1
|
Berry DB, Galinsky VL, Hutchinson EB, Galons JP, Ward SR, Frank LR. Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure. Magn Reson Med 2023; 90:1582-1593. [PMID: 37392410 PMCID: PMC11390096 DOI: 10.1002/mrm.29751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Preliminary study to determine whether double pulsed field gradient (PFG) diffusion MRI is sensitive to key features of muscle microstructure related to function. METHODS The restricted diffusion profile of molecules in models of muscle microstructure derived from histology were systematically simulated using a numerical simulation approach. Diffusion tensor subspace imaging analysis of the diffusion signal was performed, and spherical anisotropy (SA) was calculated for each model. Linear regression was used to determine the predictive capacity of SA on the fiber area, fiber diameter, and surface area to volume ratio of the models. Additionally, a rat model of muscle hypertrophy was scanned using a single PFG and a double PFG pulse sequence, and the restricted diffusion measurements were compared with histological measurements of microstructure. RESULTS Excellent agreement between SA and muscle fiber area (r2 = 0.71; p < 0.0001), fiber diameter (r2 = 0.83; p < 0.0001), and surface area to volume ratio (r2 = 0.97; p < 0.0001) in simulated models was found. In a scanned rat leg, the distribution of these microstructural features measured from histology was broad and demonstrated that there is a wide variance in the microstructural features observed, similar to the SA distributions. However, the distribution of fractional anisotropy measurements in the same tissue was narrow. CONCLUSIONS This study demonstrates that SA-a scalar value from diffusion tensor subspace imaging analysis-is highly sensitive to muscle microstructural features predictive of function. Furthermore, these techniques and analysis tools can be translated to real experiments in skeletal muscle. The increased dynamic range of SA compared with fractional anisotropy in the same tissue suggests increased sensitivity to detecting changes in tissue microstructure.
Collapse
Affiliation(s)
- D B Berry
- Department of Orthopedic Surgery, University of California, San Diego, California, USA
- Department of Nanoengineering, University of California, San Diego, San Diego, California, USA
| | - V L Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, California, USA
| | - E B Hutchinson
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - J P Galons
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - S R Ward
- Department of Orthopedic Surgery, University of California, San Diego, California, USA
- Department of Radiology, University of California, San Diego, California, USA
- Department of Bioengineering, University of California, San Diego, California, USA
| | - L R Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
4
|
Frank LR, Zahneisen B, Galinsky VL. JEDI: Joint Estimation Diffusion Imaging of macroscopic and microscopic tissue properties. Magn Reson Med 2020; 84:966-990. [PMID: 31916626 DOI: 10.1002/mrm.28141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE A new method for enhancing the sensitivity of diffusion MRI (dMRI) by combining the data from single (sPFG) and double (dPFG) pulsed field gradient experiments is presented. METHODS This method uses our JESTER framework to combine microscopic anisotropy information from dFPG experiments using a new method called diffusion tensor subspace imaging (DiTSI) to augment the macroscopic anisotropy information from sPFG data analyzed using our guided by entropy spectrum pathways method. This new method, called joint estimation diffusion imaging (JEDI), combines the sensitivity to macroscopic diffusion anisotropy of sPFG with the sensitivity to microscopic diffusion anisotropy of dPFG methods. RESULTS Its ability to produce significantly more detailed anisotropy maps and more complete fiber tracts than existing methods within both brain white matter (WM) and gray matter (GM) is demonstrated on normal human subjects on data collected using a novel fast, robust, and clinically feasible sPFG/dPFG acquisition. CONCLUSIONS The potential utility of this method is suggested by an initial demonstration of its ability to mitigate the problem of gyral bias. The capability of more completely characterizing the tissue structure and connectivity throughout the entire brain has broad implications for the utility and scope of dMRI in a wide range of research and clinical applications.
