1
|
Lee W, Miller EY, Zhu H, Schneider SE, Reiter DA, Neu CP. Multi-frame biomechanical and relaxometry analysis during in vivo loading of the human knee by spiral dualMRI and compressed sensing. Magn Reson Med 2023; 90:995-1009. [PMID: 37213087 PMCID: PMC10330244 DOI: 10.1002/mrm.29690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Knee cartilage experiences repetitive loading during physical activities, which is altered during the pathogenesis of diseases like osteoarthritis. Analyzing the biomechanics during motion provides a clear understanding of the dynamics of cartilage deformation and may establish essential imaging biomarkers of early-stage disease. However, in vivo biomechanical analysis of cartilage during rapid motion is not well established. METHODS We used spiral displacement encoding with stimulated echoes (DENSE) MRI on in vivo human tibiofemoral cartilage during cyclic varus loading (0.5 Hz) and used compressed sensing on the k-space data. The applied compressive load was set for each participant at 0.5 times body weight on the medial condyle. Relaxometry methods were measured on the cartilage before (T1ρ , T2 ) and after (T1ρ ) varus load. RESULTS Displacement and strain maps showed a gradual shift of displacement and strain in time. Compressive strain was observed in the medial condyle cartilage and shear strain was roughly half of the compressive strain. Male participants had more displacement in the loading direction compared to females, and T1ρ values did not change after cyclic varus load. Compressed sensing reduced the scanning time up to 25% to 40% when comparing the displacement maps and substantially lowered the noise levels. CONCLUSION These results demonstrated the ease of which spiral DENSE MRI could be applied to clinical studies because of the shortened imaging time, while quantifying realistic cartilage deformations that occur through daily activities and that could serve as biomarkers of early osteoarthritis.
Collapse
Affiliation(s)
- Woowon Lee
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Y. Miller
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Hongtian Zhu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Stephanie E. Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - David A. Reiter
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Inam O, Qureshi M, Laraib Z, Akram H, Omer H. GPU accelerated Cartesian GRAPPA reconstruction using CUDA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107175. [PMID: 35259611 DOI: 10.1016/j.jmr.2022.107175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE GRAPPA (Generalized Auto-calibrating Partially Parallel Acquisition) is an advanced parallel MRI reconstruction method (pMRI) that enables under-sampled data acquisition with multiple receiver coils to reduce the MRI scan time and reconstructs artifact free image from the acquired under-sampled data. However, the reduction in MRI scan time comes at the expense of long reconstruction time. It is because the GRAPPA reconstruction time shows exponential growth with increasing number of receiver coils. Consequently, the conventional CPU platforms may not adhere to the requirements of fast data processing for MR image reconstruction. METHODS Graphics Processing Units (GPUs) have recently emerged as a viable commodity hardware to reduce the reconstruction time of pMRI methods. This paper presents a novel GPU based implementation of GRAPPA using custom built CUDA kernels, to meet the rising demands of fast MRI processing. The proposed framework exploits intrinsic parallelism in the calibration and synthesis phases of GRAPPA reconstruction process, aiming to achieve high speed MR image reconstruction for various GRAPPA configuration settings using different number of receiver coils, auto-calibration signals (ACS), sizes of GRAPPA kernel and acceleration factors. In-vivo experiments (using 8, 12 and 30 receiver coils) are performed to compare the performance of the proposed GPU accelerated GRAPPA with the CPU based GRAPPA extensions and GPU counterpart. RESULTS The results indicate that the proposed method achieves up to ≈47.8× , ≈17× and ≈3.8× speed up gains over multicore CPU (single thread), multicore CPU (8 thread) and Gadgetron (GPU based GRAPPA) respectively, without compromising the reconstruction accuracy. CONCLUSIONS The proposed method reduces the GRAPPA reconstruction time by employing the calibration phase (GRAPPA weights estimation) and synthesis phase (interpolation) on GPU. Our study shows that the proposed GPU based parallel framework for GRAPPA reconstruction provides a solution for high-speed image reconstruction while maintaining the quality of the reconstructed images.
