1
|
Gapais PF, Luong M, Giacomini E, Guillot J, Djaballah E, Gunamony S, Chu S, Hosseinnezhadian S, Amadon A. A 32-channel high-impedance honeycomb-shaped receive array for temporal lobes exploration at 11.7T. Magn Reson Med 2025; 93:433-447. [PMID: 39219305 DOI: 10.1002/mrm.30274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The newly operational 11.7T Iseult scanner provides an improved global SNR in the human brain. This gain in SNR can be pushed even further locally by designing region-focused dense receive arrays. The temporal lobes are particularly interesting to neuroscientists as they are associated with language and concept recognition. Our main goal was to maximize the SNR in the temporal lobes and provide high-acceleration capabilities for fMRI studies. METHODS We designed and developed a 32-channel receive array made of non-overlapped hexagonal loops. The loops were arranged in a honeycomb pattern and targeted the temporal lobes. They were placed on a flexible neoprene cap closely fitting the head. A new stripline design with a high impedance was proposed and applied for the first time at 11.7T. Specific homebuilt miniaturized low-impedance preamplifiers were directly mounted on the loops, providing preamplifier decoupling in a compact and modular design. Using an anatomical phantom, we experimentally compared the SNR and parallel imaging performance of the region-focused cap to a 32-channel whole-brain receive array at 11.7T. RESULTS The experimental results showed a 1.7-time higher SNR on average in the temporal lobes compared to the whole brain receive array. The g-factor is also improved when undersampling in the antero-posterior and head-foot directions. CONCLUSION A significant SNR boost in the temporal lobes was demonstrated at 11.7T compared to the whole-brain receive array. The parallel imaging capabilities were also improved in the temporal lobes in some acceleration directions.
Collapse
Affiliation(s)
- Paul-François Gapais
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
- Multiwave Technologies SAS, Marseille, France
| | - Michel Luong
- Paris-Saclay University, CEA, Irfu, DACM, Gif-sur-Yvette, France
| | - Eric Giacomini
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Jules Guillot
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Elias Djaballah
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
| | - Son Chu
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
| | | | - Alexis Amadon
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Shang Y, Simegn GL, Gillen K, Yang HJ, Han H. Advancements in MR hardware systems and magnetic field control: B 0 shimming, RF coils, and gradient techniques for enhancing magnetic resonance imaging and spectroscopy. PSYCHORADIOLOGY 2024; 4:kkae013. [PMID: 39258223 PMCID: PMC11384915 DOI: 10.1093/psyrad/kkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.
Collapse
Affiliation(s)
- Yun Shang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, United States
| | - Kelly Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Hsin-Jung Yang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
| | - Hui Han
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|
3
|
Motovilova E, Ching T, Vincent J, Tan ET, Taracila V, Robb F, Hashimoto M, Sneag DB, Winkler SA. Design and Dynamic In Vivo Validation of a Multi-Channel Stretchable Liquid Metal Coil Array. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3325. [PMID: 38998405 PMCID: PMC11243347 DOI: 10.3390/ma17133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Recent developments in the field of radiofrequency (RF) coils for magnetic resonance imaging (MRI) offer flexible and patient-friendly solutions. Previously, we demonstrated a proof-of-concept single-element stretchable coil design based on liquid metal and a self-tuning smart geometry. In this work, we numerically analyze and experimentally study a multi-channel stretchable coil array and demonstrate its application in dynamic knee imaging. We also compare our flexible coil array to a commonly used commercial rigid coil array. Our numerical analysis shows that the proposed coil array maintains its resonance frequency (<1% variation) and sensitivity (<6%) at various stretching configurations from 0% to 30%. We experimentally demonstrate that the signal-to-noise ratio (SNR) of the acquired MRI images is improved by up to four times with the stretchable coil array due to its conformal and therefore tight-fitting nature. This stretchable array allows for dynamic knee imaging at different flexion angles, infeasible with traditional, rigid coil arrays. These findings are significant as they address the limitations of current rigid coil technology, offering a solution that enhances patient comfort and image quality, particularly in applications requiring dynamic imaging.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | - Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
4
|
Narongrit FW, Ramesh TV, Rispoli JV. Stretching the Limits of MRI-Stretchable and Modular Coil Array Using Conductive Thread Technology. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:89613-89620. [PMID: 39026966 PMCID: PMC11257367 DOI: 10.1109/access.2024.3416869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Objective We propose a modular stretchable coil design using conductive threads and commercially available embroidery machines. The coil design increases customizability of coil arrays for individual patients and each body part. Methods Eight rectangular coils were constructed with custom-fabricated stretchable tinsel copper threads incorporated onto textile. Tune, match, and detune circuits were incorporated on the coil. A hook-and-loop mechanism was used to attach and decouple the modular coils. Phantom and in vivo scans at various anatomical flexion angles were acquired to highlight performance, and a temperature test was performed to verify safety. Results In vivo MRI experiments demonstrate high sensitivity and coverage of each anatomy. As the coils are stretched, the sensitive volume increases at a rate of 10.93 mL/cm2. The SNR reduction of a single coil was greater during compression than when stretched, but this did not affect image quality for the array. The modularity of the array allows for adaptability for any anatomy with simple on-demand adjustment to the number and position of coil elements. Conclusion The images demonstrated high sensitivity and coverage of the stretchable array for various anatomies and flexion angles. Stretching the coils increases the sensitive volume, allowing for a larger region to be effectively imaged. The resonance shift and SNR decrease during stretch and compression support further investigation of methods to reduce frequency shift in stretchable coils. Significance The proposed array design allows for highly stretchable, flexible, modular, and conformal patient-centered coils that allow for increased imaging quality, greater comfort, and rapid production.
