1
|
Samadder NJ, Gay E, Lindpere V, Bublitz ML, Bandel LA, Armasu SM, Vierkant RA, Ferber MJ, Klee EW, Larson NB, Kruisselbrink TM, Egan JB, Kemppainen JL, Bidwell JS, Anderson JL, McAllister TM, Walker TS, Kunze KL, Golafshar MA, Klint MA, Presutti RJ, Bobo WV, Sekulic A, Summer-Bolster JM, Willman CL, Lazaridis KN. Exome Sequencing Identifies Carriers of the Autosomal Dominant Cancer Predisposition Disorders Beyond Current Practice Guideline Recommendations. JCO Precis Oncol 2024; 8:e2400106. [PMID: 39013133 DOI: 10.1200/po.24.00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE The autosomal dominant cancer predisposition disorders hereditary breast and ovarian cancer (HBOC) and Lynch syndrome (LS) are genetic conditions for which early identification and intervention have a positive effect on the individual and public health. The goals of this study were to determine whether germline genetic screening using exome sequencing could be used to efficiently identify carriers of HBOC and LS. METHODS Participants were recruited from three geographically and racially diverse sites in the United States (Rochester, MN; Phoenix, AZ; Jacksonville, FL). Participants underwent Exome+ sequencing (Helix Inc, San Mateo, CA) and return of results for specific genetic findings: HBOC (BRCA1 and BRCA1) and LS (MLH1, MSH2, MSH6, PMS2, and EPCAM). Chart review was performed to collect demographics and personal and family cancer history. RESULTS To date, 44,306 participants have enrolled in Tapestry. Annotation and interpretation of all variants in genes for HBOC and LS resulted in the identification of 550 carriers (prevalence, 1.24%), which included 387 with HBOC (27.2% BRCA1, 42.8% BRCA2) and 163 with LS (12.3% MSH6, 8.8% PMS2, 4.5% MLH1, 3.8% MSH2, and 0.2% EPCAM). More than half of these participants (52.1%) were newly diagnosed carriers with HBOC and LS. In all, 39.2% of HBOC/LS carriers did not satisfy National Comprehensive Cancer Network (NCCN) criteria for genetic evaluation. NCCN criteria were less commonly met in underrepresented minority populations versus self-reported White race (51.5% v 37.5%, P = .028). CONCLUSION Our results emphasize the need for wider utilization of germline genetic sequencing for enhanced screening and detection of individuals who have LS and HBOC cancer predisposition syndromes.
Collapse
Affiliation(s)
- N Jewel Samadder
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Phoenix, AZ
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
| | - Emily Gay
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
- Genetic Counseling Program, Arizona State University, Tucson, AZ
| | - Vanda Lindpere
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | | | | | - Robert A Vierkant
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Matthew J Ferber
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | - Jessa S Bidwell
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | - T'Nita S Walker
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Katie L Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | | | - Richard J Presutti
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Family Medicine, Mayo Clinic, Jacksonville, FL
| | - William V Bobo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL
| | - Aleksander Sekulic
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ
| | | | - Cheryl L Willman
- Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Said M, Krogh J, Feldt-Rasmussen U, Rasmussen ÅK, Kristensen TS, Rossing CM, Johannesen HH, Oturai P, Holmager P, Kjaer A, Klose M, Langer S, Knigge U, Andreassen M. Imaging surveillance in multiple endocrine neoplasia type 1: Ten years of experience with somatostatin receptor positron emission tomography. J Neuroendocrinol 2023; 35:e13322. [PMID: 37564005 DOI: 10.1111/jne.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Guidelines for multiple endocrine neoplasia type 1 (MEN1) recommend intensive imaging surveillance without specifying a superior regimen, including the role of somatostatin receptor imaging (SRI) with positron emission tomography (PET). The primary outcomes were to: (1) Assess change in treatment of duodenal-pancreatic neuroendocrine neoplasms (DP-NENs), bronchopulmonary NENs, and thymic tumors attributed to use of SRI PET/computed tomography (CT) and (2) estimate radiation from imaging and risk of cancer death attributed to imaging radiation. This was a retrospective single center study, including all MEN1 patients, who had had at least one SRI PET/CT. A total of 60 patients, median age 42 (range 21-54) years, median follow-up 6 (range 1-10) years were included. Of 470 cross sectional scans (MRI, CT, SRI PET/CT), 209 were SRI PET/CT. The additional information from SRI PET had implications in 1/14 surgical interventions and 2/12 medical interventions. The estimated median radiation dose per patient was 104 (range 51-468) mSv of which PET contributed with 13 (range 5-55) mSv and CT with 91 mSv (range 46-413 mSv), corresponding to an estimated increased median risk of cancer death of 0.5% during 6 years follow-up. SRI PET had a significant impact on 3/26 decisions to intervene in 60 MEN1 patients followed for a median of 6 years with SRI PET/CT as the most frequently used modality. The surveillance program showed a high radiation dose. Multi-modality imaging strategies designed to minimize radiation exposure should be considered. Based on our findings, SRI-PET combined with CT cannot be recommended for routine surveillance in MEN1 patients.
