1
|
Rao SR, Protheroe A, Cerundolo L, Maldonado-Perez D, Browning L, Lamb AD, Bryant RJ, Mills IG, Woodcock DJ, Hamdy FC, Tomlinson IPM, Verrill C. Genomic Evolution and Transcriptional Changes in the Evolution of Prostate Cancer into Neuroendocrine and Ductal Carcinoma Types. Int J Mol Sci 2023; 24:12722. [PMID: 37628903 PMCID: PMC10454593 DOI: 10.3390/ijms241612722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer is typically of acinar adenocarcinoma type but can occasionally present as neuroendocrine and/or ductal type carcinoma. These are associated with clinically aggressive disease, and the former often arises on a background of androgen deprivation therapy, although it can also arise de novo. Two prostate cancer cases were sequenced by exome capture from archival tissue. Case 1 was de novo small cell neuroendocrine carcinoma and ductal adenocarcinoma with three longitudinal samples over 5 years. Case 2 was a single time point after the development of treatment-related neuroendocrine prostate carcinoma. Case 1 showed whole genome doubling in all samples and focal amplification of AR in all samples except the first time point. Phylogenetic analysis revealed a common ancestry for ductal and small cell carcinoma. Case 2 showed 13q loss (involving RB1) in both adenocarcinoma and small cell carcinoma regions, and 3p gain, 4p loss, and 17p loss (involving TP53) in the latter. By using highly curated samples, we demonstrate for the first time that small-cell neuroendocrine and ductal prostatic carcinoma can have a common ancestry. We highlight whole genome doubling in a patient with prostate cancer relapse, reinforcing its poor prognostic nature.
Collapse
Affiliation(s)
- Srinivasa R. Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Andrew Protheroe
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | | | - Lisa Browning
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Alastair D. Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Richard J. Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Dan J. Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
| | | | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (S.R.R.)
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Gioukaki C, Georgiou A, Gkaralea LE, Kroupis C, Lazaris AC, Alamanis C, Thomopoulou GE. Unravelling the Role of P300 and TMPRSS2 in Prostate Cancer: A Literature Review. Int J Mol Sci 2023; 24:11299. [PMID: 37511059 PMCID: PMC10379122 DOI: 10.3390/ijms241411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.
Collapse
Affiliation(s)
- Charitomeni Gioukaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Georgiou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Alamanis
- 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
3
|
Raina K, Kant R, Prasad RR, Kandhari K, Tomar M, Mishra N, Kumar R, Fox JT, Sei S, Shoemaker RH, Chen Y, Maroni P, Agarwal C, Agarwal R. Characterization of stage-specific tumor progression in TMPRSS2-ERG (fusion)-driven and non-fusion-driven prostate cancer in GEM models. Mol Carcinog 2022; 61:717-734. [PMID: 35452553 PMCID: PMC10007524 DOI: 10.1002/mc.23413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ram R Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Munendra Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jennifer T Fox
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shizuko Sei
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Robert H Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Inflammation and Prostate Cancer: A Multidisciplinary Approach to Identifying Opportunities for Treatment and Prevention. Cancers (Basel) 2022; 14:cancers14061367. [PMID: 35326519 PMCID: PMC8946208 DOI: 10.3390/cancers14061367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major cause of disease for men globally. Inflammation, an established hallmark of cancer, is frequently observed in the prostate, though its contribution to prostate cancer risks and outcomes is not fully understood. Prostate cancer is biologically and clinically heterogeneous, and there is now evidence that inflammation and immunological characteristics vary by the genomic and mutational landscape of the tumor. Moreover, it is now recognized that risk factor profiles vary between tumor subgroups, as defined by histopathological and molecular features. Here, we provide a review centered around the relationship between inflammation and prostate cancer, with a consideration of molecular tumor features and a particular focus on the advanced and lethal stages of disease. We summarize findings from epidemiological studies of the etiology and role of inflammation in prostate cancer. We discuss the pathology of prostate inflammation, and consider approaches for assessing the tumor immune microenvironment in epidemiological studies. We review emerging clinical therapies targeting immune biology within the context of prostate cancer. Finally, we consider potentially modifiable risk factors and corresponding lifestyle interventions that may affect prostate inflammation, impacting outcomes. These emerging insights will provide some hints for the development of treatment and prevention strategies for advanced and lethal prostate cancer.
Collapse
|
5
|
Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, dos Reis RB, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021; 22:9550. [PMID: 34502458 PMCID: PMC8431051 DOI: 10.3390/ijms22179550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.
Collapse
Affiliation(s)
- Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - William Lautert-Dutra
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
6
|
Browning L, Colling R, Rakha E, Rajpoot N, Rittscher J, James JA, Salto-Tellez M, Snead DRJ, Verrill C. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: the PathLAKE consortium perspective. J Clin Pathol 2020; 74:443-447. [PMID: 32620678 PMCID: PMC8223667 DOI: 10.1136/jclinpath-2020-206854] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
The measures to control the COVID-19 outbreak will likely remain a feature of our working lives until a suitable vaccine or treatment is found. The pandemic has had a substantial impact on clinical services, including cancer pathways. Pathologists are working remotely in many circumstances to protect themselves, colleagues, family members and the delivery of clinical services. The effects of COVID-19 on research and clinical trials have also been significant with changes to protocols, suspensions of studies and redeployment of resources to COVID-19. In this article, we explore the specific impact of COVID-19 on clinical and academic pathology and explore how digital pathology and artificial intelligence can play a key role to safeguarding clinical services and pathology-based research in the current climate and in the future.
Collapse
Affiliation(s)
- Lisa Browning
- Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, UK
| | - Richard Colling
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, Oxfordshire, UK
| | - Emad Rakha
- School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Nasir Rajpoot
- Tissue Image Analytics Laboratory, Department of Computer Science, University of Warwick, Coventry, West Midlands, UK.,Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, West Midlands, UK
| | - Jens Rittscher
- NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, UK.,Department of Engineering Science and Big Data Institute, Oxford University, Oxford, Oxfordshire, UK
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Belfast, UK.,Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Belfast, UK.,Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Belfast, UK
| | - David R J Snead
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, West Midlands, UK
| | - Clare Verrill
- NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, UK .,Nuffield Department of Surgical Sciences, Oxford University, Oxford, Oxfordshire, UK
| |
Collapse
|