1
|
Lapin J, Awosanya EO, Esteves RJA, Nevzorov AA. 1H/ 13C/ 15N triple-resonance experiments for structure determinaton of membrane proteins by oriented-sample NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 111:101701. [PMID: 33260039 DOI: 10.1016/j.ssnmr.2020.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance 1H/15N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (1H/13C/15N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving 13C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the 1H-13C dipolar couplings and 13C CSA (>20 kHz), and the presence of the 13C-13C homonuclear dipole-dipole interactions. The recently reported ROULETTE-CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative 1H-13C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate 13C and 15N nuclei in such triple-resonance experiments for the subsequent 15N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of 15N-labeled NAL measured at 13C natural abundance, the triple (1H/13C/15N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from 13C to 15N spins; whereas direct Hartmann-Hahn 13C/15N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.
Collapse
Affiliation(s)
- Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204 USA
| | - Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204 USA
| | - Richard J A Esteves
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204 USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204 USA.
| |
Collapse
|
2
|
Awosanya EO, Lapin J, Nevzorov AA. NMR "Crystallography" for Uniformly ( 13 C, 15 N)-Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020; 59:3554-3557. [PMID: 31887238 DOI: 10.1002/anie.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Indexed: 01/01/2023]
Abstract
In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1 H-15 N dipolar couplings and 15 N chemical shifts have been routinely assessed in oriented 15 N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15 N, 13 C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1 Hα -13 Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.
Collapse
Affiliation(s)
- Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| |
Collapse
|
3
|
Awosanya EO, Lapin J, Nevzorov AA. NMR “Crystallography” for Uniformly (
13
C,
15
N)‐Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emmanuel O. Awosanya
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Joel Lapin
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Alexander A. Nevzorov
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| |
Collapse
|
4
|
Lapin J, Nevzorov AA. De novo NMR pulse sequence design using Monte-Carlo optimization techniques. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106641. [PMID: 31734619 DOI: 10.1016/j.jmr.2019.106641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Separated Local Field (SLF) experiments have been routinely used for measuring 1H-15N heteronuclear dipolar couplings in oriented-sample solid-state NMR for structure determination of proteins. In the on-going pursuit of designing better-performing SLF pulse sequences (e.g. by increasing the number of subdwells, and varying the rf amplitudes and phases), analytical treatment of the relevant average Hamiltonian terms may become cumbersome and/or nearly impossible. Numerical simulations of NMR experiments using GPU processors can be employed to rapidly calculate spectra for moderately sized spin systems, which permit an efficient numeric optimization of pulse sequences by the Monte Carlo Simulated Annealing protocol. In this work, a computational strategy was developed to find the optimal phases and timings that substantially improve the 1H-15N dipolar linewidths over a broad range of dipolar couplings as compared to SAMPI4. More than 100 pulse sequences were developed de novo and tested on an N-acetyl Leucine crystal. Seventeen distinct pulse sequences were shown to produce sharper mean linewidths than SAMPI4. Overall, these pulse sequences have more variable parameters (involving non-quadrature phases) and do not involve symmetry between the odd and even dwells, which would likely preclude their rigorous analytical treatment. The top performing pulse sequence, termed ROULETTE-1, has 18% sharper mean linewidths than SAMPI4 when run on an N-acetyl Leucine crystal. This sequence was also shown to be robust over a broad range of 1H carrier frequencies and various crystal orientations. The performance of such an optimized pulse sequence was also illustrated on 15N Leucine-labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. For the optimized pulse sequence the mean peak width was 14% sharper than SAMPI4, which in turn yielded a better signal to noise ratio, 20:1 vs. 17:1. This method is potentially extendable to de novo development of a variety of NMR experiments.