Collapse
Affiliation(s)
- Maha Said
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Åse Krogh Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | | | - Caroline Maria Rossing
- Department of Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Helle Hjorth Johannesen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Peter Oturai
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Pernille Holmager
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Marianne Klose
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Seppo Langer
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Ulrich Knigge
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
- Department of surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| | - Mikkel Andreassen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen N, Denmark
| |
Collapse
|
3
|
DeVries AA, Dennis J, Tyrer JP, Peng PC, Coetzee SG, Reyes AL, Plummer JT, Davis BD, Chen SS, Dezem FS, Aben KKH, Anton-Culver H, Antonenkova NN, Beckmann MW, Beeghly-Fadiel A, Berchuck A, Bogdanova NV, Bogdanova-Markov N, Brenton JD, Butzow R, Campbell I, Chang-Claude J, Chenevix-Trench G, Cook LS, DeFazio A, Doherty JA, Dörk T, Eccles DM, Eliassen AH, Fasching PA, Fortner RT, Giles GG, Goode EL, Goodman MT, Gronwald J, Håkansson N, Hildebrandt MAT, Huff C, Huntsman DG, Jensen A, Kar S, Karlan BY, Khusnutdinova EK, Kiemeney LA, Kjaer SK, Kupryjanczyk J, Labrie M, Lambrechts D, Le ND, Lubiński J, May T, Menon U, Milne RL, Modugno F, Monteiro AN, Moysich KB, Odunsi K, Olsson H, Pearce CL, Pejovic T, Ramus SJ, Riboli E, Riggan MJ, Romieu I, Sandler DP, Schildkraut JM, Setiawan VW, Sieh W, Song H, Sutphen R, Terry KL, Thompson PJ, Titus L, Tworoger SS, Van Nieuwenhuysen E, Edwards DV, Webb PM, Wentzensen N, Whittemore AS, Wolk A, Wu AH, Ziogas A, Freedman ML, Lawrenson K, Pharoah PDP, Easton DF, Gayther SA, Jones MR. Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci. J Natl Cancer Inst 2022; 114:1533-1544. [PMID: 36210504 PMCID: PMC9949586 DOI: 10.1093/jnci/djac160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
Collapse
Grants
- P01 CA017054 NCI NIH HHS
- N01 CN025403 NCI NIH HHS
- UM1 CA176726 NCI NIH HHS
- R01 CA058860 NCI NIH HHS
- P50 CA105009 NCI NIH HHS
- R01-CA122443 NIH HHS
- 076113 Wellcome Trust
- G0401527 Medical Research Council
- U19-CA148112 NCI NIH HHS
- P50 CA136393 NCI NIH HHS
- C490/A10119 C490/A10124 Cancer Research UK
- 1000143 Medical Research Council
- R01-CA54419 NIH HHS
- C8221/A19170 Cancer Research UK
- R01 CA049449 NCI NIH HHS
- P50 CA159981 NCI NIH HHS
- T32 GM118288 NIGMS NIH HHS
- CA1X01HG007491-01 NIH HHS
- Z01-ES044005 NIEHS NIH HHS
- R01 CA106414 NCI NIH HHS
- R01 CA095023 NCI NIH HHS
- N01 PC067010 NCI NIH HHS
- P30 CA047904 NCI NIH HHS
- R01 CA058598 NCI NIH HHS
- U01 CA176726 NCI NIH HHS
- S10 RR025141 NCRR NIH HHS
- M01 RR000056 NCRR NIH HHS
- Department of Health
- 5T32GM118288-03 NIH HHS
- MR/N003284/1 Medical Research Council
- P30 CA014089 NCI NIH HHS
- K07-CA080668 NCI NIH HHS
- 14136 Cancer Research UK
- Worldwide Cancer Research
- MR_UU_12023 Medical Research Council
- R01 CA067262 NCI NIH HHS
- UM1 CA186107 NCI NIH HHS
- P30 CA015083 NCI NIH HHS
- G1000143 Medical Research Council
- R01 CA076016 NCI NIH HHS
- NHGRI NIH HHS
- P01 CA087969 NCI NIH HHS
- R01- CA61107 NCI NIH HHS
- R01-CA58598 NIH HHS
- U19 CA148112 NCI NIH HHS
- ULTR000445 NCATS NIH HHS
- R03 CA115195 NCI NIH HHS
- Wellcome Trust
- Breast Cancer Now
- R01 CA160669 NCI NIH HHS
- R01-CA058860 NIH HHS
- MC_UU_00004/01 Medical Research Council
- C570/A16491 Cancer Research UK
- R01-CA76016 NIH HHS
- R01-CA106414-A2 NIH HHS
- 001 World Health Organization
- Z01 ES049033 Intramural NIH HHS
- R01 CA126841 NCI NIH HHS
- MR/M012190/1 Medical Research Council
- 209057 Wellcome Trust
- R03 CA113148 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- National Institute of General Medical Sciences
- National Institutes of Health
- CSMC Precision Health Initiative
- Tell Every Amazing Lady About Ovarian Cancer Louisa M. McGregor Ovarian Cancer Foundation
- Ovarian Cancer Research Fund thanks
- National Cancer Institute
- National Human Genome Research Institute
- Canadian Institutes of Health Research
- Ovarian Cancer Research Fund
- European Commission’s Seventh Framework Programme
- Army Medical Research and Materiel Command
- National Health & Medical Research Council of Australia
- Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia
- Ovarian Cancer Australia
- Peter MacCallum Foundation
- University of Erlangen-Nuremberg
- National Kankerplan
- Breast Cancer Now, Institute of Cancer Research
- National Center for Advancing Translational Sciences
- European Commission
- International Agency for Research on Cancer
- Danish Cancer Society
- Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale
- Institut National de la Santé et de la Recherche Médicale
- German Cancer Aid; German Cancer Research Center
- Federal Ministry of Education and Research
- Hellenic Health Foundation
- Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy
- National Research Council
- Dutch Ministry of Public Health, Welfare and Sports
- Netherlands Cancer Registry
- LK Research Funds
- Dutch Prevention Funds
- World Cancer Research Fund
- Nordforsk, Nordic Centre of Excellence programme on Food, Nutrition and Health
- Health Research Fund
- Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra
- Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten
- German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research
- German Cancer Research Center
- Rudolf-Bartling Foundation
- Helsinki University Hospital Research Fund
- University of Pittsburgh School of Medicine Dean’s Faculty Advancement Award
- Department of Defense
- NCI
- Swedish Cancer Society, Swedish Research Council, Beta Kamprad Foundation
- Danish Cancer Society, Copenhagen
- Mayo Foundation
- Minnesota Ovarian Cancer Alliance
- Fred C. and Katherine B. Andersen Foundation
- VicHealth and Cancer Council Victoria, Cancer Council Victoria
- National Health and Medical Research Council of Australia
- NHMRC
- DOD Ovarian Cancer Research Program
- Moffitt Cancer Center
- Merck Pharmaceuticals
- Radboud University Medical Centre
- UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge
- National Institute of Environmental Health Sciences
- The Swedish Cancer Foundation
- the Swedish Research Council
- American Cancer Society
- Celma Mastry Ovarian Cancer Foundation
- Lon V Smith Foundation
- The Eve Appeal
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- California Cancer Research Program
- National Science Centre
- NIH
Collapse
Affiliation(s)
- Amber A DeVries
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pei-Chen Peng
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon G Coetzee
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto L Reyes
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian D Davis
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephanie S Chen
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Segato Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katja K H Aben