Collapse
Affiliation(s)
- Lawrence R Frank
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA, USA
- Center for Functional MRI, University of California at San Diego, La Jolla, CA, USA
| | | | - Vitaly L Galinsky
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA, USA
- Electrical and Computer Engineering Department, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
6
|
The absence of restricted water pool in brain white matter. Neuroimage 2018; 182:398-406. [DOI: 10.1016/j.neuroimage.2017.10.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
|
7
|
Distinguishing neuronal from astrocytic subcellular microstructures using in vivo Double Diffusion Encoded 1H MRS at 21.1 T. PLoS One 2017; 12:e0185232. [PMID: 28968410 PMCID: PMC5624579 DOI: 10.1371/journal.pone.0185232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022] Open
Abstract
Measuring cellular microstructures non-invasively and achieving specificity towards a cell-type population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures. Understanding how these metabolites are compartmentalized is a challenging but important goal, which so far has been mainly addressed using diffusion models. Here, we present direct in vivo evidence for the confinement of NAA and mI within sub-cellular components, namely, the randomly oriented process of neurons and astrocytes, respectively. Our approach applied Relaxation Enhanced MRS at ultrahigh (21.1 T) field, and used its high 1H sensitivity to measure restricted diffusion correlations for NAA and mI using a Double Diffusion Encoding (DDE) filter. While very low macroscopic anisotropy was revealed by spatially localized Diffusion Tensor Spectroscopy, DDE displayed characteristic amplitude modulations reporting on confinements in otherwise randomly oriented anisotropic microstructures for both metabolites. This implies that for the chosen set of parameters, the DDE measurements had a biased sensitivity towards NAA and mI sited in the more confined environments of neurites and astrocytic branches, than in the cell somata. These measurements thus provide intrinsic diffusivities and compartment diameters, and revealed subcellular neuronal and astrocytic morphologies in normal in vivo rat brains. The relevance of these measurements towards human applications—which could in turn help understand CNS plasticity as well as diagnose brain diseases—is discussed.
Collapse
|
8
|
de Almeida Martins JP, Topgaard D. Two-Dimensional Correlation of Isotropic and Directional Diffusion Using NMR. PHYSICAL REVIEW LETTERS 2016; 116:087601. [PMID: 26967442 DOI: 10.1103/physrevlett.116.087601] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 05/12/2023]
Abstract
Diffusion nuclear magnetic resonance (NMR) is a powerful technique for studying porous media, but yields ambiguous results when the sample comprises multiple regions with different pore sizes, shapes, and orientations. Inspired by solid-state NMR techniques for correlating isotropic and anisotropic chemical shifts, we propose a diffusion NMR method to resolve said ambiguity. Numerical data inversion relies on sparse representation of the data in a basis of radial and axial diffusivities. Experiments are performed on a composite sample with a cell suspension and a liquid crystal.
Collapse
Affiliation(s)
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Mueller L, Wetscherek A, Kuder TA, Laun FB. Eddy current compensated double diffusion encoded (DDE) MRI. Magn Reson Med 2015; 77:328-335. [PMID: 26715361 DOI: 10.1002/mrm.26092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). METHODS The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. RESULTS The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. CONCLUSION It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lars Mueller
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tristan Anselm Kuder
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Bernd Laun
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Morozov D, Bar L, Sochen N, Cohen Y. Microstructural information from angular double-pulsed-field-gradient NMR: From model systems to nerves. Magn Reson Med 2014; 74:25-32. [DOI: 10.1002/mrm.25371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Leah Bar
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience, Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
11
|
Jespersen SN, Lundell H, Sønderby CK, Dyrby TB. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR IN BIOMEDICINE 2013; 26:1647-1662. [PMID: 24038641 DOI: 10.1002/nbm.2999] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
12
|
Eriksson S, Lasic S, Topgaard D. Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013. [PMID: 23178533 DOI: 10.1016/j.jmr.2012.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
When PGSE NMR is applied to water in microheterogeneous materials such as liquid crystals, foodstuffs, porous rocks, and biological tissues, the signal attenuation is often multi-exponential, indicating the presence of pores having a range of sizes or anisotropic domains having a spread of orientations. Here we modify the standard PGSE experiment by introducing low-amplitude harmonically modulated gradients, which effectively make the q-vector perform magic-angle spinning (MAS) about an axis fixed in the laboratory frame. With this new technique, denoted q-MAS PGSE, the signal attenuation depends on the isotropic average of the local diffusion tensor. The capability of q-MAS PGSE to distinguish between pore size and domain orientation dispersion is demonstrated by experiments on a yeast cell suspension and a polydomain anisotropic liquid crystal. In the latter case, the broad distribution of apparent diffusivities observed with PGSE is narrowed to its isotropic average with q-MAS PGSE in a manner that is analogous to the narrowing of chemical shift anisotropy powder patterns using magic-angle sample spinning in solid-state NMR. The new q-MAS PGSE technique could be useful for resolving size/orientation ambiguities in the interpretation of PGSE data from, e.g., water confined within the axons of human brain tissue.
