1
|
Rahangdale S, Deshmukh P, Sammeta S, Aglawe M, Kale M, Umekar M, Kotagale N, Taksande B. Agmatine modulation of gut-brain axis alleviates dysbiosis-induced depression-like behavior in rats. Eur J Pharmacol 2024; 981:176884. [PMID: 39134294 DOI: 10.1016/j.ejphar.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Depression is a global health concern affecting nearly 280 million individuals. It not only imposes a significant burden on economies and healthcare systems but also manifests complex physiological connections and consequences. Agmatine, a putative neuromodulator derived primarily from beneficial gut microbes specially Lactobacillus, has emerged as a potential therapeutic agent for mental health. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of agmatine. Therefore, this study aimed to investigate the potential mechanism of agmatine in antibiotic-induced dysbiosis and depression-like behavior in rats, focusing on its modulation of the gut-brain axis. Depression-like behavior associated with dysbiosis was induced through a seven-day regimen of the broad-spectrum antibiotic, comprising ampicillin and metronidazole and validated through microbial, biochemical, and behavioral alterations. On day 8, antibiotic-treated rats exhibited loose fecal consistency, altered fecal microbiota, and depression-like behavior in forced swim test. Pro-inflammatory cytokines were elevated, while agmatine and monoamine levels decreased in the hippocampus and prefrontal cortex. Antibiotic administration disrupted tight junction proteins in the ileum, affecting gut architecture. Oral administration of agmatine alone or combined with probiotics significantly reversed antibiotic-induced dysbiosis, restoring gut microbiota and mitigating depression-like behaviors. This intervention also restored neuro-inflammatory markers, increased agmatine and monoamine levels, and preserved gut integrity. The study highlights the regulatory role of endogenous agmatine in the gut-brain axis in broad-spectrum antibiotic induced dysbiosis and associated depression-like behavior.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Pankaj Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Manish Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S., 44604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India.
| |
Collapse
|
2
|
Niapour A, Abdollahzadeh M, Ghaheri Fard S, Saadati H. The therapeutic potential of 1, 25-dihydroxy vitamin D3 on cisplatin-affected neurological functions is associated with the regulation of oxidative stress and inflammatory markers as well as levels of MMP2/9. Metab Brain Dis 2024; 39:1189-1200. [PMID: 39017968 DOI: 10.1007/s11011-024-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Calcitriol as a biologically active form of vitamin D3 has beneficial effects on all body systems. This vitamin has a potent neuroprotective effect via several independent mechanisms against brain insults induced by anticancer drugs. The present study was designed to examine the neuroprotective effects of calcitriol against neurotoxicity induced by cisplatin. Induction of neurotoxicity was done with cisplatin administration (5 mg/kg/week) for 5 successive weeks in male Wistar rats. The neuroprotective influence of calcitriol supplementation (100ng/kg/day for 5 weeks) was assessed through behavioral, electrophysiological, and molecular experiments. Cisplatin administration impaired spatial learning and memory and decreased prefrontal brain-derived neurotrophic factor (BDNF). Peripheral sensory neuropathy was induced through cisplatin administration. Cisplatin also reduced the amplitudes of the compound action potential of sensory nerves in electrophysiological studies. Cisplatin treatment elevated MDA levels and reduced anti-oxidant (SOD and GPx) enzymes. Pro-inflammatory cytokines (IL-1β and TNF-α) and metalloproteinase-2 and 9 (MMP-2/9) were augmented through treatment with cisplatin. Learning and memory impairments along with BDNF changes caused by cisplatin were amended with calcitriol supplementation. Reduced sensory nerve conduction velocity in the cisplatin-treated group was improved by calcitriol. Calcitriol partially improved redox imbalance and diminished the pro-inflammatory cytokines and MMP-2/9 levels. Our findings showed that calcitriol supplementation can relieve cisplatin-induced peripheral neurotoxicity. Calcitriol can be regarded as a promising new neuroprotective agent.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri Fard