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ralf Butzow
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Siddhartha Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Section of Translational Epidemiology, Division of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne K Kjaer
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Francesmary Modugno
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Oncology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
- Department of Obstetrics and Gynecology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Håkan Olsson
- Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Celeste L Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Tanja Pejovic
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | | | - Marjorie J Riggan
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Isabelle Romieu
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - V Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weiva Sieh
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Honglin Song
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rebecca Sutphen
- Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda Titus
- Muskie School of Public Policy, Public Health, Portland, ME, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Leuven, Belgium
| | - Digna Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Women's Cancer Program at the Samuel Oschin Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michelle R Jones
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Chandramohan R, Reuther J, Gandhi I, Voicu H, Alvarez KR, Plon SE, Lopez-Terrada DH, Fisher KE, Parsons DW, Roy A. A Validation Framework for Somatic Copy Number Detection in Targeted Sequencing Panels. J Mol Diagn 2022; 24:760-774. [PMID: 35487348 DOI: 10.1016/j.jmoldx.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic copy number alterations (SCNAs) in tumors are clinically significant diagnostic, prognostic, and predictive biomarkers. SCNA detection from targeted next-generation sequencing panels is increasingly common in clinical practice; however, detailed descriptions of optimization and validation of SCNA pipelines for small targeted panels are limited. This study describes the validation and implementation of a tumor-only SCNA pipeline using CNVkit, augmented with custom modules and optimized for clinical implementation by testing reference materials and clinical tumor samples with different classes of copy number variation (CNV; amplification, single copy loss, and biallelic loss). Using wet-bench and in silico methods, various parameters impacting CNV calling, including assay-intrinsic variables (establishment of normal reference and sequencing coverage), sample-intrinsic variables (tumor purity and sample quality), and CNV algorithm-intrinsic variables (bin size), were optimized. The pipeline was trained and tested on an optimization cohort and validated using an independent cohort with a sensitivity and specificity of 100% and 93%, respectively. Using custom modules, intragenic CNVs with breakpoints within tumor suppressor genes were uncovered. Using the validated pipeline, re-analysis of 28 pediatric solid tumors that had been previously profiled for mutations identified SCNAs in 86% (24/28) samples, with 46% (13/28) samples harboring findings of potential clinical relevance. Our report highlights the importance of rigorous establishment of performance characteristics of SCNA pipelines and presents a detailed validation framework for optimal SCNA detection in targeted sequencing panels.
Collapse
Affiliation(s)
- Raghu Chandramohan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jacquelyn Reuther
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Ilavarasi Gandhi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Horatiu Voicu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Karla R Alvarez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sharon E Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Dolores H Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kevin E Fisher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - D Williams Parsons
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.
| | - Angshumoy Roy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
5
|
Agaoglu NB, Unal B, Akgun Dogan O, Zolfagharian P, Shairfli P, Karakurt A, Can Senay B, Kizilboga T, Yildiz J, Dinler Doganay G, Doganay L. Determining the Accuracy of Next Generation Sequencing Based Copy Number Variation Analysis in Hereditary Breast and Ovarian Cancer. Expert Rev Mol Diagn 2022; 22:239-246. [PMID: 35240897 DOI: 10.1080/14737159.2022.2048373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Copy number variations (CNVs) are commonly associated with malignancies, including hereditary breast and ovarian cancers. Next generation sequencing (NGS) provides solutions for CNV detection in a single run. This study aimed to compare the accuracy of CNV detection by NGS analysing tool against Multiplex Ligation Dependent Probe Amplification (MLPA). RESEARCH DESIGN AND METHODS In total, 1276 cases were studied by targeted NGS panels and 691 cases (61 calls in 58 NGS-CNV positive and 633 NGS-CNV negative cases) were validated by MLPA. RESULTS Twenty-eight (46%) NGS-CNV positive calls were consistent, whereas 33 (54%) calls showed discordance with MLPA. Two cases were detected as SNV by the NGS and CNV by the MLPA analysis. In total, 2% of the cases showed an MLPA confirmed CNV region in BRCA1/2. The results of this study showed that despite the high false positive call rate of the NGS-CNV algorithm, there were no false negative calls. The cases that were determined to be negative by the NGS and positive by the MLPA were actually carrying SNVs that were located on the MLPA probe binding sites. CONCLUSION The diagnostic performance of NGS-CNV analysis is promising; however, the need for confirmation by different methods remains.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.,Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Busra Unal
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.,Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Payam Zolfagharian
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Pari Shairfli
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aylin Karakurt
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Burak Can Senay
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tugba Kizilboga
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Jale Yildiz
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Levent Doganay
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
6
|
