1
|
Ray S, Redrouthu VS, Equbal A, Jain SK. Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions. Phys Chem Chem Phys 2025; 27:7016-7027. [PMID: 40047693 DOI: 10.1039/d5cp00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as 19F with large chemical shift anisotropy and 6/7Li, 23Na, 27Al, etc., with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for 19F-7Li, 19F-23Na, 19F-27Al, and 19F-13C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better 19F-7Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.
Collapse
Affiliation(s)
- Shovik Ray
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Venkata SubbaRao Redrouthu
- Department of Chemistry, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Quantum and Topological Systems, New York University, Abu Dhabi 129188, United Arab Emirates
| | - Asif Equbal
- Department of Chemistry, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Quantum and Topological Systems, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Smart Engineering Materials, New York University, Abu Dhabi 129188, United Arab Emirates
| | - Sheetal Kumar Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
3
|
Akbey Ü. Site-specific protein backbone deuterium 2H α quadrupolar patterns by proton-detected quadruple-resonance 3D 2H αc αNH MAS NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101861. [PMID: 36989552 DOI: 10.1016/j.ssnmr.2023.101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/11/2023]
Abstract
A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, United States.
| |
Collapse
|
4
|
Nimerovsky E, Becker S, Andreas LB. Windowed cross polarization at 55 kHz magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107404. [PMID: 36848688 DOI: 10.1016/j.jmr.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
5
|
Ahlawat S, Mopidevi SMV, Taware PP, Raran-Kurussi S, Mote KR, Agarwal V. Assignment of aromatic side-chain spins and characterization of their distance restraints at fast MAS. J Struct Biol X 2022; 7:100082. [PMID: 36618437 PMCID: PMC9817166 DOI: 10.1016/j.yjsbx.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Subbarao Mohana Venkata Mopidevi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Pravin P. Taware
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| |
Collapse
|
6
|
Borcik C, Eason IR, Vanderloop B, Wylie BJ. 2H, 13C-Cholesterol for Dynamics and Structural Studies of Biological Membranes. ACS OMEGA 2022; 7:17151-17160. [PMID: 35647452 PMCID: PMC9134247 DOI: 10.1021/acsomega.2c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
We present a cost-effective means of 2H and 13C enrichment of cholesterol. This method exploits the metabolism of 2H,13C-acetate into acetyl-CoA, the first substrate in the mevalonate pathway. We show that growing the cholesterol producing strain RH6827 of Saccharomyces cerevisiae in 2H,13C-acetate-enriched minimal media produces a skip-labeled pattern of deuteration. We characterize this cholesterol labeling pattern by mass spectrometry and solid-state nuclear magnetic resonance spectroscopy. It is confirmed that most 2H nuclei retain their original 2H-13C bonds from acetate throughout the biosynthetic pathway. We then quantify the changes in 13C chemical shifts brought by deuteration and the impact upon 13C-13C spin diffusion. Finally, using adiabatic rotor echo short pulse irradiation cross-polarization (RESPIRATIONCP), we acquire the 2H-13C correlation spectra to site specifically quantify cholesterol dynamics in two model membranes as a function of temperature. These measurements show that cholesterol acyl chains at physiological temperatures in mixtures of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol are more dynamic than cholesterol in POPC. However, this overall change in motion is not uniform across the cholesterol molecule. This result establishes that this cholesterol labeling pattern will have great utility in reporting on cholesterol dynamics and orientation in a variety of environments and with different membrane bilayer components, as well as monitoring the mevalonate pathway product interactions within the bilayer. Finally, the flexibility and universality of acetate labeling will allow this technique to be widely applied to a large range of lipids and other natural products.