Collapse
Affiliation(s)
- Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
5
|
Lapin J, Nevzorov AA. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta. JOURNAL OF BIOMOLECULAR NMR 2019; 73:229-244. [PMID: 31076969 DOI: 10.1007/s10858-019-00251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Multidimensional solid-state NMR spectra of oriented membrane proteins can be used to infer the backbone torsion angles and hence the overall protein fold by measuring dipolar couplings and chemical shift anisotropies, which depend on the orientation of each peptide plane with respect to the external magnetic field. However, multiple peptide plane orientations can be consistent with a given set of angular restraints. This ambiguity is further exacerbated by experimental uncertainty in obtaining and interpreting such restraints. The previously developed algorithms for structure calculations using angular restraints typically involve a sequential walkthrough along the backbone to find the torsion angles between the consecutive peptide plane orientations that are consistent with the experimental data. This method is sensitive to experimental uncertainty in interpreting the peak positions of as low as ± 10 Hz, often yielding high structural RMSDs for the calculated structures. Here we present a significantly improved version of the algorithm which includes the fitting of several peptide planes at once in order to prevent propagation of error along the backbone. In addition, a protocol has been devised for filtering the structural solutions using Rosetta scoring functions in order to find the structures that both fit the spectrum and satisfy bioinformatics restraints. The robustness of the new algorithm has been tested using synthetic angular restraints generated from the known structures for two proteins: a soluble protein 2gb1 (56 residues), chosen for its diverse secondary structure elements, i.e. an alpha-helix and two beta-sheets, and a membrane protein 4a2n, from which the first two transmembrane helices (having a total of 64 residues) have been used. Extensive simulations have been performed by varying the number of fitted planes, experimental error, and the number of NMR dimensions. It has been found that simultaneously fitting two peptide planes always shifted the distribution of the calculated structures toward lower structural RMSD values as compared to fitting a single torsion-angle pair. For each protein, irrespective of the simulation parameters, Rosetta was able to distinguish the most plausible structures, often having structural RMSDs lower than 2 Å with respect to the original structure. This study establishes a framework for de-novo protein structure prediction using a combination of solid-state NMR angular restraints and bioinformatics.
Collapse
Affiliation(s)
- Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
6
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Das BB, Park SH, Opella SJ. Membrane protein structure from rotational diffusion. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:229-45. [PMID: 24747039 PMCID: PMC4201901 DOI: 10.1016/j.bbamem.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
Abstract
The motional averaging of powder pattern line shapes is one of the most fundamental aspects of sold-state NMR. Since membrane proteins in liquid crystalline phospholipid bilayers undergo fast rotational diffusion, all of the signals reflect the angles of the principal axes of their dipole-dipole and chemical shift tensors with respect to the axis defined by the bilayer normal. The frequency span and sign of the axially symmetric powder patterns that result from motional averaging about a common axis provide sufficient structural restraints for the calculation of the three-dimensional structure of a membrane protein in a phospholipid bilayer environment. The method is referred to as rotationally aligned (RA) solid-state NMR and demonstrated with results on full-length, unmodified membrane proteins with one, two, and seven trans-membrane helices. RA solid-state NMR is complementary to other solid-state NMR methods, in particular oriented sample (OS) solid-state NMR of stationary, aligned samples. Structural distortions of membrane proteins from the truncations of terminal residues and other sequence modifications, and the use of detergent micelles instead of phospholipid bilayers have also been demonstrated. Thus, it is highly advantageous to determine the structures of unmodified membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. RA solid-state NMR provides a general method for obtaining accurate and precise structures of membrane proteins under near-native conditions.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA.
| |
Collapse
|
9
|
Douliez JP, Navailles L, Dufourc EJ, Nallet F. Fully deuterated magnetically oriented system based on fatty acid direct hexagonal phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5075-5081. [PMID: 24758608 DOI: 10.1021/la500808q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332, Biologie et Pathologie du Fruit, INRA, Centre de Bordeaux, 33883 Villenave d'Ornon, France
| | | | | | | |
Collapse
|
10
|
Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ. Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 2012; 134:2047-56. [PMID: 22217388 DOI: 10.1021/ja209464f] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An NMR method for determining the three-dimensional structures of membrane proteins in proteoliposomes is demonstrated by determining the structure of MerFt, the 60-residue helix-loop-helix integral membrane core of the 81-residue mercury transporter MerF. The method merges elements of oriented sample (OS) solid-state NMR and magic angle spinning (MAS) solid-state NMR techniques to measure orientation restraints relative to a single external axis (the bilayer normal) from individual residues in a uniformly (13)C/(15)N labeled protein in unoriented liquid crystalline phospholipid bilayers. The method relies on the fast (>10(5) Hz) rotational diffusion of membrane proteins in bilayers to average the static chemical shift anisotropy and heteronuclear dipole-dipole coupling powder patterns to axially symmetric powder patterns with reduced frequency spans. The frequency associated with the parallel edge of such motionally averaged powder patterns is exactly the same as that measured from the single line resonance in the spectrum of a stationary sample that is macroscopically aligned parallel to the direction of the applied magnetic field. All data are collected on unoriented samples undergoing MAS. Averaging of the homonuclear (13)C/(13)C dipolar couplings, by MAS of the sample, enables the use of uniformly (13)C/(15)N labeled proteins, which provides enhanced sensitivity through direct (13)C detection as well as the use of multidimensional MAS solid-state NMR methods for resolving and assigning resonances. The unique feature of this method is the measurement of orientation restraints that enable the protein structure and orientation to be determined in unoriented proteoliposomes.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0307, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, Tian Y, Opella SJ. Structure determination of membrane proteins in five easy pieces. Methods 2011; 55:363-9. [PMID: 21964394 PMCID: PMC3264820 DOI: 10.1016/j.ymeth.2011.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022] Open
Abstract
Rotational Alignment (RA) solid-state NMR provides the basis for a general method for determining the structures of membrane proteins in phospholipid bilayers under physiological conditions. Membrane proteins are high priority targets for structure determination, and are challenging for existing experimental methods. Because membrane proteins reside in liquid crystalline phospholipid bilayer membranes it is important to study them in this type of environment. The RA solid-state NMR approach we have developed can be summarized in five steps, and incorporates methods of molecular biology, biochemistry, sample preparation, the implementation of NMR experiments, and structure calculations. It relies on solid-state NMR spectroscopy to obtain high-resolution spectra and residue-specific structural restraints for membrane proteins that undergo rotational diffusion around the membrane normal, but whose mobility is otherwise restricted by interactions with the membrane phospholipids. High resolution spectra of membrane proteins alone and in complex with other proteins and ligands set the stage for structure determination and functional studies of these proteins in their native, functional environment.
Collapse
Affiliation(s)
- Francesca M. Marassi
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bibhuti B. Das
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - George J. Lu
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Henry J. Nothnagel
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Woo Sung Son
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Ye Tian
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| |
Collapse
|
12
|
Yin Y, Nevzorov AA. Structure determination in "shiftless" solid state NMR of oriented protein samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:64-73. [PMID: 21741286 DOI: 10.1016/j.jmr.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up structural fitting by rendering the dependence on the torsion angles Φ and Ψ in a purely diagonal form. Back-calculation of the simulated solid-state NMR spectra of protein G involving 15N chemical shift anisotropy (CSA), and 1H-15N and 1Hα-13Cα dipolar couplings was performed by taking into account non-planarity of the peptide linkages and experimental uncertainty. Even a relatively small (to within 1 ppm) random variation in the CSA values arising from uncertainties in the tensor parameters yields the RMSD's of the back-calculated structures of more than 10 Å. Therefore, the 15N CSA has been substituted with heteronuclear dipolar couplings which are derived from the highly conserved bond lengths and bond angles associated with the amino-acid covalent geometry. Using the additional 13Cα-15N and 13C'-15N dipolar couplings makes it possible to calculate protein structures entirely from "shiftless" solid-state NMR data. With the simulated "experimental" uncertainty of 15 Hz for protein G and 120 Hz for a helical hairpin derived from bacteriorhodopsin, back-calculation of the synthetic dipolar NMR spectra yielded a converged set of solutions. The use of distance restraints dramatically improves structural convergence even if larger experimental uncertainties are assumed.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
| | | |
Collapse
|
13
|
Hu KN, Qiang W, Tycko R. A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. JOURNAL OF BIOMOLECULAR NMR 2011; 50:267-76. [PMID: 21710190 PMCID: PMC3199575 DOI: 10.1007/s10858-011-9517-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 05/05/2023]
Abstract
We describe a general computational approach to site-specific resonance assignments in multidimensional NMR studies of uniformly (15)N,(13)C-labeled biopolymers, based on a simple Monte Carlo/simulated annealing (MCSA) algorithm contained in the program MCASSIGN2. Input to MCASSIGN2 includes lists of multidimensional signals in the NMR spectra with their possible residue-type assignments (which need not be unique), the biopolymer sequence, and a table that describes the connections that relate one signal list to another. As output, MCASSIGN2 produces a high-scoring sequential assignment of the multidimensional signals, using a score function that rewards good connections (i.e., agreement between relevant sets of chemical shifts in different signal lists) and penalizes bad connections, unassigned signals, and assignment gaps. Examination of a set of high-scoring assignments from a large number of independent runs allows one to determine whether a unique assignment exists for the entire sequence or parts thereof. We demonstrate the MCSA algorithm using two-dimensional (2D) and three-dimensional (3D) solid state NMR spectra of several model protein samples (α-spectrin SH3 domain and protein G/B1 microcrystals, HET-s(218-289) fibrils), obtained with magic-angle spinning and standard polarization transfer techniques. The MCSA algorithm and MCASSIGN2 program can accommodate arbitrary combinations of NMR spectra with arbitrary dimensionality, and can therefore be applied in many areas of solid state and solution NMR.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