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022; 10:813457. [PMID: 35300412 PMCID: PMC8921524 DOI: 10.3389/fcell.2022.813457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is mainly involved in the repair of DNA damage, cell cycle regulation, maintenance of genome stability, and other important physiological processes. Mutations or defects in the BRCA1 gene significantly increase the risk of breast, ovarian, prostate, and other cancers in carriers. In this review, we summarized the molecular functions and regulation of BRCA1 and discussed recent insights into the detection and treatment of BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Kwong A, Au CH, Shin VY, Ho DN, Wong EYL, Ho CYS, Chung Y, Chan TL, Ma ESK. Rapid Breakpoint Mapping of a Novel Germline PALB2 Duplication by PCR-Free Long-Read Sequencing for Interpretation of Its Pathogenicity. JCO Precis Oncol 2022; 5:1044-1047. [PMID: 34994627 DOI: 10.1200/po.20.00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong, China.,Department of Surgery and Cancer Genetics Centre, Hong Kong Sanatorium and Hospital, Hong Kong, China.,Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong, China
| | - Dona N Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Elaine Y L Wong
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Cecilia Y S Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Yvonne Chung
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Tsun Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong, China.,Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong, China.,Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| |
Collapse
|
8
|
Gupta S, Rajappa S, Advani S, Agarwal A, Aggarwal S, Goswami C, Palanki SD, Arya D, Patil S, Kodagali R. Prevalence of BRCA1 and BRCA2 Mutations Among Patients With Ovarian, Primary Peritoneal, and Fallopian Tube Cancer in India: A Multicenter Cross-Sectional Study. JCO Glob Oncol 2021; 7:849-861. [PMID: 34101484 PMCID: PMC8457852 DOI: 10.1200/go.21.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE There are deficient data on prevalence of germline mutations in breast cancer susceptibility genes 1 and 2 (BRCA1/BRCA2) in Indian patients with ovarian cancer who are not selected by clinical features. METHODS This prospective, cross-sectional, noninterventional study in nine Indian centers included patients with newly diagnosed or relapsed epithelial ovarian, primary peritoneal, or fallopian tube cancer. The primary objective was to assess the prevalence of BRCA1/BRCA2 mutations, and the secondary objective was to correlate BRCA1/BRCA2 status with clinicopathologic characteristics. Mutation testing was performed by a standard next-generation sequencing assay. RESULTS Between March 2018 and December 2018, 239 patients with a median age of 53.0 (range, 23.0-86.0 years) years were included, of whom 203 (84.9%) had newly diagnosed disease, 36 (15.1%) had family history of ovarian or breast cancer, and 159 (66.5%) had serous subtype of epithelial ovarian cancer. Germline pathogenic or likely pathogenic mutations in BRCA1 and BRCA2 were detected in 37 (15.5%; 95% CI, 11.1 to 20.7) and 14 (5.9%; 95% CI, 3.2 to 9.6) patients, respectively, whereas variants of uncertain significance in these genes were seen in four (1.7%; 95% CI, 0.5 to 4.2) and six (2.5%; 95% CI, 0.9 to 5.4) patients, respectively. The prevalence of pathogenic or likely pathogenic BRCA mutations in patients with serous versus nonserous tumors, with versus without relevant family history, and ≤ 50 years versus > 50 years, were 40 of 159 (25.2%; 95% CI, 18.6 to 32.6) versus 11 of 80 (13.8%; 95% CI, 7.1 to 23.3; P = .0636), 20 of 36 (55.6%; 95% CI, 38.1 to 72.1) versus 41 of 203 (20.2%; 95% CI, 14.9 to 26.4; P < .0001), and 20 of 90 (22.2%; 95% CI, 14.1 to 32.2) versus 31 of 149 (20.8%; 95% CI, 14.6 to 28.2; P = .7956), respectively. CONCLUSION There is a high prevalence of pathogenic or likely pathogenic germline BRCA mutations in Indian patients with ovarian cancer.
Collapse
Affiliation(s)
- Sudeep Gupta
- Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Senthil Rajappa
- Medical Oncology, Basavatkaram Indo American Cancer Hospital, Hyderabad, India
| | | | - Amit Agarwal
- Medical Oncology, BLK Superspeciality Hospital, New Delhi, India
| | - Shyam Aggarwal
- Medical Oncology, Sir Gangaram Hospital, New Delhi, India
| | - Chanchal Goswami
- Medical Oncology, Medica Superspeciality Hospital, Kolkata, India
| | | | - Devavrat Arya
- Medical Oncology, Max Institute of Cancer Care, Saket, New Delhi, India
| | - Shekhar Patil
- Medical Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Rohit Kodagali
- Medical Affairs, AstraZeneca Pharma India Ltd, Bangalore, India
| |
Collapse
|
9
|
Boujemaa M, Hamdi Y, Mejri N, Romdhane L, Ghedira K, Bouaziz H, El Benna H, Labidi S, Dallali H, Jaidane O, Ben Nasr S, Haddaoui A, Rahal K, Abdelhak S, Boussen H, Boubaker MS. Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary breast cancer in Tunisia. PLoS One 2021; 16:e0245362. [PMID: 33503040 PMCID: PMC7840007 DOI: 10.1371/journal.pone.0245362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Ben Nasr
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
10
|
Performance of In Silico Prediction Tools for the Detection of Germline Copy Number Variations in Cancer Predisposition Genes in 4208 Female Index Patients with Familial Breast and Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13010118. [PMID: 33401422 PMCID: PMC7794674 DOI: 10.3390/cancers13010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The identification of germline copy number variants (CNVs) by targeted nextgeneration sequencing frequently relies on in silico prediction tools with unknown sensitivities. We investigated the performances of four in silico CNV prediction tools in 17 cancer predisposition genes in a large series of 4208 female index patients with familial breast and/or ovarian cancer. We identified 77 CNVs in 76 out of 4208 patients; six CNVs were missed by at least one of the prediction tools. Experimental verification of in silico predicted CNVs is required due to high frequencies of false positive predictions. For female index patients with familial breast and/or ovarian cancer, CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of CNVs in further cancer predisposition genes. Abstract The identification of germline copy number variants (CNVs) by targeted next-generation sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sensitivities. We investigated the performances of four in silico CNV prediction tools, including one commercial (Sophia Genetics DDM) and three non-commercial tools (ExomeDepth, GATK gCNV, panelcn.MOPS) in 17 cancer predisposition genes in 4208 female index patients with familial breast and/or ovarian cancer (BC/OC). CNV predictions were verified via multiplex ligation-dependent probe amplification. We identified 77 CNVs in 76 out of 4208 patients (1.81%); 33 CNVs were identified in genes other than BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less frequently in BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53. The Sophia Genetics DDM software showed the highest sensitivity; six CNVs were missed by at least one of the non-commercial tools. The positive predictive values ranged from 5.9% (74/1249) for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico predicted CNVs is required due to high frequencies of false positive predictions, particularly affecting target regions at the extremes of the GC content or target length distributions. CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of CNVs in further BC/OC predisposition genes.