Collapse
Affiliation(s)
- Folk W Narongrit
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Thejas Vishnu Ramesh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph V Rispoli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Vazquez R, Motovilova E, Winkler SA. Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3390. [PMID: 38894182 PMCID: PMC11174967 DOI: 10.3390/s24113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Collapse
Affiliation(s)
- Rigoberto Vazquez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Simone Angela Winkler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Vliem J, Xiao Y, Wenz D, Xin L, Teeuwise W, Ruytenberg T, Webb A, Zivkovic I. Twisted pair transmission line coil - a flexible, self-decoupled and robust element for 7 T MRI. Magn Reson Imaging 2024; 108:146-160. [PMID: 38364973 DOI: 10.1016/j.mri.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study evaluates the performance of a twisted pair transmission line coil as a transceive element for 7 T MRI in terms of physical flexibility, robustness to shape deformations, and interelement decoupling. METHODS Each coil element was created by shaping a twisted pair of wires into a circle. One wire was interrupted at the top, while the other was interrupted at the bottom, and connected to the matching circuit. Electromagnetic simulations were conducted to determine the optimal number of twists per length (in terms of B₁+ field efficiency, SAR efficiency, sensitivity to elongation, and interelement decoupling properties) and for investigating the fundamental operational principle of the coil through fields streamline visualisation. A comparison between the twisted pair coil and a conventional loop coil in terms of B₁+ fields, maxSAR₁₀g, and stability of S₁₁ when the coil was deformed was performed. Experimentally measured interelement coupling between individual elements of multichannel arrays was also investigated. RESULTS Increasing the number of twists per length resulted in a more physically robust coil. Poynting vector streamline visualisation showed that the twisted pair coil concentrated most of the energy in the near field. The twisted pair coil exhibited comparable B₁+ fields and improved maxSAR₁₀g to the conventional coil but demonstrated exceptional stability with respect to coil deformation and a strong self-decoupling nature when placed in an array configuration. DISCUSSION The findings highlight the robustness of the twisted pair coil, showcasing its stability under shape variations. This coil holds great potential as a flexible RF coil for various imaging applications using multiple-element arrays, benefiting from its inherent decoupling.
Collapse
Affiliation(s)
- Jules Vliem
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Wouter Teeuwise
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Thomas Ruytenberg
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
| |
Collapse
|
7
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
8
|
Motovilova E, Ching T, Vincent J, Shin J, Tan ET, Taracila V, Robb F, Hashimoto M, Sneag DB, Winkler SA. Dual-Channel Stretchable, Self-Tuning, Liquid Metal Coils and Their Fabrication Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:7588. [PMID: 37688046 PMCID: PMC10490642 DOI: 10.3390/s23177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | - Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - James Shin
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
9
|
Zhang B, Wang B, Ho J, Hodono S, Burke C, Lattanzi R, Vester M, Rehner R, Sodickson D, Brown R, Cloos M. Twenty-four-channel high-impedance glove array for hand and wrist MRI at 3T. Magn Reson Med 2022; 87:2566-2575. [PMID: 34971464 PMCID: PMC8847333 DOI: 10.1002/mrm.29147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.