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
4
|
Naik S, Katariya R, Shelke S, Patravale V, Umekar M, Kotagale N, Taksande B. Nattokinase prevents β-amyloid peptide (Aβ 1-42) induced neuropsychiatric complications, neuroinflammation and BDNF signalling disruption in mice. Eur J Pharmacol 2023; 952:175821. [PMID: 37263404 DOI: 10.1016/j.ejphar.2023.175821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular β-amyloid (Aβ) plaques and neuronal damage. Although AD is typically considered a cognitive neurodegenerative disorder, almost all people diagnosed with AD develop neuropsychiatric complications at some stage in their life span. The present study investigated the effect of chronic Nattokinase (NK) administration on β-Amyloid peptide (Aβ1-42) induced neuropsychiatric conditions (depression-like behaviour, anxiety, and memory impairment) in mice. Aβ1-42 peptide injected mice demonstrated depression, anxiety, and impairment of cognitive abilities evaluated as increased immobility time in forced swim test (FST), decreased open arm time/entries in elevated plus maze (EPM) and reference and working memory error in radial arm maze (RAM) respectively with elevation in Interleukin-6 (IL-6), Tumour necrosis factor-α (TNF-α), reduction in Interleukin-10 (IL-10) and Brain-derived neurotrophic factor (BDNF) immunocontent within the hippocampus. Chronic administration of NK (50-100 mg/kg, i.p.) from day 8-27, prevented depression-like behaviour, anxiety, and memory impairment and normalized the neurochemical alteration within the hippocampus of mice injected with Aβ1-42 peptide. The effect of NK on psychiatric complications, learning, and memory was comparable to peripheral donepezil treatment. This study suggests that NK improves learning, memory impairment, and neuropsychiatric complications possibly through the downregulation of neuroinflammatory pathways and restoring BDNF signalling in AD.
Collapse
Affiliation(s)
- Shivraj Naik
- Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Raj Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Shraddha Shelke
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Vandana Patravale
- Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS, 444604, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India.
| |
Collapse
|
5
|
Kotagale N, Rahangdale S, Borkar A, Singh K, Ikhar A, Takale N, Umekar M, Taksande B. Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur J Pharmacol 2021; 907:174255. [PMID: 34129880 DOI: 10.1016/j.ejphar.2021.174255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
The risk of psychiatric and neurological disorders is significantly higher in patients with diabetes mellitus. Diabetic patients are more susceptible to depression, anxiety and memory impairment as compared with non-diabetic individuals. Metformin, a biguanide used for the management of type 2 diabetes mellitus (T2DM), promotes neurogenesis, enhances spatial memory function and protects the brain against oxidative imbalance beyond its effect on glucose metabolism. However, the exact mechanism of its neuropharmacological actions in T2DM is not known. We investigated the role of the agmatinergic system in neuropharmacological actions of metformin in diabetic mice. Diabetes was induced by the streptozotocin (STZ) injection and confirmed by high blood glucose levels. After 28 days, STZ treated mice exhibited memory impairment in radial arm maze, depression-like behavior in forced swim test and anxiety-like behavior in elevated plus maze along with increased expression of pro-inflammatory cytokines like TNF-α, IL-1β, IL-6, IL-10 also, reduced agmatine and BDNF levels in the hippocampus and prefrontal cortex compared to the control animals. Metformin and agmatine alone or in combination, by once-daily administration during 14-27 day of the protocol significantly reversed the STZ induced high blood glucose levels, memory impairment, depression and anxiety-like behaviors. It also reduced neuro-inflammatory markers and increased agmatine and BDNF levels in the hippocampus and prefrontal cortex. The present study suggests the importance of endogenous agmatine in the neuropharmacological action of metformin in diabetic mice. The data projects agmatine and metformin combination as a potential therapeutic strategy for diabetes associated memory impairment, depression, anxiety, and other comorbidities.
