1
|
Aboagye FT, Annison L, Hackman HK, Acquah ME, Ashong Y, Owusu-Frimpong I, Egyam BC, Annison S, Osei-Adjei G, Antwi-Baffour S. Molecular Epidemiology of SARS-CoV-2 within Accra Metropolis Postlockdown. Adv Virol 2024; 2024:2993144. [PMID: 38584794 PMCID: PMC10997420 DOI: 10.1155/2024/2993144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Currently, sequencing has been the only tool for the identification of circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. However, it is known to be an expensive and laborious approach involving high technical expertise. Considering the reduced adherence to preventive measures postlockdown in Accra, this study presents an alternative method that leverages polymerase chain reaction (PCR) to identify circulating SARS-CoV-2 variants in the Accra Metropolis postlockdown. Methods This prospective cross-sectional study was conducted between July and December 2022. Nasopharyngeal samples were collected from 268 consenting participants. Samples were subjected to nucleic acid extraction and followed by real-time polymerase chain reaction for the detection and quantification of SARS-CoV-2 RNA. SARS-CoV-2 positive samples were subsequently subjected to variant identification using rapid PCR. Findings. The prevalence of SARS-CoV-2 within the Accra Metropolis was 30.2%. The majority of the SARS-CoV-2 infection was diagnosed in females, participants aged 41-50 years, and symptomatic participants. Participants aged ≤10 years and females recorded the highest viral load while participants aged 41-50 years recorded the highest number of infections. The SARS-CoV-2 variants detected were Alpha (64.2%), Delta (22.2%), and Omicron (13.6%). Predictors of SARS-CoV-2 infection identified were chills, cough, headache, body weakness, sore throat, and dyspnoea in order of decreasing association with SARS-CoV-2 infection. There was a strong association between symptom status, gender, age, and SARS-CoV-2 infection. Conclusion There was a high prevalence of SARS-CoV-2 within the Accra Metropolis postlockdown within the sampling period. The Alpha variant of SARS-CoV-2 is the predominant circulating variant, and persons presenting with symptoms are most likely to be diagnosed with COVID-19. Children aged ≤10 years serve as a reservoir for infection transmission.
Collapse
Affiliation(s)
- Frank T. Aboagye
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research–Water Research Institute, Accra, Ghana
| | - Lawrence Annison
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Henry Kwadwo Hackman
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Maame E. Acquah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yvonne Ashong
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, College of Medical Sciences, University of Ghana, Legon, Accra, Ghana
| | - Isaac Owusu-Frimpong
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research–Water Research Institute, Accra, Ghana
| | - Bill C. Egyam
- Department of Molecular Biology, MDS Lancet Laboratories Ghana Limited, East Legon, Accra, Ghana
| | - Sharon Annison
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - George Osei-Adjei
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
2
|
Niedre-Otomere B, Kampenusa I, Trofimova J, Bodrenko J, Vangravs R, Skenders G, Nikisins S, Savicka O. Multiplexed RT-qPCR Coupled with Whole-Genome Sequencing to Monitor a SARS-CoV-2 Omicron Variant of Concern in a Hospital Laboratory Setting in Latvia. Diagnostics (Basel) 2023; 13:3467. [PMID: 37998603 PMCID: PMC10670528 DOI: 10.3390/diagnostics13223467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
At the end of 2021, the SARS-CoV-2 Omicron variant of concern (VOC) displaced the previously dominant Delta VOC and enhanced diagnostic and therapeutic challenges worldwide. Respiratory specimens submitted to the Riga East University Hospital Laboratory Service by the central and regional hospitals of Latvia from January to March 2022 that were positive for SARS-CoV-2 RNA were tested by commercial multiplexed RT-qPCR targeting three of the Omicron VOC signature mutations: ΔH69/V70, E484A, and N501Y. Of the specimens tested and analyzed in parallel by whole-genome sequencing (WGS), 964 passed the internal quality criteria (genome coverage ≥90%, read depth ≥400×) and the Nextstrain's quality threshold for "good". We validated the detection accuracy of RT-qPCR for each target individually by using WGS as a control. The results were concordant with both approaches for 938 specimens, with the correct classification rate exceeding 96% for each target (CI 95%); however, the presumptive WHO label was misassigned for 21 specimens. The RT-qPCR genotyping provided an acceptable means to pre-monitor the prevalence of the two presumptive Omicron VOC sublineages, BA.1 and BA.2.