Collapse
|
13
|
Shemesh N, Özarslan E, Basser PJ, Cohen Y. Accurate noninvasive measurement of cell size and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR. NMR IN BIOMEDICINE 2012; 25:236-46. [PMID: 21786354 PMCID: PMC3203313 DOI: 10.1002/nbm.1737] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 05/16/2023]
Abstract
The accurate characterization of pore morphology is of great interest in a wide range of scientific disciplines. Conventional single-pulsed field gradient (s-PFG) diffusion MR can yield compartmental size and shape only when compartments are coherently ordered using q-space approaches that necessitate strong gradients. However, double-PFG (d-PFG) methodology can provide novel microstructural information even when specimens are characterized by polydispersity in size and shape, and even when anisotropic compartments are randomly oriented. In this study, for the first time, we show that angular d-PFG experiments can be used to accurately measure cellular size and shape anisotropy of fixed yeast cells employing relatively weak gradients. The cell size, as measured by light microscopy, was found to be 5.32 ± 0.83 µm, whereas the results from noninvasive angular d-PFG experiments yielded a cell size of 5.46 ± 0.45 µm. Moreover, the low compartment shape anisotropy of the cells could be inferred from experiments conducted at long mixing times. Finally, similar experiments were conducted in a phantom comprising anisotropic compartments that were randomly oriented, showing that angular d-PFG MR provides novel information on compartment eccentricity that could not be accessed using conventional methods. Angular d-PFG methodology seems to be promising for the accurate estimation of compartment size and compartment shape anisotropy in heterogeneous systems in general, and biological cells and tissues in particular.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
- Center for Neuroscience and Regenerative Medicine, USUHS, Bethesda, Maryland 20892, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Koch MA, Finsterbusch J. Towards compartment size estimation in vivo based on double wave vector diffusion weighting. NMR IN BIOMEDICINE 2011; 24:1422-1432. [PMID: 21755551 DOI: 10.1002/nbm.1711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 12/22/2010] [Accepted: 02/15/2011] [Indexed: 05/31/2023]
Abstract
It has been shown that double wave vector diffusion weighting, which employs two gradient pulse pairs of independent directions, can provide information about tissue structure that is not easily available otherwise, such as cell size or shape in a tissue sample. One approach to measure cell size is based on the signal difference between parallel and antiparallel gradient orientations at small mixing times between the two diffusion weightings. A major difficulty for in vivo application is the small size of the signal difference if clinical MR systems with limited gradient hardware are employed. In this study, the method is applied to human brain tissue in vivo, using whole-body gradients. Data are reported for the corticospinal tracts. The characteristics of the observed signal difference between parallel and antiparallel gradient orientations are consistent with both analytical and numerical predictions. As an estimate of pore size, the resulting mean squared radius of gyration of the pores amounts to approximately 4 µm(2) . An analysis that accounts for the finite values of gradient pulse duration and diffusion time yields a volume contribution-weighted mean pore diameter of 13 μm if a cylindrical pore shape is assumed. The results demonstrate that the technique can be applied in vivo.