Collapse
Affiliation(s)
- Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India; Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Anjali Borkar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Kundan Singh
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Abhilasha Ikhar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Nikita Takale
- Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India.
| |
Collapse
|
6
|
Naderipoor P, Amani M, Abedi A, Sakhaie N, Sadegzadeh F, Saadati H. Alterations in the behavior, cognitive function, and BDNF level in adult male rats following neonatal blockade of GABA-A receptors. Brain Res Bull 2021; 169:35-42. [PMID: 33440220 DOI: 10.1016/j.brainresbull.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the mature brain. At an early developmental period, it acts in an excitatory manner that influences many processes of proliferation, migration, and differentiation of the neurons. Previous evidence indicated that manipulation of the GABAergic system function by activation or blockade of its receptors during developmental periods leads to behavioral and cognitive abnormality in adulthood. Therefore, we examined the effects of neonatal blockade of GABA-A receptors by bicuculline on behavior, cognitive function, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factors level (BDNF) in adulthood. As a result, neonatal rats were treated with either bicuculline (75,150, and 300 μg/kg) or DMSO on postnatal days 7,9, and 11. These groups underwent the behavioral (open field, elevated plus maze, and hot plate) and learning and memory (passive avoidance learning and memory) tests in postnatal days (PNDs) 61-70. After the ending of the behavioral tests, the rats were sacrificed under deep anesthesia and the hippocampi and prefrontal cortex (PFC) of the brain were removed for assessing the BDNF mRNA expression. Our results indicated that neonatal administration of bicuculline at the highest dose increased passive avoidance memory and hippocampal BDNF level. Meanwhile, this drug at a low dose impaired this type of memory and increased PFC BDNF level. Besides, treatment with bicuculline during postnatal days increased anxiety and pain sensitivity in a dose-dependent manner. Taken together, these findings confirmed the notion that GABA-A receptors during the developmental period are important for programming neurobehavioral phenotypes in adult life.
Collapse
Affiliation(s)
- Parviz Naderipoor
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Abedi
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Shen J, Lin L, Liao L, Liang W, Yang X, Lin K, Ke L, Zhang L, Kang J, Ding S, Li C, Zheng Z. The involvement of Notch1 signaling pathway in mid-aged female rats under chronic restraint stress. Neurosci Lett 2020; 738:135313. [PMID: 32827575 DOI: 10.1016/j.neulet.2020.135313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Women are vulnerable to adverse stress events, especially during perimenopause. Substantial evidence has associated the impaired neuronal plasticity with abnormal behaviors under stressful conditions in animals. The Notch signaling pathway is critical for neuronal plasticity in the structure and function of brain areas. In this study, the mid-aged female rats were subjected to chronic restraint stress(CRS) in combination with isolated rearing for 6 weeks. The behavior tests and HPA activity were conducted to evaluate the model. The mRNA and protein levels of Notch1 signaling related genes in the hippocampus(HIP) and prefrontal cortex(PFC) were analyzed by RT-qPCR and western blotting. The promoter methylation levels were measured by bisulfite sequencing PCR analysis. CRS induced depression-like and anxiety-like behaviors in mid-aged stressed females, as shown by decreased locomotor activity, sucrose consumption and increased HPA activity. Moreover, after CRS, the rats exhibited decreased mRNA and protein levels in Jagged1, Notch1 and Hes5 in the HIP and Notch1, Hes1 and Hes5 in the PFC. However, there were no significant promotor methylation changes between the stressed and control female rats. These findings suggest that Notch1 signaling pathway may contribute to the behavioral changes following CRS in mid-aged female rats and the upstream cause of the gene expression changes needs to be further investigated.