Collapse
|
3
|
Wacharapluesadee S, Hirunpatrawong P, Petcharat S, Torvorapanit P, Jitsatja A, Thippamom N, Ninwattana S, Phanlop C, Buathong R, Tangwangvivat R, Klungthong C, Chinnawirotpisan P, Hunsawong T, Suthum K, Komolsiri S, Jones AR, Fernandez S, Putcharoen O. Simultaneous detection of omicron and other SARS-CoV-2 variants by multiplex PCR MassARRAY technology. Sci Rep 2023; 13:2089. [PMID: 36747014 PMCID: PMC9900542 DOI: 10.1038/s41598-023-28715-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants with high severity and transmutability adds further urgency for rapid and multiplex molecular testing to identify the variants. A nucleotide matrix-assisted laser-desorption-ionization time-of-flight mass spectrophotometry (MALDI-TOF MS)-based assay was developed (called point mutation array, PMA) to identify four major SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Delta, and Omicron (namely PMA-ABDO) and differentiate Omicron subvariant (namely PMA-Omicron). PMA-ABDO and PMA-Omicron consist of 24 and 28 mutation sites of the spike gene. Both PMA panels specifically identified VOCs with as low as 10 viral copies/µl. The panel has shown a 100% concordant with the Next Generation Sequencing (NGS) results testing on 256 clinical specimens with real-time PCR cycle threshold (Ct) values less than 26. It showed a higher sensitivity over NGS; 25/28 samples were positive by PMA but not NGS in the clinical samples with PCR Ct higher than 26. Due to the mass of nucleotide used to differentiate between wild-type and mutation strains, the co-infection or recombination of multiple variants can be determined by the PMA method. This method is flexible in adding a new primer set to identify a new emerging mutation site among the current circulating VOCs and the turnaround time is less than 8 h. However, the spike gene sequencing or NGS retains the advantage of detecting newly emerged variants.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Piyapha Hirunpatrawong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pattama Torvorapanit
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anusara Jitsatja
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sasiprapa Ninwattana
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanchanit Phanlop
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rome Buathong
- Division of International Communicable Disease Control Ports and Quarantine, Department of Diseases Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Ratanaporn Tangwangvivat
- Division of Communicable Diseases, Department of Diseases Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Taweewun Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krairerk Suthum
- Office of Disease Prevention and Control, Region 5, Department of Diseases Control, Ministry of Public Health, Ratchaburi, Thailand
| | - Suparerk Komolsiri
- Office of Disease Prevention and Control, Region 5, Department of Diseases Control, Ministry of Public Health, Ratchaburi, Thailand
| | - Anthony R Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand. .,Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wacharapluesadee S, Hirunpatrawong P, Petcharat S, Torvorapanit P, Jitsatja A, Thippamom N, Ninwattana S, Phanlop C, Buathong R, Tangwangvivat R, Klungthong C, Chinnawirotpisan P, Hunsawong T, Suthum K, Komolsiri S, Jones AR, Fernandez S, Putcharoen O. Simultaneous Detection of Omicron and Other SARS-CoV-2 Variants by Multiplex PCR MassARRAY Technology. RESEARCH SQUARE 2023:rs.3.rs-2482226. [PMID: 36711810 PMCID: PMC9882655 DOI: 10.21203/rs.3.rs-2482226/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid emergence of SARS-CoV-2 variants with high severity and transmutability adds further urgency for rapid and multiplex molecular testing to identify the variants. A nucleotide matrix-assisted laser-desorption-ionization time-of-flight mass spectrophotometry (MALDI-TOF MS)-based assay was developed (called point mutation array, PMA) to identify four major SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Delta, and Omicron (namely PMA-ABDO) and differentiate Omicron subvariant (namely PMA-Omicron). PMA-ABDO and PMA-Omicron consist of 24 and 28 mutation sites of the spike gene. Both PMA panels specifically identified VOCs with as low as 10 viral copies/ µl. The panel has shown a 100% concordant with the Next Generation Sequencing (NGS) results testing on 256 clinical specimens with real-time PCR cycle threshold (Ct) values less than 26. It showed a higher sensitivity over NGS; 25/28 samples were positive by PMA but not NGS in the clinical samples with PCR Ct higher than 26. Due to the mass of nucleotide used to differentiate between wild-type and mutation strains, the co-infection or recombination of multiple variants can be determined by the PMA method. This method is flexible in adding a new primer set to identify a new emerging mutation site among the current circulating VOCs and the turnaround time is less than 8 hours. However, the spike gene sequencing or NGS retains the advantage of detecting newly emerged variants.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Piyapha Hirunpatrawong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pattama Torvorapanit