Collapse
Affiliation(s)
- Martin A Koch
- Department of Systems Neuroscience/Neuroimage Nord, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
15
|
Shemesh N, Barazany D, Sadan O, Bar L, Zur Y, Barhum Y, Sochen N, Offen D, Assaf Y, Cohen Y. Mapping apparent eccentricity and residual ensemble anisotropy in the gray matter using angular double-pulsed-field-gradient MRI. Magn Reson Med 2011; 68:794-806. [DOI: 10.1002/mrm.23300] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/05/2011] [Accepted: 10/24/2011] [Indexed: 12/27/2022]
|
16
|
Shemesh N, Cohen Y. Overcoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:362-369. [PMID: 21871826 DOI: 10.1016/j.jmr.2011.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | | |
Collapse
|
17
|
Lawrenz M, Finsterbusch J. Detection of microscopic diffusion anisotropy on a whole-body MR system with double wave vector imaging. Magn Reson Med 2011; 66:1405-15. [DOI: 10.1002/mrm.22934] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/21/2011] [Accepted: 03/02/2011] [Indexed: 11/06/2022]
|
18
|
Shemesh N, Cohen Y. Microscopic and compartment shape anisotropies in gray and white matter revealed by angular bipolar double-PFG MR. Magn Reson Med 2011; 65:1216-27. [DOI: 10.1002/mrm.22738] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 11/11/2022]
|
19
|
Nørhøj Jespersen S, Buhl N. The displacement correlation tensor: microstructure, ensemble anisotropy and curving fibers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:34-43. [PMID: 21035365 DOI: 10.1016/j.jmr.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 05/15/2023]
Abstract
Experiments with multiple diffusion wave vectors are known to carry more information than what is available from standard diffusion experiments. Here we consider a special case of this class of pulse sequences, the double wave vector diffusion experiment, and use the cumulant expansion of the signal to introduce the displacement correlation tensor. We discuss its physical interpretation and properties, noting in particular that its short time behavior allows determination of the surface to volume ratio of the pore space. We present a general expression for the displacement correlation tensor, and provide explicit expressions for a few model geometries. We then show that the scatter matrix characterizing the orientation distribution of an ensemble of cylinders is simply related to the displacement correlation tensor. This result is generalized to ensembles of pores with arbitrary shapes allowing a precise formulation of the influence of microstructural and ensemble anisotropy on the double wave vector diffusion signal in the Gaussian phase approximation. Finally, as a new application of the double wave vector diffusion signal, we analyze its behavior in a curving fiber, and suggest that the displacement correlation tensor may be used to estimate sub-voxel fiber curvature and deflection angle. The theoretical results are corroborated by computer simulations.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Nørrebrogade 44, Building 10G, 5th floor, Århus, Denmark.
| | | |
Collapse
|
20
|
Finsterbusch J. Numerical simulations of short-mixing-time double-wave-vector diffusion-weighting experiments with multiple concatenations on whole-body MR systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:274-282. [PMID: 20934360 DOI: 10.1016/j.jmr.2010.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
Double- or two-wave-vector diffusion-weighting experiments with short mixing times in which two diffusion-weighting periods are applied in direct succession, are a promising tool to estimate cell sizes in the living tissue. However, the underlying effect, a signal difference between parallel and antiparallel wave vector orientations, is considerably reduced for the long gradient pulses required on whole-body MR systems. Recently, it has been shown that multiple concatenations of the two wave vectors in a single acquisition can double the modulation amplitude if short gradient pulses are used. In this study, numerical simulations of such experiments were performed with parameters achievable with whole-body MR systems. It is shown that the theoretical model yields a good approximation of the signal behavior if an additional term describing free diffusion is included. More importantly, it is demonstrated that the shorter gradient pulses sufficient to achieve the desired diffusion weighting for multiple concatenations, increase the signal modulation considerably, e.g. by a factor of about five for five concatenations. Even at identical echo times, achieved by a shortened diffusion time, a moderate number of concatenations significantly improves the signal modulation. Thus, experiments on whole-body MR systems may benefit from multiple concatenations.
Collapse
Affiliation(s)
- Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Lawrenz M, Finsterbusch J. Double-wave-vector diffusion-weighting experiments with multiple concatenations at long mixing times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:112-119. [PMID: 20638307 DOI: 10.1016/j.jmr.2010.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 05/29/2023]
Abstract
MR sequences where two diffusion-weighting periods are applied successively in a single acquisition seem to be a promising tool for the investigation of tissue structure on a microscopic level such as the characterization of the compartment size or eccentricity measures of pores. However, the application of such double-wave-vector (DWV) experiments on whole-body MR systems is hampered by the long gradient pulses required that have been shown to reduce the signal modulation. In this work, it is demonstrated that involving multiple concatenations of the two diffusion-weighting periods can ameliorate this problem in experiments with long mixing times between the two wave vectors. The recently presented tensor equation is extended to multiple concatenations. As confirmed by Monte-Carlo simulations, this model shows a good approximation of the signals observed for typical whole-body gradient pulse durations and the derived anisotropy measures are obtained with good accuracy. Most importantly, the signal modulation is increased with multiple concatenations because shorter gradient pulses can be used to achieve the desired diffusion-weighting. Thus, the multiple concatenation approach may help to improve the applicability and reliability of DWV measurements with long mixing times on standard whole-body MR systems.