Collapse
Affiliation(s)
- Jianying Shen
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Ling Lin
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Linghong Liao
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Wenna Liang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Xiaoting Yang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Kaimin Lin
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Long Ke
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Lingyuan Zhang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Jie Kang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Shanshan Ding
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Candong Li
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Zhihong Zheng
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
8
|
Sakhaie N, Sadegzadeh F, Dehghany R, Adak O, Hakimeh S. Sex-dependent effects of chronic fluoxetine exposure during adolescence on passive avoidance memory, nociception, and prefrontal brain-derived neurotrophic factor mRNA expression. Brain Res Bull 2020; 162:231-236. [DOI: 10.1016/j.brainresbull.2020.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
|
9
|
Involvement of hippocampal agmatine in β1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice. Neurotoxicology 2020; 80:1-11. [DOI: 10.1016/j.neuro.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
|
10
|
Shen J, Lin L, Liao L, Liang W, Yang X, Lin K, Ke L, Zhang L, Kang J, Ding S, Li C, Zheng Z. WITHDRAWN: The Involvement of Notch1 Signaling Pathway in Mid-aged Female Rats under Chronic Restraint Stress. Neurosci Lett 2020:135244. [PMID: 32652209 DOI: 10.1016/j.neulet.2020.135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jianying Shen
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Ling Lin
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Linghong Liao
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Wenna Liang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Xiaoting Yang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Kaimin Lin
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Long Ke
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Lingyuan Zhang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jie Kang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Shanshan Ding
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Candong Li
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Zhihong Zheng
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
11
|
Effects of exposure to enriched environment during adolescence on passive avoidance memory, nociception, and prefrontal BDNF level in adult male and female rats. Neurosci Lett 2020; 732:135133. [DOI: 10.1016/j.neulet.2020.135133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022]
|
12
|
Wang H, Li JT, Zhang Y, Liu R, Wang XD, Si TM, Su YA. Prenatal Exposure to Antipsychotics Disrupts the Plasticity of Dentate Neurons and Memory in Adult Male Mice. Int J Neuropsychopharmacol 2018; 22:71-82. [PMID: 30169628 PMCID: PMC6313132 DOI: 10.1093/ijnp/pyy073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND With the growing use of second-generation antipsychotics for the treatment of a spectrum of psychiatric illnesses in pregnancy, concerns have been raised about the long-term impact of these medications on offspring neurodevelopment. However, preclinical and clinical evidence on the lasting effects of prenatal antipsychotic exposure is still sparse. METHODS Risperidone, a widely used second-generation antipsychotic, and haloperidol, a representative first-generation antipsychotic, were administered to pregnant C57BL/6N mice from embryonic day 6 to 16. Behavioral tests, immunohistochemical staining, Golgi-Cox technique, and western blot were used to determine the effects of prenatal antipsychotic exposure on the plasticity of the dentate gyrus and related behavior in adult male mice. RESULTS Both prenatal haloperidol- and risperidone-exposed mice showed recognition memory deficits but had no anxiety-related behavior. In addition, both prenatal haloperidol and risperidone exposure impaired the proliferation and maturation of adult-born dentate granule cells. We found that haloperidol exposure decreased dendritic length of dentate granule cells, while risperidone had no effect. However, both drugs inhibited dendrite branching in granule cells. Haloperidol exposure also significantly reduced total spine density in the middle dendritic segment of dentate gyrus. Prenatally risperidone-exposed mice only displayed a loss in thin and mushroom spines of infrapyramidal blade of dentate gyrus. Collectively, prenatal haloperidol exposure exerted more robust negative effects than risperidone. CONCLUSION These data provide evidence for the long-term programming effects of early-life exposure to antipsychotics on hippocampal plasticity and behavior.