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anusara Jitsatja
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sasiprapa Ninwattana
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanchanit Phanlop
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rome Buathong
- Division of International Communicable Disease Control Ports and Quarantine, Department of Diseases Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Ratanaporn Tangwangvivat
- Division of Communicable Diseases, Department of Diseases Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Taweewun Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krairerk Suthum
- Office of Disease Prevention and Control, Region 5, Department of Diseases Control, Ministry of Public Health, Ratchaburi, Thailand
| | - Suparerk Komolsiri
- Office of Disease Prevention and Control, Region 5, Department of Diseases Control, Ministry of Public Health, Ratchaburi, Thailand
| | - Anthony R Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Nelson DJ, Shilts MH, Pakala SB, Das SR, Schmitz JE, Haselton FR. Ligation-based assay for variant typing without sequencing: Application to SARS-CoV-2 variants of concern. Influenza Other Respir Viruses 2022; 17:e13083. [PMID: 36510692 PMCID: PMC9835417 DOI: 10.1111/irv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 prevalence has remained high throughout the pandemic with intermittent surges, due largely to the emergence of genetic variants, demonstrating the need for more accessible sequencing technologies for strain typing. METHODS A ligation-based typing assay was developed to detect known variants of severe acute respiratory syndrome virus 2 (SARS-CoV-2) by identifying the presence of characteristic single-nucleotide polymorphisms (SNPs). General principles for extending the strategy to new variants and alternate diseases with SNPs of interest are described. Of note, this strategy leverages commercially available reagents for assay preparation, as well as standard real-time polymerase chain reaction (PCR) instrumentation for assay performance. RESULTS The assay demonstrated a combined sensitivity and specificity of 96.6% and 99.5%, respectively, for the classification of 88 clinical samples of the Alpha, Delta, and Omicron variants relative to the gold standard of viral genome sequencing. It achieved an average limit of detection of 7.4 × 104 genome copies/mL in contrived nasopharyngeal samples. The ligation-based strategy performed robustly in the presence of additional polymorphisms in the targeted regions of interest as shown by the sequence alignment of clinical samples. CONCLUSIONS The assay demonstrates the potential for robust variant typing with performance comparable with next-generation sequencing without the need for the time delays and resources required for sequencing. The reduced resource dependency and generalizability could expand access to variant classification information for pandemic surveillance.
Collapse
Affiliation(s)
- Dalton J. Nelson
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Meghan H. Shilts
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Suman B. Pakala
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Suman R. Das
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA,Vanderbilt Institute for Infection, Immunology and InflammationVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonathan E. Schmitz
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA,Vanderbilt Institute for Infection, Immunology and InflammationVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | |
Collapse
|
6
|
Vaccination Decreases the Infectious Viral Load of Delta Variant SARS-CoV-2 in Asymptomatic Patients. Viruses 2022; 14:v14092071. [PMID: 36146877 PMCID: PMC9503182 DOI: 10.3390/v14092071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 02/08/2023] Open
Abstract
The Delta variant of SARS-CoV-2 has caused many breakthrough infections in fully vaccinated individuals. While vaccine status did not generally impact the number of viral RNA genome copies in nasopharyngeal swabs of breakthrough patients, as measured by Ct values, it has been previously found to decrease the infectious viral load in symptomatic patients. We quantified the viral RNA, infectious virus, and anti-spike IgA in nasopharyngeal swabs collected from individuals asymptomatically infected with the Delta variant of SARS-CoV-2. Vaccination decreased the infectious viral load, but not the amount of viral RNA. Furthermore, vaccinees with asymptomatic infections had significantly higher levels of anti-spike IgA in their nasal secretions compared to unvaccinated individuals with asymptomatic infections. Thus, vaccination may decrease the transmission risk of Delta, and perhaps other variants, despite not affecting the amount of viral RNA measured in nasopharyngeal swabs.