Collapse
|
11
|
Grzymski JJ, Elhanan G, Morales Rosado JA, Smith E, Schlauch KA, Read R, Rowan C, Slotnick N, Dabe S, Metcalf WJ, Lipp B, Reed H, Sharma L, Levin E, Kao J, Rashkin M, Bowes J, Dunaway K, Slonim A, Washington N, Ferber M, Bolze A, Lu JT. Population genetic screening efficiently identifies carriers of autosomal dominant diseases. Nat Med 2020; 26:1235-1239. [DOI: 10.1038/s41591-020-0982-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/12/2020] [Indexed: 01/10/2023]
|
12
|
Dámaso E, González-Acosta M, Vargas-Parra G, Navarro M, Balmaña J, Ramon y Cajal T, Tuset N, Thompson BA, Marín F, Fernández A, Gómez C, Velasco À, Solanes A, Iglesias S, Urgel G, López C, del Valle J, Campos O, Santacana M, Matias-Guiu X, Lázaro C, Valle L, Brunet J, Pineda M, Capellá G. Comprehensive Constitutional Genetic and Epigenetic Characterization of Lynch-Like Individuals. Cancers (Basel) 2020; 12:E1799. [PMID: 32635641 PMCID: PMC7408773 DOI: 10.3390/cancers12071799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
The causal mechanism for cancer predisposition in Lynch-like syndrome (LLS) remains unknown. Our aim was to elucidate the constitutional basis of mismatch repair (MMR) deficiency in LLS patients throughout a comprehensive (epi)genetic analysis. One hundred and fifteen LLS patients harboring MMR-deficient tumors and no germline MMR mutations were included. Mutational analysis of 26 colorectal cancer (CRC)-associated genes was performed. Pathogenicity of MMR variants was assessed by splicing and multifactorial likelihood analyses. Genome-wide methylome analysis was performed by the Infinium Human Methylation 450K Bead Chip. The multigene panel analysis revealed the presence of two MMR gene truncating mutations not previously found. Of a total of 15 additional MMR variants identified, five -present in 6 unrelated individuals- were reclassified as pathogenic. In addition, 13 predicted deleterious variants in other CRC-predisposing genes were found in 12 probands. Methylome analysis detected one constitutional MLH1 epimutation, but no additional differentially methylated regions were identified in LLS compared to LS patients or cancer-free individuals. In conclusion, the use of an ad-hoc designed gene panel combined with pathogenicity assessment of variants allowed the identification of deleterious MMR mutations as well as new LLS candidate causal genes. Constitutional epimutations in non-LS-associated genes are not responsible for LLS.
Collapse
Affiliation(s)
- Estela Dámaso
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Maribel González-Acosta
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d’Hebron Institute of Oncology (VHIO), Carrer de Natzaret 115-117, 08035 Barcelona, Spain;
| | - Teresa Ramon y Cajal
- Medical Oncology Department, Hospital de Santa Creu i Sant Pau, Carrer de Sant Quintí 89, 08041 Barcelona, Spain; (T.R.y.C.); (C.L.)
| | - Noemí Tuset
- Genetic Counseling Unit, Hospital Arnau de Vilanova, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (N.T.); (G.U.)
| | - Bryony A. Thompson
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Building 181 Grattan St, VIC 3010 Melbourne, Australia;
| | - Fátima Marín
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Anna Fernández
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Carolina Gómez
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Àngela Velasco
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Carrer del Dr. Castany s/n, 17190 Salt, Girona, Spain
| | - Ares Solanes
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Sílvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gisela Urgel
- Genetic Counseling Unit, Hospital Arnau de Vilanova, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (N.T.); (G.U.)
| | - Consol López
- Medical Oncology Department, Hospital de Santa Creu i Sant Pau, Carrer de Sant Quintí 89, 08041 Barcelona, Spain; (T.R.y.C.); (C.L.)
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Olga Campos
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
| | - Maria Santacana
- Pathology Department, Hospital Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Pathology Department, Hospital Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain;
- Pathology Department, Bellvitge University Hospital, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), Carrer de la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Girona (IDIBGI), Carrer del Dr. Castany s/n, 17190 Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Carrer Emili Grahit 77, 17003 Girona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Avinguda de la Gran Via de l’Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain; (E.D.); (M.G.-A.); (G.V.-P.); (M.N.); (F.M.); (A.F.); (C.G.); (A.S.); (S.I.); (J.d.V.); (O.C.); (C.L.); (L.V.); (J.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (À.V.); (X.M.-G.)
| |
Collapse
|
13
|
Villy MC, Mouret-Fourme E, Golmard L, Becette V, Callet N, Marx G, Colas C, Lamarque D, Rouleau E, Stoppa-Lyonnet D. Co-occurrence of germline BRCA1 and CDH1 pathogenic variants. J Med Genet 2020; 58:357-361. [PMID: 32576655 DOI: 10.1136/jmedgenet-2020-106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION We report a very rare case of familial breast cancer and diffuse gastric cancer, with germline pathogenic variants in both BRCA1 and CDH1 genes. To the best of our knowledge, this is the first report of such an association.Family description: The proband is a woman diagnosed with breast cancer at the age of 52 years. She requested genetic counselling in 2012, at the age of 91 years, because of a history of breast cancer in her daughter, her sister, her niece and her paternal grandmother and was therefore concerned about her relatives. Her sister and maternal aunt also had gastric cancer. She was tested for several genes associated with hereditary breast cancer. RESULTS A large deletion of BRCA1 from exons 1 to 7 and two CDH1 pathogenic cis variants were identified. CONCLUSION This complex situation is challenging for genetic counselling and management of at-risk individuals.