Collapse
Affiliation(s)
- Marco Lawrenz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
22
|
Shemesh N, Özarslan E, Komlosh ME, Basser PJ, Cohen Y. From single-pulsed field gradient to double-pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI. NMR IN BIOMEDICINE 2010; 23:757-80. [PMID: 20690130 PMCID: PMC3139994 DOI: 10.1002/nbm.1550] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the hallmarks of diffusion NMR and MRI is its ability to utilize restricted diffusion to probe compartments much smaller than the excited volume or the MRI voxel, respectively, and to extract microstructural information from them. Single-pulsed field gradient (s-PFG) MR methodologies have been employed with great success to probe microstructures in various disciplines, ranging from chemistry to neuroscience. However, s-PFG MR also suffers from inherent shortcomings, especially when specimens are characterized by orientation or size distributions: in such cases, the microstructural information available from s-PFG experiments is limited or lost. Double-pulsed field gradient (d-PFG) MR methodology, an extension of s-PFG MR, has attracted attention owing to recent theoretical studies predicting that it can overcome certain inherent limitations of s-PFG MR. In this review, we survey the microstructural features that can be obtained from conventional s-PFG methods in the different q regimes, and highlight its limitations. The experimental aspects of d-PFG methodology are then presented, together with an overview of its theoretical underpinnings and a general framework for relating the MR signal decay and material microstructure, affording new microstructural parameters. We then discuss recent studies that have validated the theory using phantoms in which the ground truth is well known a priori, a crucial step prior to the application of d-PFG methodology in neuronal tissue. The experimental findings are in excellent agreement with the theoretical predictions and reveal, inter alia, zero-crossings of the signal decay, robustness towards size distributions and angular dependences of the signal decay from which accurate microstructural parameters, such as compartment size and even shape, can be extracted. Finally, we show some initial findings in d-PFG MR imaging. This review lays the foundation for future studies, in which accurate and novel microstructural information could be extracted from complex biological specimens, eventually leading to new forms of contrast in MRI.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal E Komlosh
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
- Corresponding author: Prof. Yoram Cohen, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, , Tel/fax- 972 3 6407232/972 3 6407469
| |
Collapse
|
23
|
Shemesh N, Ozarslan E, Basser PJ, Cohen Y. Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: Theory and experiments. J Chem Phys 2010; 132:034703. [PMID: 20095748 DOI: 10.1063/1.3285299] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69778, Israel
| | | | | | | |
Collapse
|
24
|
Lawrenz M, Koch MA, Finsterbusch J. A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 202:43-56. [PMID: 19854085 DOI: 10.1016/j.jmr.2009.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/21/2009] [Accepted: 09/27/2009] [Indexed: 05/10/2023]
Abstract
Experiments with two diffusion-weighting periods applied successively in a single experiment, so-called double-wave-vector (DWV) diffusion-weighting experiments, are a promising tool for the investigation of material or tissue structure on a microscopic level, e.g. to determine cell or compartment sizes or to detect pore or cell anisotropy. However, the theoretical descriptions presented so far for experiments that aim to investigate the microscopic anisotropy with a long mixing time between the two diffusion weightings, are limited to certain wave vector orientations, specific pore shapes, and macroscopically isotropic samples. Here, the signal equations for fully restricted diffusion are re-investigated in more detail. A general description of the signal behavior for arbitrary wave vector directions, pore or cell shapes, and orientation distributions of the pores or cells is obtained that involves a fourth-order tensor approach. From these equations, a rotationally invariant measure of the microscopic anisotropy, termed MA, is derived that yields information complementary to that of the (macroscopic) anisotropy measures of standard diffusion-tensor acquisitions. Furthermore, the detailed angular modulation for arbitrary cell shapes with an isotropic orientation distribution is derived. Numerical simulations of the MR signal with a Monte-Carlo algorithms confirm the theoretical considerations. The extended theoretical description and the introduction of a reliable measure of the microscopic anisotropy may help to improve the applicability and reliability of corresponding experiments.