Collapse
Affiliation(s)
- Han Wang
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yue Zhang
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Rui Liu
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China,Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Mei Si
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,Correspondence: Yun-Ai Su, PhD, MD () and Tian-Mei Si (), Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University), and National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health, (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,Correspondence: Yun-Ai Su, PhD, MD () and Tian-Mei Si (), Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University), and National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Li J, Xie X, Li Y, Liu X, Liao X, Su YA, Si T. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats. Front Mol Neurosci 2017; 10:25. [PMID: 28210212 PMCID: PMC5288376 DOI: 10.3389/fnmol.2017.00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a critical period with ongoing maturational processes in stress-sensitive systems. While adolescent individuals show heightened stress-induced hormonal responses compared to adults, it is unclear whether and how the behavioral and neurobiological consequences of chronic stress would differ between the two age groups. Here we address this issue by examining the effects of chronic exposure to the stress hormone, corticosterone (CORT), in both adolescent and adult animals. Male Sprague-Dawley (SD) rats were injected intraperitoneally with CORT (40 mg/kg) or vehicle for 21 days during adolescence (post-natal day (PND) 29–49) or adulthood (PND 71–91) and then subjected to behavioral testing or sacrifice for western blot analyses. Despite of similar physical and neuroendocrine effects in both age groups, chronic CORT treatment produced a series of behavioral and neurobiological effects with striking age differences. While CORT-treated adult animals exhibited decreased sucrose preference, increased anxiety levels and cognitive impairment, CORT-treated adolescent animals demonstrated increased sucrose preference, decreased anxiety levels, and increased sensorimotor gating functions. These differential behavioral alterations were accompanied by opposite changes in the two age groups in the expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylation of the obligatory subunit of the NMDA receptor, GluN1, and PSD-95 in rat hippocampus. These results suggest that prolonged glucocorticoid exposure during adolescence produces different behavioral and neurobiological effects from those in adulthood, which may be due to the complex interaction between glucocorticoids and the ongoing neurodevelopmental processes during this period.
Collapse
Affiliation(s)
- Jitao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Xiaomeng Xie
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Youhong Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Xiao Liu
- Department of Psychiatry and Mental Health, North China University of Science and Technology Tangshan, China
| | - Xuemei Liao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Tianmei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| |
Collapse
|
14
|
Li JT, Su YA, Wang HL, Zhao YY, Liao XM, Wang XD, Si TM. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci 2016; 9:17. [PMID: 26973457 PMCID: PMC4776083 DOI: 10.3389/fnmol.2016.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.
Collapse
Affiliation(s)
- Ji-Tao Li
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Ying-Ying Zhao
- Depression Treatment Center, Beijing Anding Hospital of Capital Medical University Beijing, China
| | - Xue-Mei Liao
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine Hangzhou, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| |
Collapse
|
15
|
Fernandez GM, Stewart WN, Savage LM. Chronic Drinking During Adolescence Predisposes the Adult Rat for Continued Heavy Drinking: Neurotrophin and Behavioral Adaptation after Long-Term, Continuous Ethanol Exposure. PLoS One 2016; 11:e0149987. [PMID: 26930631 PMCID: PMC4773001 DOI: 10.1371/journal.pone.0149987] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
Abstract
Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in spatial working memory, non-spatial discrimination learning and behavioral flexibility were explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH exposure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed at different time-points: during CET, following acute abstinence (48-hrs), and after protracted abstinence (6-8 wks). Our results revealed that an adolescent onset of CET leads to increased EtOH consumption that persisted into adulthood. In both adult and adolescent onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alternation, was not significantly affected by CET as a function of age of drinking onset, but higher blood-EtOH levels were correlated with lower spontaneous alternation scores. Regardless of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that adolescent EtOH exposure changes long-term consumption patterns producing behavioral and neural dysfunctions that persist across the lifespan.