Collapse
Affiliation(s)
- Bei Zhang
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Justin Ho
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shota Hodono
- Centre for Advanced Imaging, Queensland University, Brisbane, Australia
| | | | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - Daniel Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martijn Cloos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Centre for Advanced Imaging, Queensland University, Brisbane, Australia
| |
Collapse
|
10
|
Darnell D, Truong TK, Song AW. Recent Advances in Radio-Frequency Coil Technologies: Flexible, Wireless, and Integrated Coil Arrays. J Magn Reson Imaging 2022; 55:1026-1042. [PMID: 34324753 PMCID: PMC10494287 DOI: 10.1002/jmri.27865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Radio-frequency (RF) coils are to magnetic resonance imaging (MRI) scanners what eyes are to the human body. Because of their critical importance, there have been constant innovations driving the rapid development of RF coil technologies. Over the past four decades, the breadth and depth of the RF coil technology evolution have far exceeded the space allowed for this review article. However, these past developments have laid the very foundation on which some of the recent technical breakthroughs are built upon. Here, we narrow our focus on some of the most recent RF coil advances, specifically, on flexible, wireless, and integrated coil arrays. To provide a detailed review, we discuss the theoretical underpinnings, experimental implementations, promising results, as well as future outlooks covering these exciting topics. These recent innovations have greatly improved patient comfort and ease of scan, while also increasing the signal-to-noise ratio, image resolution, temporal throughput, and diagnostic and treatment accuracy. Together with advances in other MRI subfields, they will undoubtedly continue to drive the field forward and lead us to an ever more exciting future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dean Darnell
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Allen W. Song
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Motovilova E, Tan ET, Taracila V, Vincent JM, Grafendorfer T, Shin J, Potter HG, Robb FJL, Sneag DB, Winkler SA. Stretchable self-tuning MRI receive coils based on liquid metal technology (LiquiTune). Sci Rep 2021; 11:16228. [PMID: 34376703 PMCID: PMC8355233 DOI: 10.1038/s41598-021-95335-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Magnetic resonance imaging systems rely on signal detection via radiofrequency coil arrays which, ideally, need to provide both bendability and form-fitting stretchability to conform to the imaging volume. However, most commercial coils are rigid and of fixed size with a substantial mean offset distance of the coil from the anatomy, which compromises the spatial resolution and diagnostic image quality as well as patient comfort. Here, we propose a soft and stretchable receive coil concept based on liquid metal and ultra-stretchable polymer that conforms closely to a desired anatomy. Moreover, its smart geometry provides a self-tuning mechanism to maintain a stable resonance frequency over a wide range of elongation levels. Theoretical analysis and numerical simulations were experimentally confirmed and demonstrated that the proposed coil withstood the unwanted frequency detuning typically observed with other stretchable coils (0.4% for the proposed coil as compared to 4% for a comparable control coil). Moreover, the signal-to-noise ratio of the proposed coil increased by more than 60% as compared to a typical, rigid, commercial coil.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA ,grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Ek Tsoon Tan
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Victor Taracila
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | - Jana M. Vincent
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | | | - James Shin
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Hollis G. Potter
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | | | - Darryl B. Sneag
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Simone A. Winkler
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
12
|
Terekhov M, Elabyad IA, Schreiber LM. Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI. PLoS One 2021; 16:e0255341. [PMID: 34358243 PMCID: PMC8346258 DOI: 10.1371/journal.pone.0255341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
The development of novel multiple-element transmit-receive arrays is an essential factor for improving B1+ field homogeneity in cardiac MRI at ultra-high magnetic field strength (B0 > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B1+-field that is achievable without (or before) subject-specific B1+-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B1+-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B1+-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.
Collapse
Affiliation(s)
- Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Ibrahim A. Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M. Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
13
|
Nohava L, Czerny R, Roat S, Obermann M, Kuehne A, Frass-Kriegl R, Felblinger J, Ginefri JC, Laistler E. Flexible Multi-Turn Multi-Gap Coaxial RF Coils: Design Concept and Implementation for Magnetic Resonance Imaging at 3 and 7 Tesla. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1267-1278. [PMID: 33439836 DOI: 10.1109/tmi.2021.3051390] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.
Collapse
|
14
|
Custom, spray coated receive coils for magnetic resonance imaging. Sci Rep 2021; 11:2635. [PMID: 33514816 PMCID: PMC7846777 DOI: 10.1038/s41598-021-81833-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
We have developed a process for fabricating patient specific Magnetic Resonance Imaging (MRI) Radio-frequency (RF) receive coil arrays using additive manufacturing. Our process involves spray deposition of silver nanoparticle inks and dielectric materials onto 3D printed substrates to form high-quality resonant circuits. In this paper, we describe the material selection and characterization, process optimization, and design and testing of a prototype 4-channel neck array for carotid imaging. We show that sprayed polystyrene can form a low loss dielectric layer in a parallel plate capacitor. We also demonstrate that by using sprayed silver nanoparticle ink as conductive traces, our devices are still dominated by sample noise, rather than material losses. These results are critical for maintaining high Signal-to-Noise-Ratio (SNR) in clinical settings. Finally, our prototype patient specific coil array exhibits higher SNR (5 × in the periphery, 1.4 × in the center) than a commercially available array designed to fit the majority of subjects when tested on our custom neck phantom. 3D printed substrates ensure an optimum fit to complex body parts, improve diagnostic image quality, and enable reproducible placement on subjects.
Collapse
|
15
|
Delgado PR, Kuehne A, Periquito JS, Millward JM, Pohlmann A, Waiczies S, Niendorf T. B 1 inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magn Reson Med 2020; 84:2684-2701. [PMID: 32447779 DOI: 10.1002/mrm.28307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B 1 + ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.
Collapse
Affiliation(s)
- Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - João S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|