Collapse
Affiliation(s)
- Marie-Charlotte Villy
- Department of Genetics, Institut Curie, Paris, France.,PSL University, Paris, Île-de-France, France
| | - Emmanuelle Mouret-Fourme
- PSL University, Paris, Île-de-France, France .,Department of Genetics, Institut Curie, Saint-Cloud, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France.,PSL University, Paris, Île-de-France, France
| | - Véronique Becette
- PSL University, Paris, Île-de-France, France.,Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Nasrine Callet
- PSL University, Paris, Île-de-France, France.,Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | - Gilles Marx
- PSL University, Paris, Île-de-France, France.,Psycho-oncology Unit, Institut Curie, Saint-Cloud, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,Department of Genetics, Institut Curie, Saint-Cloud, France
| | - Dominique Lamarque
- PSL University, Paris, Île-de-France, France.,Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | - Etienne Rouleau
- Department of Genetics, Institut Curie, Paris, France.,Department of Tumor Genetics, Gustave Roussy, Villejuif, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,Université de Paris, Paris, Île-de-France, France
| |
Collapse
|
14
|
Minucci A, Mazzuccato G, Marchetti C, Pietragalla A, Scambia G, Fagotti A, Urbani A. Detecting Large Germline Rearrangements of BRCA1 by Next Generation Tumor Sequencing. Mol Biol 2020. [DOI: 10.1134/s0026893320030127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gao X, Nan X, Liu Y, Liu R, Zang W, Shan G, Gai F, Zhang J, Li L, Cheng G, Song L. Comprehensive profiling of BRCA1 and BRCA2 variants in breast and ovarian cancer in Chinese patients. Hum Mutat 2019; 41:696-708. [PMID: 31825140 DOI: 10.1002/humu.23965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/18/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023]
Abstract
The identification and interpretation of germline BRCA1/2 variants become increasingly important in breast and ovarian cancer (OC) treatment. However, there is no comprehensive analysis of the germline BRCA1/2 variants in a Chinese population. Here we performed a systematic review and meta-analysis on such variants from 94 publications. A total of 2,128 BRCA1/2 variant records were extracted, including 601 from BRCA1 and 632 from BRCA2. In addition, 414, 734, 449, and 307 variants were also recorded in the BIC, ClinVar, ENIGMA, and UMD databases, respectively, and 579 variants were newly reported. Subsequent analysis showed that the overall germline BRCA1/2 pathogenic variant frequency was 5.7% and 21.8% in Chinese breast and OC, respectively. Populations with high-risk factors exhibited a higher pathogenic variant percentage. Furthermore, the variant profile in Chinese is distinct from that in other ethnic groups with no distinct founder pathogenic variants. We also tested our in-house American College of Medical Genetics-guided pathogenicity interpretation procedure for Chinese BRCA1/2 variants. Our results achieved a consistency of 91.2-97.6% (5-grade classification) or 98.4-100% (2-grade classification) with public databases. In conclusion, this study represents the first comprehensive meta-analysis of Chinese BRCA1/2 variants and validates our in-house pathogenicity interpretation procedure, thereby providing guidance for further PARP inhibitor development and companion diagnostics in the Chinese population.
Collapse
Affiliation(s)
| | | | | | - Rui Liu
- Novogene Co. Ltd., Beijing, China
| | | | | | - Fei Gai
- Novogene Co. Ltd., Beijing, China
| | | | - Lei Li
- Novogene Co. Ltd., Beijing, China
| | | | | |
Collapse
|
16
|
Ivanov M, Ivanov M, Kasianov A, Rozhavskaya E, Musienko S, Baranova A, Mileyko V. Novel bioinformatics quality control metric for next-generation sequencing experiments in the clinical context. Nucleic Acids Res 2019; 47:e135. [PMID: 31511888 PMCID: PMC6868350 DOI: 10.1093/nar/gkz775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
As the use of next-generation sequencing (NGS) for the Mendelian diseases diagnosis is expanding, the performance of this method has to be improved in order to achieve higher quality. Typically, performance measures are considered to be designed in the context of each application and, therefore, account for a spectrum of clinically relevant variants. We present EphaGen, a new computational methodology for bioinformatics quality control (QC). Given a single NGS dataset in BAM format and a pre-compiled VCF-file of targeted clinically relevant variants it associates this dataset with a single arbiter parameter. Intrinsically, EphaGen estimates the probability to miss any variant from the defined spectrum within a particular NGS dataset. Such performance measure virtually resembles the diagnostic sensitivity of given NGS dataset. Here we present case studies of the use of EphaGen in context of BRCA1/2 and CFTR sequencing in a series of 14 runs across 43 blood samples and 504 publically available NGS datasets. EphaGen is superior to conventional bioinformatics metrics such as coverage depth and coverage uniformity. We recommend using this software as a QC step in NGS studies in the clinical context. Availability: https://github.com/m4merg/EphaGen or https://hub.docker.com/r/m4merg/ephagen.
Collapse
Affiliation(s)
- Maxim Ivanov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Mikhail Ivanov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Moscow, Russian Federation
| | - Ekaterina Rozhavskaya
- Vavilov Institute of General Genetics, Moscow, Russian Federation.,Atlas Oncology Diagnostics, Ltd, Moscow, Russian Federation
| | | | - Ancha Baranova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation.,Atlas Oncology Diagnostics, Ltd, Moscow, Russian Federation.,Research Centre for Medical Genetics, Moscow, Russian Federation.,School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Vladislav Mileyko
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation.,Atlas Oncology Diagnostics, Ltd, Moscow, Russian Federation
| |
Collapse
|
17
|
Much CD, Schwefel K, Skowronek D, Shoubash L, von Podewils F, Elbracht M, Spiegler S, Kurth I, Flöel A, Schroeder HWS, Felbor U, Rath M. Novel Pathogenic Variants in a Cassette Exon of CCM2 in Patients With Cerebral Cavernous Malformations. Front Neurol 2019; 10:1219. [PMID: 31824402 PMCID: PMC6879547 DOI: 10.3389/fneur.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/01/2019] [Indexed: 01/11/2023] Open
Abstract
Autosomal dominant cerebral cavernous malformation (CCM) represents a genetic disorder with a high mutation detection rate given that stringent inclusion criteria are used and copy number variation analyses are part of the diagnostic workflow. Pathogenic variants in either CCM1 (KRIT1), CCM2 or CCM3 (PDCD10) can be identified in 87–98% of CCM families with at least two affected individuals. However, the interpretation of novel sequence variants in the 5′-region of CCM2 remains challenging as there are various alternatively spliced transcripts and different transcription start sites. Comprehensive genetic and clinical data of CCM2 patients with variants in cassette exons that are either skipped or included into alternative CCM2 transcripts in the splicing process can significantly facilitate clinical variant interpretation. We here report novel pathogenic CCM2 variants in exon 3 and the adjacent donor splice site, describe the natural history of CCM disease in mutation carriers and provide further evidence for the classification of the amino acids encoded by the nucleotides of this cassette exon as a critical region within CCM2. Finally, we illustrate the advantage of a combined single nucleotide and copy number variation detection approach in NGS-based CCM1/CCM2/CCM3 gene panel analyses which can significantly reduce diagnostic turnaround time.