Collapse
Affiliation(s)
- Omair Inam
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| | - Mahmood Qureshi
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| | - Zoia Laraib
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Hamza Akram
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Hammad Omer
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| |
Collapse
|
3
|
Stokes AM, Ragunathan S, Robison RK, Fuentes A, Bell LC, Karis JP, Pipe JG, Quarles CC. Development of a spiral spin- and gradient-echo (spiral-SAGE) approach for improved multi-parametric dynamic contrast neuroimaging. Magn Reson Med 2021; 86:3082-3095. [PMID: 34288112 DOI: 10.1002/mrm.28933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study was to develop a spiral-based combined spin- and gradient-echo (spiral-SAGE) method for simultaneous dynamic contrast-enhanced (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI). METHODS Using this sequence, we obtained gradient-echo TEs of 1.69 and 26 ms, a SE TE of 87.72 ms, with a TR of 1663 ms. Using an iterative SENSE reconstruction followed by deblurring, spiral-induced image artifacts were minimized. Healthy volunteer images are shown to demonstrate image quality using the optimized reconstruction, as well as for comparison with EPI-based SAGE. A bioreactor phantom was used to compare dynamic-contrast time courses with both spiral-SAGE and EPI-SAGE. A proof-of-concept cohort of patients with brain tumors shows the range of hemodynamic maps available using spiral-SAGE. RESULTS Comparison of spiral-SAGE images with conventional EPI-SAGE images illustrates substantial reductions of image distortion and artifactual image intensity variations. Bioreactor phantom data show similar dynamic contrast time courses between standard EPI-SAGE and spiral-SAGE for the second and third echoes, whereas first-echo data show improvements in quantifying T1 changes with shorter echo times. In a cohort of patients with brain tumors, spiral-SAGE-based perfusion and permeability maps are shown with comparison with the standard single-echo EPI perfusion map. CONCLUSION Spiral-SAGE provides a substantial improvement for the assessment of perfusion and permeability by mitigating artifacts typically encountered with EPI and by providing a shorter echo time for improved characterization of permeability. Spiral-SAGE enables quantification of perfusion, permeability, and vessel architectural parameters, as demonstrated in brain tumors.
Collapse
Affiliation(s)
- Ashley M Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Sudarshan Ragunathan
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ryan K Robison
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Philips Healthcare, Nashville, Tennessee, USA.,Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alberto Fuentes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Laura C Bell
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - John P Karis
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - James G Pipe
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Mayo Clinic, Rochester, Minnesota, USA
| | - C Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Choi EY. Feature Tracking Analysis, the "Cherry-on-Top" of Cardiac Magnetic Resonance for Suspected Iron Overload Cardiomyopathy. J Cardiovasc Imaging 2021; 29:345-346. [PMID: 34080339 PMCID: PMC8592684 DOI: 10.4250/jcvi.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eui-Young Choi
- Division of Cardiology, Heart Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Rapid cardiac MRI protocol for cardiac assessment in paediatric and young adult patients undergoing haematopoietic stem cell transplant: a feasibility study. Cardiol Young 2021; 31:973-978. [PMID: 33504397 DOI: 10.1017/s1047951120004990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Haematopoietic stem cell transplantation is an important and effective treatment strategy for many malignancies, marrow failure syndromes, and immunodeficiencies in children, adolescents, and young adults. Despite advances in supportive care, patients undergoing transplant are at increased risk to develop cardiovascular co-morbidities. METHODS This study was performed as a feasibility study of a rapid cardiac MRI protocol to substitute for echocardiography in the assessment of left ventricular size and function, pericardial effusion, and right ventricular hypertension. RESULTS A total of 13 patients were enrolled for the study (age 17.5 ± 7.7 years, 77% male, 77% white). Mean study time was 13.2 ± 5.6 minutes for MRI and 18.8 ± 5.7 minutes for echocardiogram (p = 0.064). Correlation between left ventricular ejection fraction by MRI and echocardiogram was good (ICC 0.76; 95% CI 0.47, 0.92). None of the patients had documented right ventricular hypertension. Patients were given a survey regarding their experiences, with the majority both perceiving that the echocardiogram took longer (7/13) and indicating they would prefer the MRI if given a choice (10/13). CONCLUSION A rapid cardiac MRI protocol was shown feasible to substitute for echocardiogram in the assessment of key factors prior to or in follow-up after haematopoietic stem cell transplantation.