Collapse
Affiliation(s)
- Marco Lawrenz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
25
|
Shemesh N, Özarslan E, Bar-Shir A, Basser PJ, Cohen Y. Observation of restricted diffusion in the presence of a free diffusion compartment: single- and double-PFG experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:214-25. [PMID: 19656697 PMCID: PMC2749951 DOI: 10.1016/j.jmr.2009.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 05/10/2023]
Abstract
Theoretical and experimental studies of restricted diffusion have been conducted for decades using single pulsed field gradient (s-PFG) diffusion experiments. In homogenous samples, the diffusion-diffraction phenomenon arising from a single population of diffusing species has been observed experimentally and predicted theoretically. In this study, we introduce a composite bi-compartmental model which superposes restricted diffusion in microcapillaries with free diffusion in an unconfined compartment, leading to fast and slow diffusing components in the NMR signal decay. Although simplified (no exchange), the superposed diffusion modes in this model may exhibit features seen in more complex porous materials and biological tissues. We find that at low q-values the freely diffusing component masks the restricted diffusion component, and that prolongation of the diffusion time shifts the transition from free to restricted profiles to lower q-values. The effect of increasing the volume fraction of freely diffusing water was also studied; we find that the transition in the signal decay from the free mode to the restricted mode occurs at higher q-values when the volume fraction of the freely diffusing water is increased. These findings were then applied to a phantom consisting of crossing fibers, which demonstrated the same qualitative trends in the signal decay. The angular d-PGSE experiment, which has been recently shown to be able to measure small compartmental dimensions even at low q-values, revealed that microscopic anisotropy is lost at low q-values where the fast diffusing component is prominent. Our findings may be of importance in studying realistic systems which exhibit compartmentation.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Amnon Bar-Shir
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
- Corresponding author: Prof. Yoram Cohen, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, , Tel/fax- 972 3 6407232 / 972 3 6407469
| |
Collapse
|
26
|
Ozarslan E. Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:56-67. [PMID: 19398210 PMCID: PMC2696938 DOI: 10.1016/j.jmr.2009.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/25/2009] [Accepted: 04/03/2009] [Indexed: 05/08/2023]
Abstract
The multiple scattering extensions of the pulsed field gradient (PFG) experiments can be used to characterize restriction-induced anisotropy at different length scales. In double-PFG acquisitions that involve two pairs of diffusion gradient pulses, the dependence of the MR signal attenuation on the angle between the two gradients is a signature of restriction that can be observed even at low gradient strengths. In this article, a comprehensive theoretical treatment of the double-PFG observation of restricted diffusion is presented. In the first part of the article, the problem is treated for arbitrarily shaped pores under idealized experimental conditions, comprising infinitesimally narrow gradient pulses with long separation times and long or vanishing mixing times. New insights are obtained when the treatment is applied to simple pore shapes of spheres, ellipsoids, and capped cylinders. The capped cylinder geometry is considered in the second part of the article where the solution for a double-PFG experiment with arbitrary experimental parameters is introduced. Although compartment shape anisotropy (CSA) is emphasized here, the findings of this article can be used in gleaning the volume, eccentricity, and orientation distribution function associated with ensembles of anisotropic compartments using double-PFG acquisitions with arbitrary experimental parameters.
Collapse
Affiliation(s)
- Evren Ozarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Koch MA, Finsterbusch J. Numerical simulation of double-wave vector experiments investigating diffusion in randomly oriented ellipsoidal pores. Magn Reson Med 2009; 62:247-54. [DOI: 10.1002/mrm.21976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Finsterbusch J. Extension of the double-wave-vector diffusion-weighting experiment to multiple concatenations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:174-182. [PMID: 19268616 DOI: 10.1016/j.jmr.2009.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 05/27/2023]
Abstract
Experiments involving two diffusion-weightings in a single acquisition, so-called double- or two-wave-vector experiments, have recently been applied to measure the microscopic anisotropy in macroscopically isotropic samples or to estimate pore or compartment sizes. These informations are derived from the signal modulation observed when varying the wave vectors' orientations. However, the modulation amplitude can be small and, for short mixing times between the two diffusion-weightings, decays with increased gradient pulse lengths which hampers its detectability on whole-body MR systems. Here, an approach is investigated that involves multiple concatenations of the two diffusion-weightings in a single experiment. The theoretical framework for double-wave-vector experiments of fully restricted diffusion is adapted and the corresponding tensor approach recently presented for short mixing times extended and compared to numerical simulations. It is shown that for short mixing times (i) the extended tensor approach well describes the signal behavior observed for multiple concatenations and (ii) the relative amplitude of the signal modulation increases with the number of concatenations. Thus, the presented extension of the double-wave-vector experiment may help to improve the detectability of the signal modulations observed for short mixing times, in particular on whole-body MR systems with their limited gradient amplitudes.
Collapse
Affiliation(s)
- Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|