Collapse
Affiliation(s)
- Christiane D Much
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Dariush Skowronek
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Loay Shoubash
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Nicolussi A, Belardinilli F, Silvestri V, Mahdavian Y, Valentini V, D'Inzeo S, Petroni M, Zani M, Ferraro S, Di Giulio S, Fabretti F, Fratini B, Gradilone A, Ottini L, Giannini G, Coppa A, Capalbo C. Identification of novel BRCA1 large genomic rearrangements by a computational algorithm of amplicon-based Next-Generation Sequencing data. PeerJ 2019; 7:e7972. [PMID: 31741787 PMCID: PMC6859874 DOI: 10.7717/peerj.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Background Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated. The purpose of this study was to establish whether and to which extent the development of an analytical algorithm could help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer patients. Methods We first used NGS data of a group of three patients (training set), previously screened in our laboratory by conventional methods, to develop an algorithm for the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-range PCR and direct sequencing of the DNA products. Results In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, demonstrating 100% sensitivity and 100% negative predictive value (NPV) (95% CI [87.6–99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV (95% CI [85.6–99.9])). Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in five cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, involving exons 16–17, 21–22 and 20, have been characterized. Conclusions Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be subjected to MLPA analysis, leading to significant savings in time and money.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | | | - Valentina Silvestri
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Yasaman Mahdavian
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sonia D'Inzeo
- U.O.C. Microbiology and Virology Laboratory, A.O. San Camillo Forlanini, Roma, Italy
| | - Marialaura Petroni
- Istituto Italiano di Tecnologia, Center for Life Nano Science @ Sapienza, Roma, Italy
| | - Massimo Zani
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sergio Ferraro
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Beatrice Fratini
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Angela Gradilone
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, Italy
| | - Anna Coppa
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| |
Collapse
|
19
|
Concolino P, Capoluongo E. Detection of BRCA1/2 large genomic rearrangements in breast and ovarian cancer patients: an overview of the current methods. Expert Rev Mol Diagn 2019; 19:795-802. [PMID: 31429350 DOI: 10.1080/14737159.2019.1657011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Currently, genetic testing of BRCA1/2 genes includes screening for single-nucleotide variants, small insertions/deletions, and copy number variations (CNVs). In fact, many studies document the involvement of BRCA1/2 gene rearrangements in genetic predisposition to breast and ovarian cancer. Large genomic rearrangements (LGRs) of BRCA1 may account for up to one-third of all disease-causing alterations in various populations, while LGRs in BRCA2 are less frequently observed. Areas covered: We aimed to present an overview of current technologies employed in molecular diagnosis of BRCA1/2 LGRs. The most relevant literature papers, showing the application of new strategies, were considered. Expert opinion: Currently, the progress of next-generation sequencing (NGS) technologies allows for the validation of new pipelines able to provide rapid and effective results, ensuring the sensitivity and specificity requested for the detection of BRCA1/2 LGRs. Multiplex ligation-dependent probe amplification remains the gold standard to confirm NGS CNVs results and to perform fast screening in families where a pathogenic rearrangement has been detected in a proband.
Collapse
Affiliation(s)
- Paola Concolino
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS , Roma , Italia
| | - Ettore Capoluongo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II , Napoli , Italia
| |
Collapse
|
20
|
Wang J, Li W, Shi Y, Huang Y, Sun T, Tang L, Lu Q, Lei Q, Liao N, Jin F, Li H, Huang T, Qian J, Pang D, Wang S, Fan P, Wu X, Lin Y, Qin H, Xu B. Germline mutation landscape of Chinese patients with familial breast/ovarian cancer in a panel of 22 susceptibility genes. Cancer Med 2019; 8:2074-2084. [PMID: 30982232 PMCID: PMC6536923 DOI: 10.1002/cam4.2093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Genetic testing for germline mutations in BRCA1/2 of patients with breast cancer (BC) is part of routine patient care. However, BRCA1/2 mutations account only for a fraction of familial BC. A custom panel of 22 gene sequencing was performed on each patient. Among the 481 female patients, 135 patients were detected to carry pathogenic (P)/likely pathogenic (LP) mutations (28.1%), which corresponded to 12 different cancer predisposition genes [14.6% (70/481) on BRCA1 gene, 5.0% (24/481) on BRCA2 gene, 8.5% (41/481) on non‐BRCA1/2 genes]. Moreover, 24.7% (119/481) of patients had mutation of unknown significance (VUS) in these genes. The most common (8/481) pathogenic mutation is BRCA1 c.5470_5477del, while BRIP1 2392 C > T of patients was detected. All the mutations detected were mainly seen in the homologous recombinant repair pathway. Compared to BRCA2 mutation, BRCA1 mutation is higher in younger female patients (P < 0.01). Some pathogenic mutations were detected in the patients’ familiy members without the past history of tumor and 92 novel mutations were detected (31 on BRCA including 2 P, 16 LP, 13 VUS; 61 on non‐BRCA1/2 including 9 LP, 52 VUS). The detection rate of BRCA1/2 mutations was higher in patients with three or more cancer family members than those with one or two. However, the difference was not statistically different. The results suggest that multigene panel testing can increase mutation detection rate for high‐risk BC patients. Detailed family history can help to categorize new mutations.