Collapse
|
6
|
von Kleist H, Buehrer M, Kozerke S, Saengsin K, Harrington JK, Powell AJ, Moghari MH. Cardiac self-gating using blind source separation for 2D cine cardiovascular magnetic resonance imaging. Magn Reson Imaging 2021; 81:42-52. [PMID: 33905835 DOI: 10.1016/j.mri.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop and validate a new cardiac self-gating algorithm using blind source separation for 2D cine steady-state free precession (SSFP) imaging. METHODS A standard cine SSFP sequence was modified so that the center point of k-space was sampled with each excitation. The center points of k-space were processed by 4 blind source separation methods, and used to detect heartbeats and assign k-space data to appropriate time points in the cardiac cycle. The proposed self-gating technique was prospectively validated in 8 patients against the standard electrocardiogram (ECG)-gating method by comparing the cardiac cycle lengths, image quality metrics, and ventricular volume measurements. RESULTS There was close agreement between the cardiac cycle length using the ECG- and self-gating methods (bias 0.0 bpm, 95% limits of agreement ±2.1 bpm). The image quality metrics were not significantly different between the ECG- and self-gated images. The ventricular volumes, stroke volumes, and mass measured from self-gated images were all comparable with those from ECG-gated images (all biases <5%). CONCLUSION The self-gating method yielded comparable cardiac cycle length, image quality, and ventricular measurements compared with standard ECG-gated cine imaging. It may simplify patient preparation, be more robust when there is arrhythmia, and allow cardiac gating at higher field strengths.
Collapse
Affiliation(s)
- Henrik von Kleist
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Informatics, Technical University of Munich, Garching, Germany.
| | - Martin Buehrer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Kwannapas Saengsin
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jamie K Harrington
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Eirich P, Wech T, Heidenreich JF, Stich M, Petri N, Nordbeck P, Bley TA, Köstler H. Cardiac real-time MRI using a pre-emphasized spiral acquisition based on the gradient system transfer function. Magn Reson Med 2020; 85:2747-2760. [PMID: 33270942 DOI: 10.1002/mrm.28621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Segmented Cartesian acquisition in breath hold represents the current gold standard for cardiac functional MRI. However, it is also associated with long imaging times and severe restrictions in arrhythmic or dyspneic patients. Therefore, we introduce a real-time imaging technique based on a spoiled gradient-echo sequence with undersampled spiral k-space trajectories corrected by a gradient pre-emphasis. METHODS A fully automatic gradient waveform pre-emphasis based on the gradient system transfer function was implemented to compensate for gradient inaccuracies, to optimize fast double-oblique spiral MRI. The framework was tested in a phantom study and subsequently transferred to compressed sensing-accelerated cardiac functional MRI in real time. Spiral acquisitions during breath hold and free breathing were compared with this reference method for healthy subjects (N = 7) as well as patients (N = 2) diagnosed with heart failure and arrhythmia. Left-ventricular volumes and ejection fractions were determined and analyzed using a Wilcoxon signed-rank test. RESULTS The pre-emphasis successfully reduced typical artifacts caused by k-space misregistrations. Dynamic cardiac imaging was possible in real time (temporal resolution < 50 ms) with high spatial resolution (1.34 × 1.34 mm2 ), resulting in a total scan time of less than 50 seconds for whole heart coverage. Comparable image quality, as well as similar left-ventricular volumes and ejection fractions, were observed for the accelerated and the reference method. CONCLUSION The proposed technique enables high-resolution real-time cardiac MRI with no need for breath holds and electrocardiogram gating, shortening the duration of an entire functional cardiac exam to less than 1 minute.
Collapse
Affiliation(s)
- Philipp Eirich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Manuel Stich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Dong Y, Pan Z, Wang D, Lv J, Fang J, Xu R, Ding J, Cui X, Xie X, Wang X, Chen, MD Y, Guo X. Prognostic Value of Cardiac Magnetic Resonance–Derived Right Ventricular Remodeling Parameters in Pulmonary Hypertension. Circ Cardiovasc Imaging 2020; 13:e010568. [DOI: 10.1161/circimaging.120.010568] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background
Cardiac right ventricular remodeling plays a substantial role in pathogenesis, progression, and prognosis of pulmonary hypertension. Cardiac magnetic resonance is considered an excellent tool for evaluation of right ventricle. However, value of right ventricular remodeling parameters derived from cardiac magnetic resonance in predicting adverse events is controversial.
