofibrosis. Ther Adv Hematol 2020; 11:2040620720906002. [PMID: 32110286 PMCID: PMC7019406 DOI: 10.1177/2040620720906002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Myelofibrosis is one of the Philadelphia chromosome (Ph)-negative
myeloproliferative neoplasms with heterogeneous clinical course. Though many
treatment options, including Janus kinase (JAK) inhibitors, have provided
clinical benefits and improved survival, allogeneic hematopoietic stem-cell
transplantation (AHSCT) remains the only potentially curative therapy.
Considering the significant transplant-related morbidity and mortality, it is
crucial to decide who to proceed to AHSCT, and when. In this review, we discuss
recent updates in patient selection, prior splenectomy, conditioning regimen,
donor type, molecular mutation, and other factors affecting AHSCT outcomes.
Relapse is a major cause of treatment failure; we also describe recent data on
minimal residual disease monitoring and management of relapse. In addition,
emerging studies have reported pretransplant therapy with ruxolitinib for
myelofibrosis showing favorable results, and further research is needed to
explore its use in the post-transplant setting.
Collapse
Affiliation(s)
- Lining Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fan Yang
- Aerospace Center Hospital, Beijing, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| |
Collapse
|
13
|
The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation. Cancers (Basel) 2019; 11:cancers11121921. [PMID: 31810292 PMCID: PMC6966542 DOI: 10.3390/cancers11121921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase – Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. Methods: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. Results: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. Conclusions: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.
Collapse
|
14
|
Cottin L, Riou J, Orvain C, Ianotto JC, Boyer F, Renard M, Truchan‐Graczyk M, Murati A, Jouanneau‐Courville R, Allangba O, Mansier O, Burroni B, Rousselet MC, Quintin‐Roué I, Martin A, Sadot‐Lebouvier S, Delneste Y, Chrétien J, Hunault‐Berger M, Blanchet O, Lippert E, Ugo V, Luque Paz D. Sequential mutational evaluation of CALR ‐mutated myeloproliferative neoplasms with thrombocytosis reveals an association between CALR allele burden evolution and disease progression. Br J Haematol 2019; 188:935-944. [DOI: 10.1111/bjh.16276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
|
15
|
Digital PCR in Myeloid Malignancies: Ready to Replace Quantitative PCR? Int J Mol Sci 2019; 20:ijms20092249. [PMID: 31067725 PMCID: PMC6540058 DOI: 10.3390/ijms20092249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
Abstract
New techniques are on the horizon for the detection of small leukemic clones in both, acute leukemias and myeloproliferative disorders. A promising approach is based on digital polymerase chain reaction (PCR). Digital PCR (dPCR) is a breakthrough technology designed to provide absolute nucleic acid quantification. It is particularly useful to detect a low amount of target and therefore it represents an alternative method for detecting measurable residual disease (MRD). The main advantages are the high precision, the very reliable quantification, the absolute quantification without the need for a standard curve, and the excellent reproducibility. Nowadays the main disadvantages of this strategy are the costs that are still higher than standard qPCR, the lack of standardized methods, and the limited number of laboratories that are equipped with instruments for dPCR. Several studies describing the possibility and advantages of using digital PCR for the detection of specific leukemic transcripts or mutations have already been published. In this review we summarize the available data on the use of dPCR in acute myeloid leukemia and myeloproliferative disorders.
Collapse
|
16
|
Palumbo GA, Stella S, Pennisi MS, Pirosa C, Fermo E, Fabris S, Cattaneo D, Iurlo A. The Role of New Technologies in Myeloproliferative Neoplasms. Front Oncol 2019; 9:321. [PMID: 31106152 PMCID: PMC6498877 DOI: 10.3389/fonc.2019.00321] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
The hallmark of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is the presence of a driver mutation in JAK2, CALR, or MPL gene. These genetic alterations represent a key feature, useful for diagnostic, prognostic and therapeutical approaches. Molecular biology tests are now widely available with different specificity and sensitivity. Recently, the allele burden quantification of driver mutations has become a useful tool, both for prognostication and efficacy evaluation of therapies. Moreover, other sub-clonal mutations have been reported in MPN patients, which are associated with poorer prognosis. ASXL1 mutation appears to be the worst amongst them. Both driver and sub-clonal mutations are now taken into consideration in new prognostic scoring systems and may be better investigated using next generation sequence (NGS) technology. In this review we summarize the value of NGS and its contribution in providing a comprehensive picture of mutational landscape to guide treatment decisions. Finally, discussing the role that NGS has in defining the potential risk of disease development, we forecast NGS as the standard molecular biology technique for evaluating these patients.