Collapse
|
7
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
8
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
9
|
Gelenter MD, Chen KJ, Hong M. Off-resonance 13C- 2H REDOR NMR for site-resolved studies of molecular motion. JOURNAL OF BIOMOLECULAR NMR 2021; 75:335-345. [PMID: 34342847 PMCID: PMC8830769 DOI: 10.1007/s10858-021-00377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 06/06/2023]
Abstract
We introduce a 13C-2H Rotational Echo DOuble Resonance (REDOR) technique that uses the difference between on-resonance and off-resonance 2H irradiation to detect dynamic segments in deuterated molecules. By selectively inverting specific regions of the 2H magic-angle spinning (MAS) sideband manifold to recouple some of the deuterons to nearby carbons, we distinguish dynamic and rigid residues in 1D and 2D 13C spectra. We demonstrate this approach on deuterated GB1, H/D exchanged GB1, and perdeuterated bacterial cellulose. Numerical simulations reproduce the measured mixing-time and 2H carrier-frequency dependence of the REDOR dephasing of bacterial cellulose. Combining numerical simulations with experiments thus allow the extraction of motionally averaged quadrupolar couplings from REDOR dephasing values.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA
| | - Kelly J Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA.
| |
Collapse
|
10
|
Cerofolini L, Ravera E, Fragai M, Luchinat C. NMR of Immobilized Enzymes. Methods Mol Biol 2020; 2100:363-383. [PMID: 31939136 DOI: 10.1007/978-1-0716-0215-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state NMR has become the method of choice for the assessment of protein structure for insoluble objects lacking long-range order. In this context, it is apparent that solid-state NMR is also perfectly poised toward the characterization of immobilized proteins. For these systems, it is possible to understand at the atomic level which perturbations, if any, are occurring as a result of the functionalization. Here we describe how it is possible to accomplish the NMR characterization of enzymes that have been immobilized through different approaches, and we introduce the reader to the choice of the experimental strategy that can be useful in different cases. An outlook on the level of information that can be attained is also given, in view of recent methodological advancements.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Raya J, Hirschinger J. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:253-271. [PMID: 28662486 DOI: 10.1016/j.jmr.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.
Collapse
Affiliation(s)
- J Raya
- Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France
| | - J Hirschinger
- Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
Zhang Z, Chen Y, Yang J. Band-selective heteronuclear dipolar recoupling with dual back-to-back pulses in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:46-52. [PMID: 27623242 DOI: 10.1016/j.jmr.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
We propose a robust band-selective heteronuclear 15N-13C recoupling method using dual back-to-back (BABA) pulses (DBP). It contains four 90° pulses in each rotor period and corresponding phase cycling on each channel (13C and 15N). DBP aims at rapid band-selective heteronuclear magnetization transfer between 15N and 13Cα/13C', whose efficiency is close to that of the well-known SPECIFIC CP in membrane proteins with relatively short relaxation time in rotating frame (T1ρ). Compared to SPECIFIC CP, DBP is very simple to set up and highly robust to RF variations. Thus, it can reduce the efforts in experimental optimization, especially for low-sensitive samples, and is very suitable for long-time or quantitative experiments. The efficacy of DBP is demonstrated by the E. coli diacylglycerol kinase (DAGK) proteoliposome. We anticipate that DBP would be useful for (segments of) membrane proteins that undergo the μs-ms timescale motions in magic-angle spinning (MAS) solid-state NMR.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
13
|
Basse K, Shankar R, Bjerring M, Vosegaard T, Nielsen NC, Nielsen AB. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR. J Chem Phys 2016; 145:094202. [PMID: 27608995 DOI: 10.1063/1.4961736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.
Collapse
Affiliation(s)
- Kristoffer Basse
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anders B Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Schanda P, Ernst M. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:1-46. [PMID: 27110043 PMCID: PMC4836562 DOI: 10.1016/j.pnmrs.2016.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution.
Collapse
Affiliation(s)
- Paul Schanda
- CEA, Institut de Biologie Structurale (IBS), 38027 Grenoble, France ; CNRS, Institut de Biologie Structurale (IBS), 38027 Grenoble, France ; Université Grenoble Alpes, IBS, 38027 Grenoble, France
| | - Matthias Ernst
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Shi X, Rienstra CM. Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D ²H-¹³C-¹³C Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:4105-19. [PMID: 26849428 PMCID: PMC4819898 DOI: 10.1021/jacs.5b12974] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 02/04/2023]
Abstract
(2)H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D (2)H-(13)C-(13)C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of (2)H-(13)C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D (2)H-(13)C-(13)C spectrum reveals (2)H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged (2)H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
|