Methods
The Pubmed (MEDLINE), Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure platform (CNKI), China Science and Technology Journal Database (VIP), and Wanfang databases were systematically searched until November 2019. Studies reporting hazard ratios (HRs) for all-cause death and composite end point of pulmonary hypertension were included. Univariate HRs were extracted from the included studies to calculate pooled HRs of each right ventricular remodeling parameter.
Results
Eight studies with 1120 patients examining all-cause death (female: 44%–92%, age: 40–67 years old, follow-up time: 27–48 months) and 10 studies with 604 patients examining composite end point (female: 60%–83%, age: 29–57 years old, follow-up time: 10–68 months) met the criteria. Right ventricular ejection fraction was the only parameter which could predict both all-cause death (pooled HR=0.95;
P
=0.014) and composite end point (pooled HR=0.95;
P
<0.001), although right ventricular end-diastolic volume index (pooled HR=1.01;
P
<0.001), right ventricular end-systolic volume index (pooled HR=1.01,
P
=0.045), and right ventricular mass index (pooled HR=1.03,
P
=0.032) only predicted composite outcome. Similar results were observed when we conducted the meta-analysis among patients with World Health Organization type I of pulmonary hypertension.
Conclusions
Cardiac magnetic resonance–derived right ventricular remodeling parameters have independent prognostic value for all-cause death and composite end point of patients with pulmonary hypertension. Right ventricular ejection fraction was the strongest prognostic factor among all the right ventricular remodeling parameters. Right ventricular mass index, right ventricular end-diastolic volume index, and right ventricular end-systolic volume index also demonstrated prognostic value.
Collapse
Affiliation(s)
- Yang Dong
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Juan Fang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Jie Ding
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Xiao Cui
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Xudong Xie
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| | - Yucheng Chen, MD
- Department of Cardiology, West China Hospital, Sichuan University (Y.C.)
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine (Y.D., Z.P., D.W., J.L., J.F., R.X., J.D., X.C., X.X., X.W., X.G.)
| |
Collapse
|
9
|
Rich A, Gregg M, Jin N, Liu Y, Potter L, Simonetti O, Ahmad R. CArtesian sampling with Variable density and Adjustable temporal resolution (CAVA). Magn Reson Med 2020; 83:2015-2025. [PMID: 31721303 PMCID: PMC7059985 DOI: 10.1002/mrm.28059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop a variable density Cartesian sampling method that allows retrospective adjustment of temporal resolution for dynamic MRI applications and to validate it in real-time phase contrast MRI (PC-MRI). THEORY AND METHODS The proposed method, called CArtesian sampling with Variable density and Adjustable temporal resolution (CAVA), begins by producing a sequence of phase encoding indices based on the golden ratio increment. Then, variable density is introduced by nonlinear stretching of the indices. Finally, the elements of the resulting sequence are rounded up to the nearest integer. The performance of CAVA is evaluated using PC-MRI data from a pulsatile flow phantom and real-time, free-breathing data from ten healthy volunteers. RESULTS CAVA enabled image recovery at various temporal resolutions that were selected retrospectively. For the pulsatile flow phantom, image quality and flow quantification accuracy from CAVA were comparable to that from another pseudo-random sampling pattern with fixed temporal resolution. In addition, flow quantification results based on CAVA were in good agreement with a breath-held segmented acquisition. CONCLUSIONS By allowing retrospective binning of the MRI data, CAVA provides an avenue to retrospectively adjust the temporal resolution of PC-MRI.