14
|
Lin EC, Opella SJ. 1H assisted 13C/15N heteronuclear correlation spectroscopy in oriented sample solid-state NMR of single crystal and magnetically aligned samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:37-44. [PMID: 21543244 PMCID: PMC3236683 DOI: 10.1016/j.jmr.2011.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/23/2011] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
(1)H-irradiation under mismatched Hartmann-Hahn conditions provides an alternative mechanism for carrying out (15)N/(13)C transfers in triple-resonance heteronuclear correlation spectroscopy (HETCOR) on stationary samples of single crystals and aligned samples of biopolymers, which improve the efficiency especially when the direct (15)N-(13)C dipolar couplings are small. In many cases, the sensitivity is improved by taking advantage of the (13)C(α) labeled sites in peptides and proteins with (13)C detection. The similarities between experimental and simulated spectra demonstrate the validity of the recoupling mechanism and identify the potential for applying these experiments to virus particles or membrane proteins in phospholipid bilayers; however, further development is needed in order to derive quantitative distance and angular constraints from these measurements.
Collapse
Affiliation(s)
| | - Stanley J. Opella
- Corresponding Author: Stanley J. Opella, , phone 858 822-4820, FAX 858 822-4821
| |
Collapse
|
15
|
Lu GJ, Son WS, Opella SJ. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:195-206. [PMID: 21316275 PMCID: PMC3109902 DOI: 10.1016/j.jmr.2011.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/08/2011] [Indexed: 05/11/2023]
Abstract
A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches.
Collapse
|
16
|
Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ. Mechanically, magnetically, and "rotationally aligned" membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. J Phys Chem B 2011; 114:13995-4003. [PMID: 20961141 DOI: 10.1021/jp106043w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The native environment for membrane proteins is the highly asymmetric phospholipid bilayer, and this has a large effect on both their structure and dynamics. Reproducing this environment in samples suitable for spectroscopic and diffraction experiments is a key issue, and flexibility in sample preparation is essential to accommodate the diverse size, shape, and other physical properties of membrane proteins. In most cases, to ensure that the biological activities are maintained, this means reconstituting the proteins in fully hydrated planar phospholipid bilayers. The asymmetric character of protein-containing bilayers means that it is possible to prepare either oriented or unoriented (powder) samples. Here we demonstrate the equivalence of mechanical, magnetic, and what we refer to as "rotational alignment" of membrane proteins in phospholipid bilayer samples for solid-state NMR spectroscopy. The trans-membrane domain of virus protein "u" (Vpu) from human immunodeficiency virus (HIV-1) and the full-length membrane-bound form of fd bacteriophage coat protein in phospholipid bilayers are used as examples. The equivalence of structural constraints from oriented and unoriented (powder) samples of membrane proteins is based on two concepts: (1) their alignment is defined by the direction of the bilayer normal relative to the magnetic field and (2) they undergo rapid rotational diffusion about the same bilayer normal in liquid crystalline membranes. The measurement of angular constraints relative to a common external axis system defined by the bilayer normal for all sites in the protein is an essential element of oriented sample (OS) solid-state NMR.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307, USA
| | | | | | | | | |
Collapse
|
17
|
Bechinger B, Resende JM, Aisenbrey C. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 2010; 153:115-25. [PMID: 21145159 DOI: 10.1016/j.bpc.2010.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | | | | |
Collapse
|
18
|
Douliez JP. A novel oriented system made of fatty acid hexagonal phases with tuneable orientation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:171-176. [PMID: 20598599 DOI: 10.1016/j.jmr.2010.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
There is a strong demand in the field of solid state NMR for oriented lipid supramolecular assemblies. This is mainly devoted to biophysical structural studies or materials chemistry because the NMR signal depends on the orientation. Here we report a novel system made of a fatty acid hexagonal phase which self orient in the magnetic field. The orientation occurs within the magnetic field upon cooling the system from its isotropic phase. The cylinders of the hexagonal phase are then oriented parallel to the field. We take advantage that the hexagonal phase is a gel, i.e., the orientation is maintained fixed within the sample tube to investigate the orientational dependence of the deuterium solid state NMR signal using deuterated fatty acids and D(2)O by manually rotating the sample tube within the coil probe. As expected, the oriented signal follows the low |3cos(2)theta-1| where theta is the angle between the long cylindrical axis and the field. We expect this system to be of interest in materials chemistry and structural biology.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UR 1268, Biopolymères Interactions Assemblages INRA, équipe ISD, Rue de la Géraudière, 44316 Nantes, France.