Collapse
|
7
|
Berno G, Fabeni L, Matusali G, Gruber CEM, Rueca M, Giombini E, Garbuglia AR. SARS-CoV-2 Variants Identification: Overview of Molecular Existing Methods. Pathogens 2022; 11:1058. [PMID: 36145490 PMCID: PMC9504725 DOI: 10.3390/pathogens11091058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of COVID-19 pandemic the Real Time sharing of genome sequences of circulating virus supported the diagnostics and surveillance of SARS-CoV-2 and its transmission dynamics. SARS-CoV-2 straightaway showed its tendency to mutate and adapt to the host, culminating in the emergence of variants; so it immediately became of crucial importance to be able to detect them quickly but also to be able to monitor in depth the changes on the whole genome to early identify the new possibly emerging variants. In this scenario, this manuscript aims to provide an overview of the existing methods for the identification of SARS-CoV-2 variants (from rapid method based on identification of one or more specific mutations to Whole Genome sequencing approach-WGS), taking into account limitations, advantages and applications of them in the field of diagnosis and surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy
| |
Collapse
|
8
|
Umunnakwe CN, Makatini ZN, Maphanga M, Mdunyelwa A, Mlambo KM, Manyaka P, Nijhuis M, Wensing A, Tempelman HA. Evaluation of a commercial SARS-CoV-2 multiplex PCR genotyping assay for variant identification in resource-scarce settings. PLoS One 2022; 17:e0269071. [PMID: 35749403 PMCID: PMC9231807 DOI: 10.1371/journal.pone.0269071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid emergence and spread of numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants across the globe underscores the crucial need for continuous SARS-CoV-2 surveillance to ensure that potentially more pathogenic variants are detected early and contained. Whole genome sequencing (WGS) is currently the gold standard for COVID-19 surveillance; however, it remains cost-prohibitive and requires specialized technical skills. To increase surveillance capacity, especially in resource-scarce settings, supplementary methods that are cost- and time-effective are needed. Real-time multiplex PCR genotyping assays offer an economical and fast solution for screening circulating and emerging variants while simultaneously complementing existing WGS approaches. In this study we evaluated the AllplexTM SARS-CoV-2 Variants II multiplex real-time PCR genotyping assay, Seegene (South Korea), and implemented it in retrospectively characterizing circulating SARS-CoV-2 variants in a rural South African setting between April and October 2021, prior to the emergence of the Omicron variant in South Africa. The AllplexTM SARS-CoV-2 Variants II real-time PCR assay demonstrated perfect concordance with whole-genome sequencing in detecting Beta and Delta variants and exhibited high specificity, sensitivity and reproducibility. Implementation of the assay in characterization of SARS-CoV-2 variants between April and October 2021 in a rural South African setting revealed a rapid shift from the Beta to the Delta variant between April and June. All specimens successfully genotyped in April were Beta variants and the Delta variant was not detected until May. By June, 78% of samples genotyped were Delta variants and in July >95% of all genotyped samples were Delta variants. The Delta variant continued to predominate through to the end of our analysis in October 2021. Taken together, a commercial SARS-CoV-2 variant genotyping assay detected the rapid rate at which the Delta variant displaced the Beta variant in Limpopo, an under-monitored province in South Africa. Such assays provide a quick and cost-effective method of monitoring circulating variants and should be used to complement genomic sequencing for COVID-19 surveillance especially in resource-scarce settings.
Collapse
Affiliation(s)
- Chijioke N. Umunnakwe
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
- Ndlovu Research Consortium, Dennilton, Limpopo Province, South Africa
| | - Zinhle N. Makatini
- Ndlovu Research Consortium, Dennilton, Limpopo Province, South Africa
- Department of Virology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mathapelo Maphanga
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
| | - Anele Mdunyelwa
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
| | - Khamusi M. Mlambo
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
| | - Puseletso Manyaka
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
| | - Monique Nijhuis
- Ndlovu Research Consortium, Dennilton, Limpopo Province, South Africa
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Annemarie Wensing
- Ndlovu Research Consortium, Dennilton, Limpopo Province, South Africa
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Wits Reproductive Health and HIV Institute (Wits RHI), University of the Witwatersrand, Johannesburg, South Africa
| | - Hugo A. Tempelman
- Ndlovu Research Centre and Laboratories, Dennilton, Limpopo Province, South Africa
- Ndlovu Research Consortium, Dennilton, Limpopo Province, South Africa
- Wits Reproductive Health and HIV Institute (Wits RHI), University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|