Collapse
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Pirosa
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Elisa Fermo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Myeloproliferative Syndromes Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Oh Y, Song IC, Kim J, Kwon GC, Koo SH, Kim SY. Pyrosequencing-based quantitative measurement of CALR mutation allele burdens and their clinical implications in patients with myeloproliferative neoplasms. Clin Chim Acta 2018; 483:183-191. [DOI: 10.1016/j.cca.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
|
18
|
Gángó A, Mózes R, Boha Z, Kajtár B, Timár B, Király PA, Kiss R, Fésüs V, Nagy N, Demeter J, Körösmezey G, Borbényi Z, Marton I, Szőke A, Masszi T, Farkas P, Várkonyi J, Plander M, Pósfai É, Egyed M, Pál K, Radványi G, Hamed A, Csomor J, Matolcsy A, Alpár D, Bödör C. Quantitative assessment of JAK2 V617F and CALR mutations in Philadelphia negative myeloproliferative neoplasms. Leuk Res 2018; 65:42-48. [DOI: 10.1016/j.leukres.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 12/30/2017] [Indexed: 02/09/2023]
|
19
|
Bai Y, Orfao A, Chim CS. Molecular detection of minimal residual disease in multiple myeloma. Br J Haematol 2017; 181:11-26. [PMID: 29265356 DOI: 10.1111/bjh.15075] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the significantly higher complete remission rates and improved survival achieved in the last decade, multiple myeloma (MM) patients continue to relapse due to persistence of minimal residual disease (MRD). Generally, MRD refers to persistence of low levels of disease in the order of one tumour cell in ≥105 normal cells. Currently, molecular and immunophenotypic techniques are employed for MRD detection. This review focuses on MRD detection by molecular techniques, including allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), next-generation sequencing (NGS) and digital PCR (dPCR), in addition to a brief description of, and comparison with, multiparameter flow cytometry. The basic principles, technical advantages and limitations, and the clinical impact of all three molecular techniques are reviewed and compared. They all have a sensitivity of at least 10-5 , among which ASO real-time quantitative PCR is the most well-standardized, and NGS carries the highest sensitivity and applicability, while dPCR is still under investigation. Furthermore, molecular MRD negativity is a favourable prognostic factor for survival of patients with MM. However, several challenges inherent to molecular detection of MRD still remain to be overcome, particularly false negativity and failure to detect extramedullary disease. Finally, detection of MRD from peripheral blood remains challenging.
Collapse
Affiliation(s)
- Yinlei Bai
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Spain
| | - Alberto Orfao
- Department of Medicine, University of Salamanca and University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Spain
| |
Collapse
|
20
|
High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood 2017; 130:440-452. [PMID: 28600337 DOI: 10.1182/blood-2017-03-735639] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Noninvasive monitoring of minimal residual disease (MRD) has led to significant advances in personalized management of patients with hematologic malignancies. Improved therapeutic options and prolonged survival have further increased the need for sensitive tumor assessment that can inform treatment decisions and patient outcomes. At diagnosis or relapse of most hematologic neoplasms, malignant cells are often easily accessible in the blood as circulating tumor cells (CTCs), making them ideal targets to noninvasively profile the molecular features of each patient. In other cancer types, CTCs are generally rare and noninvasive molecular detection relies on circulating tumor DNA (ctDNA) shed from tumor deposits into circulation. The ability to precisely detect and quantify CTCs and ctDNA could minimize invasive procedures and improve prediction of clinical outcomes. Technical advances in MRD detection methods in recent years have led to reduced costs and increased sensitivity, specificity, and applicability. Among currently available tests, high-throughput sequencing (HTS)-based approaches are increasingly attractive for noninvasive molecular testing. HTS-based methods can simultaneously identify multiple genetic markers with high sensitivity and specificity without individual optimization. In this review, we present an overview of techniques used for noninvasive molecular disease detection in selected myeloid and lymphoid neoplasms, with a focus on the current and future role of HTS-based assays.