Collapse
Affiliation(s)
- Jiayu Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiwei Li
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yujian Shi
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yan Huang
- Department of Breast Surgery, Chinese People's Liberation Army, Beijing, China
| | - Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital, Shenyang, China
| | - Lili Tang
- Department of Breast Surgery, Hunan Cancer Hospital, Changsha, China
| | - Qing Lu
- Department of Breast Surgery, West China Hospital of Sichuan university, Chengdu, China
| | - Qiumo Lei
- Department of Breast, The Third Hospital of Nanchang, Nanchang, China
| | - Ning Liao
- Department of Breast, Guangdong General Hospital, Guangzhou, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical university, Shenyang, China
| | - Hui Li
- Department of Breast Surgery, SiChuan Cancer Hospital Chengdu, Sichuan, China
| | - Tao Huang
- Department of Breast Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Qian
- Department of Breast Surgery, The First affiliated Hospital of bengbu medical college, Benghu, China
| | - Danmei Pang
- Department of breast cancer oncology, Foshan Hospital of Sun Yat-Sen Unversity, Foshan, China
| | | | - Peizhi Fan
- Department of Breast, Xiangya Hospital of Central South University, Changsha, China
| | - Xinhong Wu
- Department of Breast, Hubei Cancer Hospital, Benghu, China
| | - Ying Lin
- Department of Breast, the First affiliated Hospital of Sun Yat-Sen Unversity, Guangzhou, China
| | - Haiyan Qin
- Top Gene Tech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Deng M, Chen H, Zhu X, Luo M, Zhang K, Xu C, Hu K, Cheng P, Zhou J, Zheng S, Chen Y. Prevalence and clinical outcomes of germline mutations in
BRCA1/2
and
PALB2
genes in 2769 unselected breast cancer patients in China. Int J Cancer 2019; 145:1517-1528. [PMID: 30720863 DOI: 10.1002/ijc.32184] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mei Deng
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- Department of RadiotherapyAffiliated Hospital, Guilin Medical University Guilin Guangxi China
| | - Hui‐Hui Chen
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Xuan Zhu
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Meng Luo
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Kun Zhang
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Chun‐Jing Xu
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Kai‐Min Hu
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
| | - Pu Cheng
- Department of GynecologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Jiao‐Jiao Zhou
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Shu Zheng
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| | - Yi‐Ding Chen
- Department of Surgical OncologyThe Second Affiliated Hospital, Zhejiang University School of Medicine Zhejiang Hangzhou China
- The Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education Zhejiang Hangzhou China
| |
Collapse
|
22
|
Rapid detection of copy number variations and point mutations in BRCA1/2 genes using a single workflow by ion semiconductor sequencing pipeline. Oncotarget 2018; 9:33648-33655. [PMID: 30263092 PMCID: PMC6154752 DOI: 10.18632/oncotarget.26000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/04/2018] [Indexed: 01/29/2023] Open
Abstract
Molecular analysis of BRCA1 (MIM# 604370) and BRCA2 (MIM #600185) genes is essential for familial breast and ovarian cancer prevention and treatment. An efficient, rapid, cost-effective accurate strategy for the detection of pathogenic variants is crucial. Mutations detection of BRCA1/2 genes includes screening for single nucleotide variants (SNVs), small insertions or deletions (indels), and Copy Number Variations (CNVs). Sanger sequencing is unable to identify CNVs and therefore Multiplex Ligation Probe amplification (MLPA) or Multiplex Amplicon Quantification (MAQ) is used to complete the BRCA1/2 genes analysis. The rapid evolution of Next Generation Sequencing (NGS) technologies allows the search for point mutations and CNVs with a single platform and workflow. In this study we test the possibilities of NGS technology to simultaneously detect point mutations and CNVs in BRCA1/2 genes, using the OncomineTM BRCA Research Assay on Personal Genome Machine (PGM) Platform with Ion Reporter Software for sequencing data analysis (Thermo Fisher Scientific). Comparison between the NGS-CNVs, MLPA and MAQ results shows how the NGS approach is the most complete and fast method for the simultaneous detection of all BRCA mutations, avoiding the usual time consuming multistep approach in the routine diagnostic testing of hereditary breast and ovarian cancers.
Collapse
|
23
|
Nunziato M, Starnone F, Lombardo B, Pensabene M, Condello C, Verdesca F, Carlomagno C, De Placido S, Pastore L, Salvatore F, D'Argenio V. Fast Detection of a BRCA2 Large Genomic Duplication by Next Generation Sequencing as a Single Procedure: A Case Report. Int J Mol Sci 2017; 18:ijms18112487. [PMID: 29165356 PMCID: PMC5713453 DOI: 10.3390/ijms18112487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/18/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to verify the reliability of a next generation sequencing (NGS)-based method as a strategy to detect all possible BRCA mutations, including large genomic rearrangements. Genomic DNA was obtained from a peripheral blood sample provided by a patient from Southern Italy with early onset breast cancer and a family history of diverse cancers. BRCA molecular analysis was performed by NGS, and sequence data were analyzed using two software packages. Comparative genomic hybridization (CGH) array was used as confirmatory method. A novel large duplication, involving exons 4-26, of BRCA2 was directly detected in the patient by NGS workflow including quantitative analysis of copy number variants. The duplication observed was also found by CGH array, thus confirming its extent. Large genomic rearrangements can affect the BRCA1/2 genes, and thus contribute to germline predisposition to familial breast and ovarian cancers. The frequency of these mutations could be underestimated because of technical limitations of several routinely used molecular analysis, while their evaluation should be included also in these molecular testing. The NGS-based strategy described herein is an effective procedure to screen for all kinds of BRCA mutations.
Collapse
Affiliation(s)
- Marcella Nunziato
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Movement Sciences and Wellness (DiSMEB), University of Naples Parthenope, via Medina 40, 80133 Naples, Italy.
| | - Flavio Starnone
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
| | - Matilde Pensabene
- Oncology Division, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| | - Caterina Condello
- Oncology Division, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| | - Francesco Verdesca
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
- IRCCS-Fondazione SDN, via Emanuele Gianturco 113, 80143 Naples, Italy.
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", via Sergio Pansini 5, 80131 Naples, Italy.
| |
Collapse
|