Collapse
Affiliation(s)
- Adam Rich
- Biomedical Engineering, The Ohio State University, Columbus OH, USA
| | - Michael Gregg
- Biomedical Engineering, The Ohio State University, Columbus OH, USA
- Electrical and Computer Engineering, The Ohio State University, Columbus OH, USA
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA Inc., Columbus OH USA
| | - Yingmin Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus OH, USA
| | - Lee Potter
- Electrical and Computer Engineering, The Ohio State University, Columbus OH, USA
| | - Orlando Simonetti
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus OH, USA
- Internal Medicine, The Ohio State University, Columbus OH, USA
- Radiology, The Ohio State University, Columbus OH, USA
| | - Rizwan Ahmad
- Biomedical Engineering, The Ohio State University, Columbus OH, USA
- Electrical and Computer Engineering, The Ohio State University, Columbus OH, USA
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus OH, USA
| |
Collapse
|
10
|
Kara D, Fan M, Hamilton J, Griswold M, Seiberlich N, Brown R. Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting. Magn Reson Med 2019; 81:3108-3123. [PMID: 30671999 PMCID: PMC6414267 DOI: 10.1002/mrm.27638] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE To introduce a quantitative tool that enables rapid forecasting of T1 and T2 parameter map errors due to normal and aliasing noise as a function of the MR fingerprinting (MRF) sequence, which can be used in sequence optimization. THEORY AND METHODS The variances of normal noise and aliasing artifacts in the collected signal are related to the variances in T1 and T2 maps through derived quality factors. This analytical result is tested against the results of a Monte-Carlo approach for analyzing MRF sequence encoding capability in the presence of aliasing noise, and verified with phantom experiments at 3 T. To further show the utility of our approach, our quality factors are used to find efficient MRF sequences for fewer repetitions. RESULTS Experimental results verify the ability of our quality factors to rapidly assess the efficiency of an MRF sequence in the presence of both normal and aliasing noise. Quality factor assessment of MRF sequences is in agreement with the results of a Monte-Carlo approach. Analysis of MRF parameter map errors from phantom experiments is consistent with the derived quality factors, with T1 (T2 ) data yielding goodness of fit R2 ≥ 0.92 (0.80). In phantom and in vivo experiments, the efficient pulse sequence, determined through quality factor maximization, led to comparable or improved accuracy and precision relative to a longer sequence, demonstrating quality factor utility in MRF sequence design. CONCLUSION The here introduced quality factor framework allows for rapid analysis and optimization of MRF sequence design through T1 and T2 error forecasting.
Collapse
Affiliation(s)
- Danielle Kara
- Physics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mingdong Fan
- Physics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jesse Hamilton
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mark Griswold
- Physics, Case Western Reserve University, Cleveland, Ohio, United States
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
- Radiology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
- Radiology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Robert Brown
- Physics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
11
|
Chassagnon G, Martin C, Ben Hassen W, Freche G, Bennani S, Morel B, Revel MP. High-resolution lung MRI with Ultrashort-TE: 1.5 or 3 Tesla? Magn Reson Imaging 2019; 61:97-103. [PMID: 31051201 DOI: 10.1016/j.mri.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To assess the influence of magnetic field strength and additionally of acquisition and reconstruction parameters on the quality of high-resolution lung MRI, using a prototype Ultrashort-TE (UTE) sequence. MATERIALS AND METHODS This prospective study received ethical approval and all participants provided written informed consent. From January to February 2018, images were obtained in 10 healthy volunteers at 1.5 T and 3 T with a prototypical free-breathing UTE spiral 3D-GRE sequence with volumetric interpolation (VIBE) sequence and near-millimeter resolution. Five sequences were acquired to assess the effects of magnetic field strength (1.5 vs 3 T), voxel resolution (1.2 vs 1.0mm3), number of spiral interleaves (464 vs 264) and iterative reconstruction (iterative self-consistent parallel imaging reconstruction [SPIRiT] versus Non-Uniform Fourier Transform [NUFFT]) on image quality. Image quality was assessed by two independent observers. They evaluated the proportion of detected airways from the trachea down to the subsegmental level and placed ROI in the lung parenchyma, airways and vessels to calculate signal-to noise (SNR) and contrast-to-noise (CNR) ratios. Continuous variables were expressed as mean ± standard deviation and were compared by t-test. RESULTS Nearly complete visualization of the segmental bronchi (94 ± 12 to 99 ± 3%) was obtained with all sequences. Acquisition at 3 T (p < 0.001), use of a fewer spiral interleaves (p < 0.001) and NUFFT reconstruction (p < 0.001) all resulted in a significantly lower visibility of the subsegmental bronchi, while a smaller voxel size improved their visibility (p = 0.001). SNR and CNR were significantly lower at 3 T (140.2 ± 19.9 vs 190.2 ± 34.8, p < 0.001; and 5.7 ± 2.4vs 10.8 ± 2.8, p < 0.001, respectively). CONCLUSIONS Using equivalent acquisition and reconstruction parameters, image quality was lower at 3 T than at 1.5 T with decreased visibility of the subsegmental bronchi and lower SNR and CNR values.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, 3 Rue Joliot Curie, 91190, Gif-sur-Yvette, France