| |
Collapse
|
19
|
Lin EC, Wu CH, Yang Y, Grant CV, Opella SJ. 1H-13C separated local field spectroscopy of uniformly 13C labeled peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:105-11. [PMID: 20637662 PMCID: PMC2926282 DOI: 10.1016/j.jmr.2010.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 05/17/2023]
Abstract
By incorporating homonuclear decoupling on both the (1)H and (13)C channels it is feasible to obtain high-resolution two-dimensional separated local field spectra of peptides and proteins that are 100% labeled with (13)C. Dual-PISEMO (Polarization Inversion Spin Exchange Modulated Observation) can be performed as a conventional two-dimensional experiment, or with windowed detection as a one-dimensional experiment that offers flexibility as a building block for shiftless and other multidimensional triple-resonance experiments with the inclusion of (15)N irradiation. The triple-resonance MAGC probe used to perform these experiments at 500 MHz is described.
Collapse
|
20
|
Gopinath T, Traaseth NJ, Mote K, Veglia G. Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J Am Chem Soc 2010; 132:5357-63. [PMID: 20345172 PMCID: PMC3328406 DOI: 10.1021/ja905991s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present new sensitivity enhanced schemes for heteronuclear correlation spectroscopy (HETCOR) in solid-state NMR of oriented systems. These schemes will enhance the sensitivity of the HETCOR by 40% for the two-dimensional experiments (SE-HETCOR) and up to 180% for the 3D HETCOR-separated local field version (SE-PISEMAI-HETCOR). The signal enhancement is demonstrated for a single crystal of ((15)N)N-acetylleucine and the integral membrane protein sarcolipin oriented in lipid bicelles. These methods will significantly reduce the time needed to acquire multidimensional experiments for membrane proteins oriented in magnetically or mechanically aligned lipid bilayers as well as liquid crystalline materials.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | - Kaustubh Mote
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
21
|
Bertelsen K, Paaske B, Thøgersen L, Tajkhorshid E, Schiøtt B, Skrydstrup T, Nielsen NC, Vosegaard T. Residue-specific information about the dynamics of antimicrobial peptides from (1)H-(15)N and (2)H solid-state NMR spectroscopy. J Am Chem Soc 2010; 131:18335-42. [PMID: 19929000 DOI: 10.1021/ja908604u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method to obtain information about the conformational dynamics of membrane-proteins using solid-state NMR experiments of oriented samples. By measuring the orientation-dependent (1)H-(15)N dipole-dipole coupling, (15)N anisotropic chemical shift, and (2)H quadrupole coupling parameters for a single residue, it is possible to obtain information about the local dynamics of each residue in the protein. This may be interpreted on an individual basis or through models extended to study conformational motion of membrane-protein segments. The method is demonstrated for the antimicrobial peptaibol alamethicin for which combined analysis of anisotropic interactions for the Aib(8) residue provides detailed information about helix-tilt angle, wobbling, and oscillatory rotation around the helix axis in the membrane bound state. This information is in very good agreement with coarse-grained MD simulations of the peptide in lipid bilayers.
Collapse
Affiliation(s)
- Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Bioinformatics Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu CH, Das BB, Opella SJ. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 202:127-34. [PMID: 19896874 PMCID: PMC2888030 DOI: 10.1016/j.jmr.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 05/16/2023]
Abstract
(13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples.