Collapse
|
21
|
Keaney T, O'Connor L, Krawczyk J, Abdelrahman MA, Hayat AH, Murray M, O'Dwyer M, Percy M, Langabeer S, Haslam K, Glynn B, Mullen C, Keady E, Lahiff S, Smith TJ. A novel molecular assay using hybridisation probes and melt curve analysis for CALR exon 9 mutation detection in myeloproliferative neoplasms. J Clin Pathol 2017; 70:662-668. [PMID: 28143941 DOI: 10.1136/jclinpath-2016-204205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 11/03/2022]
Abstract
AIMS Somatic insertions/deletions in exon 9 of the calreticulin gene have been identified in patients with essential thrombocythemia and primary myelofibrosis. Over 55 mutations have been discovered, 80% of which consist of either type 1 52-bp deletion or type 2 5-bp insertion. Other mutations (types 3-5) in conjunction with types 1 and 2 account for >87% of identified mutations. The aim of this study was development of a rapid PCR-based assay using LightCycler Hybridisation Probes for the detection of type 1-5 CALR mutations. METHOD A real-time PCR assay using a novel HybProbe set was developed for use on the LightCycler 480 Instrument II. The acceptor probe was labelled with LC640 and Faststart DNA Master HybProbe kit was used for PCR reactions. RESULTS Assay limit of detection was determined to be seven target copies with a probability of 95%. The specificity of the assay was determined by using synthetic constructs of CALR wild-type and CALR mutation types 1-5 with no non-specific detection observed. Samples from 21 patients with essential thrombocythemia (ET) and 12 patients with primary myelofibrosis (PMF), together with 29 control samples from patients diagnosed with various conditions, were screened using the assay. Of these, 24 were found to have mutations in CALR exon 9, with the assay detecting 8 type 1 mutations, 12 type 2 mutations, 2 type 24 mutations, 1 type 20 mutation and 1 31-bp deletion. CONCLUSIONS The novel assay described has potential for application as a rapid, sensitive, high-throughput screening method in the clinical diagnostics setting.
Collapse
Affiliation(s)
- Thomas Keaney
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland
| | - Louise O'Connor
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland.,Molecular Diagnostic Research Group, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, National University of Ireland, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Moutaz A Abdelrahman
- Department of Haematology, National University of Ireland, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Amjad H Hayat
- Department of Haematology, National University of Ireland, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Margaret Murray
- Department of Haematology, National University of Ireland, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Michael O'Dwyer
- Department of Haematology, National University of Ireland, Galway, Ireland.,Galway University Hospital, Galway, Ireland
| | - Melanie Percy
- Department of Haematology, Belfast City Hospital, Belfast, UK
| | | | - Karl Haslam
- Cancer Molecular Diagnostics, St. James's Hospital, Dublin, Ireland
| | - Barry Glynn
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland
| | - Ciara Mullen
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland
| | - Evelyn Keady
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland
| | - Sinéad Lahiff
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland
| | - Terry J Smith
- Research and Development Division, Advanced Molecular Systems, Galway, Ireland.,Molecular Diagnostic Research Group, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Chauveau A, Nibourel O, Tondeur S, Luque Paz D, Mansier O, Paul F, Wemeau M, Preudhomme C, Lippert E, Ugo V. Absence of CALR mutations in JAK2-negative polycythemia. Haematologica 2017; 102:e15-e16. [PMID: 27758825 PMCID: PMC5210252 DOI: 10.3324/haematol.2016.154799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric Lippert
- CHRU Brest, Service d'Hématologie Biologique, France
| | - Valérie Ugo
- CHU Angers, Laboratoire d'Hématologie, France
| |
Collapse
|
23
|
Xia D, Hasserjian RP. Molecular testing for JAK2, MPL, and CALR in myeloproliferative neoplasms. Am J Hematol 2016; 91:1277-1280. [PMID: 27727468 DOI: 10.1002/ajh.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/02/2023]
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are myeloproliferative neoplasms characterized by recurrent somatic mutations in JAK2, CALR, and MPL. This short review addresses (1) the spectrum of mutations seen in PV, ET, and PMF, (2) the emerging genotype-phenotype correlations, (3) the current role of molecular testing in disease classification and management, and (4) several important considerations for selecting an appropriate molecular test. In our view, sequential testing algorithms and simultaneous assessment of multiple mutations by next-generation sequencing are both valid approaches to testing. Am. J. Hematol. 91:1277-1280, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Xia