| | - Charlotte Martin
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Wadie Ben Hassen
- Siemens Healthineers France, 40 avenue des fruitiers, 93210 Saint-Denis, France
| | - Gael Freche
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Souhail Bennani
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Baptiste Morel
- Radiology Department, Hopital Clocheville, CHU Tours, Université François Rabelais, 49 Boulevard Béranger, 37000 Tours, France
| | - Marie-Pierre Revel
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
12
|
Weller DS, Salerno M, Meyer CH. Content-aware compressive magnetic resonance image reconstruction. Magn Reson Imaging 2018; 52:118-130. [PMID: 29935257 PMCID: PMC6102097 DOI: 10.1016/j.mri.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/25/2022]
Abstract
This paper describes an adaptive approach to regularizing model-based reconstructions in magnetic resonance imaging to account for local structure or image content. In conjunction with common models like wavelet and total variation sparsity, this content-aware regularization avoids oversmoothing or compromising image features while suppressing noise and incoherent aliasing from accelerated imaging. To evaluate this regularization approach, the experiments reconstruct images from single- and multi-channel, Cartesian and non-Cartesian, brain and cardiac data. These reconstructions combine common analysis-form regularizers and autocalibrating parallel imaging (when applicable). In most cases, the results show widespread improvement in structural similarity and peak-signal-to-error ratio relative to the fully sampled images. These results suggest that this content-aware regularization can preserve local image structures such as edges while providing denoising power superior to sparsity-promoting or sparsity-reweighted regularization.
Collapse
Affiliation(s)
| | - Michael Salerno
- University of Virginia, Charlottesville, VA 22904, USA; University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Craig H Meyer
- University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
13
|
Kowalik GT, Steeden JA, Atkinson D, Montalt-Tordera J, Mortensen KH, Muthurangu V. Golden ratio stack of spirals for flexible angiographic imaging: Proof of concept in congenital heart disease. Magn Reson Med 2018; 81:90-101. [PMID: 29802643 DOI: 10.1002/mrm.27353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE In this study, a golden ratio stack of spiral (GRASS) sequence that used both golden step and golden angle ordering was implemented. The aim was to demonstrate that GRASS acquisitions could be flexibly reconstructed as both cardiac-gated and time-resolved angiograms. METHODS Image quality of time-resolved and cardiac-gated reconstructions of the GRASS sequence were compared to 3 conventional stack of spirals (SoS) acquisitions in an in silico model. In 10 patients, the GRASS sequence was compared to conventional breath hold angiography (BH-MRA) in terms of image quality and for vessel measurement. Vessel measurements were also compared to cine images. RESULTS In the cardiac-gated in silico model, the image quality of GRASS was superior to regular and golden-angle with regular step SoS approaches. In the time-resolved model, GRASS image quality was comparable to the golden-angle with regular step technique and superior to regular SoS acquisitions. In patients, there was no difference in qualitative image scores between GRASS and BH-MRA, but SNR was lower. There was good agreement in vessel measurements between the GRASS reconstructions and conventional MR techniques (BH-MRA: 29.8 ± 5.6 mm, time-resolved GRASS-MRA: 29.9 ± 5.4 mm, SSFP diastolic: 29.4 ± 5.8 mm, cardiac-gated GRASS-MRA diastolic: 29.5 ± 5.5 mm, P > 0.87). CONCLUSION We have demonstrated that the GRASS acquisition enables flexible reconstruction of the same raw data as both time-resolved and cardiac-gated volumes. This may enable better interrogation of anatomy in congenital heart disease.
Collapse
Affiliation(s)
- Grzegorz Tomasz Kowalik
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - Jennifer Anne Steeden
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - David Atkinson
- University College London, Centre for Medical Imaging, Wolfson House, London, United Kingdom
| | - Javier Montalt-Tordera
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | | | - Vivek Muthurangu
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom.,Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| |
Collapse
|
14
|
Dynamic magnetic resonance imaging method based on golden-ratio cartesian sampling and compressed sensing. PLoS One 2018; 13:e0191569. [PMID: 29381709 PMCID: PMC5790254 DOI: 10.1371/journal.pone.0191569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
Collapse
|
15
|
Ipsen S, Blanck O, Lowther NJ, Liney GP, Rai R, Bode F, Dunst J, Schweikard A, Keall PJ. Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery. Phys Med Biol 2016; 61:7848-7863. [DOI: 10.1088/0031-9155/61/22/7848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|