Collapse
|
23
|
Montaville P, Jamin N. Determination of membrane protein structures using solution and solid-state NMR. Methods Mol Biol 2010; 654:261-282. [PMID: 20665271 DOI: 10.1007/978-1-60761-762-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
NMR is an essential tool to characterize the structure, dynamics, and interactions of biomolecules at an atomic level. Its application to membrane protein (MP) structure determination is challenging and currently an active and rapidly developing field. Main difficulties are the low sensitivity of the technique, the size limitation, and the intrinsic motional properties of the system under investigation. Solution and solid-state NMR (ssNMR) have common and own specific requirements. Solution NMR requires a careful choice of the detergent, elaborated stable isotope labelling schemes to overcome signal overlaps and to collect distance restraints. Excessive spectra crowding hampered large MP structure determination by ssNMR, and so far only high resolution structure of small or fragments of MP have been determined. However, ssNMR provides the unique opportunity to obtain atomic level information of MP in phospholipid bilayers such as orientation of the protein in the membrane. Specific and careful sample preparations are required in combination with uniformly and partially labelled protein for ssNMR spectra assignment. Distance restraints measurements benefit from methodologies currently developed for small soluble proteins in micro-crystalline state.Recent advances in the field increased the releasing rate of high resolution MP structures, providing unprecedented structural and dynamics information making NMR a powerful tool for structural and functional membrane protein studies.
Collapse
|
24
|
Fillip FV, Sinha N, Jairam L, Bradley J, Opella SJ. Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 201:121-30. [PMID: 19781966 PMCID: PMC2804798 DOI: 10.1016/j.jmr.2009.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 05/16/2023]
Abstract
(13)C-detected solid-state NMR experiments have substantially higher sensitivity than the corresponding (15)N-detected experiments on stationary, aligned samples of isotopically labeled proteins. Several methods for tailoring the isotopic labeling are described that result in spatially isolated (13)C sites so that dipole-dipole couplings among the (13)C are minimized, thus eliminating the need for homonuclear (13)C-(13)C decoupling in either indirect or direct dimensions of one- or multi-dimensional NMR experiments that employ (13)C detection. The optimal percentage for random fractional (13)C labeling is between 25% and 35%. Specifically labeled glycerol and glucose can be used at the carbon sources to tailor the isotopic labeling, and the choice depends on the resonances of interest for a particular study. For investigations of the protein backbone, growth of the bacteria on [2-(13)C]-glucose-containing media was found to be most effective.
Collapse
|
25
|
Abstract
The acquisition and analysis of high resolution one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectra without chemical shift frequencies are described. Many variations of shiftless NMR spectroscopy are feasible. A two-dimensional experiment that correlates the dipole-dipole and dipole-dipole couplings in the model peptide , (15)N labeled N-acetyl-leucine is demonstrated. In addition to the resolution of resonances from individual sites in a single crystal sample, the bond lengths and angles are characterized by the two-dimensional powder pattern obtained from a polycrystalline sample.
Collapse
Affiliation(s)
- Chin H Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307, USA
| | | |
Collapse
|
26
|
Sinha N, Filipp FV, Jairam L, Park SH, Bradley J, Opella SJ. Tailoring 13C labeling for triple-resonance solid-state NMR experiments on aligned samples of proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S107-15. [PMID: 18157808 PMCID: PMC5010364 DOI: 10.1002/mrc.2121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In order to develop triple-resonance solid-state NMR spectroscopy of membrane proteins, we have implemented several different (13)C labeling schemes with the purpose of overcoming the interfering effects of (13)C-(13)C dipole-dipole couplings in stationary samples. The membrane-bound form of the major coat protein of the filamentous bacteriophage Pf1 was used as an example of a well-characterized helical membrane protein. Aligned protein samples randomly enriched to 35% (13)C in all sites and metabolically labeled from bacterial growth on media containing [2-(13)C]-glycerol or [1,3-(13)C]-glycerol enables direct (13)C detection in solid-state NMR experiments without the need for homonuclear (13)C-(13)C dipole-dipole decoupling. The (13)C-detected NMR spectra of Pf1 coat protein show a substantial increase in sensitivity compared to the equivalent (15)N-detected spectra. The isotopic labeling pattern was analyzed for [2-(13)C]-glycerol and [1,3-(13)C]-glycerol as metabolic precursors by solution-state NMR of micelle samples. Polarization inversion spin exchange at the magic angle (PISEMA) and other solid-state NMR experiments work well on 35% random fractionally and metabolically tailored (13)C-labeled samples, in contrast to their failure with conventional 100% uniformly (13)C-labeled samples.
Collapse
Affiliation(s)
- Neeraj Sinha
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307
| | - Fabian V. Filipp
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307
| | - Lena Jairam
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307
| | - Joel Bradley
- Cambridge Isotope Laboratories, 50 Frontage Road, Andover, Massachusetts 01810
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307
| |
Collapse
|