- Department of PathologyMassachusetts General HospitalBoston Massachusetts
| | | |
Collapse
|
24
|
Monitoring Minimal Residual Disease in the Myeloproliferative Neoplasms: Current Applications and Emerging Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7241591. [PMID: 27840830 PMCID: PMC5093244 DOI: 10.1155/2016/7241591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022]
Abstract
The presence of acquired mutations within the JAK2, CALR, and MPL genes in the majority of patients with myeloproliferative neoplasms (MPN) affords the opportunity to utilise these mutations as markers of minimal residual disease (MRD). Reduction of the mutated allele burden has been reported in response to a number of therapeutic modalities including interferon, JAK inhibitors, and allogeneic stem cell transplantation; novel therapies in development will also require assessment of efficacy. Real-time quantitative PCR has been widely adopted for recurrent point mutations with assays demonstrating the specificity, sensitivity, and reproducibility required for clinical utility. More recently, approaches such as digital PCR have demonstrated comparable, if not improved, assay characteristics and are likely to play an increasing role in MRD monitoring. While next-generation sequencing is increasingly valuable as a tool for diagnosis of MPN, its role in the assessment of MRD requires further evaluation.
Collapse
|
25
|
Kjær L, Cordua S, Holmström MO, Thomassen M, Kruse TA, Pallisgaard N, Larsen TS, de Stricker K, Skov V, Hasselbalch HC. Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS One 2016; 11:e0165336. [PMID: 27764253 PMCID: PMC5072743 DOI: 10.1371/journal.pone.0165336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022] Open
Abstract
Discovery of somatic mutations in the calreticulin gene (CALR) has identified a subgroup of Philadelphia-negative chronic myeloproliferative neoplasms (MPN) with separate haematological characteristics and prognosis. CALR mutations serve as novel markers both of diagnostic value and as targets for monitoring molecular responses during therapy. Interferon-α (IFN) selectively targets the malignant clone in a subset of MPN patients and can induce both haematological and molecular remissions in CALR mutated essential thrombocythemia (ET) patients. We investigated the response to IFN in a cohort of 21 CALR mutated MPN patients including ET, prefibrotic primary myelofibrosis (pre-PMF), and primary myelofibrosis (PMF) with a median follow-up of 31 months. For evaluation of a molecular response, we developed highly sensitive quantitative PCR (qPCR) assays for monitoring the mutant allele burden of the two most prevalent CALR mutations (type 1 and type 2). Thirteen patients (62%) experienced a decrease in the mutant allele burden with a median decline of 29% from baseline. However, only four patients, including patients with ET, pre-PMF, and PMF diagnosis, achieved molecular responder (MR) status with >50% reduction in mutant allele burden according to European LeukemiaNet (ELN) guidelines. MR patients displayed significant differences in the dynamics of the CALR mutant load with regard to time to response and dynamics in mutant allele burden after discontinuation of IFN treatment. Furthermore, we highlight the prognostic value of the CALR mutant allele burden by showing a close association with leucocyte- and platelet counts, hemoglobin concentration, in addition to plasma lactate dehydrogenase (LDH) irrespective of molecular response and treatment status.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
- * E-mail:
| | - Sabrina Cordua
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas S. Larsen
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Karin de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | | |
Collapse
|
26
|
Stahl T, Rothe C, Böhme MU, Kohl A, Kröger N, Fehse B. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation. Int J Mol Sci 2016; 17:ijms17091515. [PMID: 27618030 PMCID: PMC5037792 DOI: 10.3390/ijms17091515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/10/2016] [Accepted: 08/31/2016] [Indexed: 12/05/2022] Open
Abstract
Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics.
Collapse
Affiliation(s)
- Tanja Stahl
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | - Aloisa Kohl
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
27
|
Anelli L, Zagaria A, Coccaro N, Tota G, Minervini A, Casieri P, Impera L, Minervini CF, Brunetti C, Ricco A, Orsini P, Cumbo C, Specchia G, Albano F. Droplet digital PCR assay for quantifying of CALR mutant allelic burden in myeloproliferative neoplasms. Ann Hematol 2016; 95:1559-60. [PMID: 27365140 DOI: 10.1007/s00277-016-2739-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|