Collapse
Affiliation(s)
- Gina M. Fernandez
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - William N. Stewart
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| |
Collapse
|
16
|
Cui W, Zhang Y, Lu D, Ren M, Yuan G. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy. Mol Med Rep 2015; 13:543-9. [PMID: 26549420 DOI: 10.3892/mmr.2015.4507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Weigang Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yinghua Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Derong Lu
- Department of Internal Digestive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mingxin Ren
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guoyan Yuan
- Department of Neurosurgery, The First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
17
|
Enhanced interaction among ErbB4, PSD-95 and NMDAR by chronic MK-801 treatment is associated with behavioral abnormalities. Pharmacol Biochem Behav 2013; 108:44-53. [DOI: 10.1016/j.pbb.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/04/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022]
|
18
|
Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, Liu X, Yan F, Zou C, Sun C, Shi J, Lu S, Chen Y. Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound. PLoS One 2012; 7:e52925. [PMID: 23300823 PMCID: PMC3531370 DOI: 10.1371/journal.pone.0052925] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/22/2012] [Indexed: 02/03/2023] Open
Abstract
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Youli Cai
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Chengyu Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shukun Lu
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- * E-mail:
| |
Collapse
|
19
|
Terry AV, Beck WD, Warner S, Vandenhuerk L, Callahan PM. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate. Neurotoxicol Teratol 2011; 34:1-8. [PMID: 22024239 DOI: 10.1016/j.ntt.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
20
|
Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 2011; 31:6692-8. [PMID: 21543598 DOI: 10.1523/jneurosci.6631-10.2011] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.
Collapse
|
21
|
Terry AV, Buccafusco JJ, Gearhart DA, Beck WD, Middlemore-Risher ML, Truan JN, Schwarz GM, Xu M, Bartlett MG, Kutiyanawala A, Pillai A. Repeated, intermittent exposures to diisopropylfluorophosphate in rats: protracted effects on cholinergic markers, nerve growth factor-related proteins, and cognitive function. Neuroscience 2010; 176:237-53. [PMID: 21185910 DOI: 10.1016/j.neuroscience.2010.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 11/18/2022]
Abstract
Organophosphates (OPs) pose a constant threat to human health due to their widespread use as pesticides and their potential employment in military and terrorist attacks. The acute toxicity of OPs has been extensively studied; however, the consequences of prolonged or repeated exposure to levels of OPs that produce no overt signs of acute toxicity (i.e. subthreshold levels) are poorly understood. Further, there is clinical evidence that such repeated exposures to OPs lead to prolonged deficits in cognition, although the mechanism for this effect is unknown. In this study, the behavioral and neurochemical effects of repeated, intermittent, and subthreshold exposures to the alkyl OP, diisopropylfluorophosphate (DFP) were investigated. Rats were injected with DFP s.c. (dose range, 0.25-1.0 mg/kg) every other day over the course of 30 days, and then given a 2 week, DFP-free washout period. In behavioral experiments conducted at various times during the washout period, dose dependent decrements in a water maze hidden platform task and a spontaneous novel object recognition (NOR) procedure were observed, while prepulse inhibition of the acoustic startle response was unaffected. There were modest decreases in open field locomotor activity and grip strength (particularly during the DFP exposure period); however, rotarod performance and water maze swim speeds were not affected. After washout, DFP concentrations were minimal in plasma and brain, however, cholinesterase inhibition was still detectable in the brain. Moreover, the 1.0 mg/kg dose of DFP was associated with (brain region-dependent) alterations in nerve growth factor-related proteins and cholinergic markers. The results of this prospective animal study thus provide evidence to support two novel hypotheses: (1) that intermittent, subthreshold exposures to alkyl OPs can lead to protracted deficits in specific domains of cognition and (2) that such cognitive deficits may be related to persistent functional changes in brain neurotrophin and cholinergic pathways.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Terry AV, Kutiyanawalla A, Pillai A. Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats. Physiol Behav 2010; 102:149-57. [PMID: 21059364 DOI: 10.1016/j.physbeh.2010.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
The objective of this study was to evaluate the effects of aging on the performance of specific memory-related tasks in rats as well as to determine the levels of several nerve growth factor (NGF)-related proteins in relevant brain regions. The results indicated age-related impairments in spatial learning in a water maze task as well as deficits in recognition memory in a Spontaneous Novel Object Recognition task. In the prefrontal cortex and hippocampus, aged rats (compared to young controls) had elevated levels of the proneurotrophin, proNGF (+1.8-1.9 fold), p75(NTR) receptors (+1.6-1.8 fold) and sortilin (+1.8-2.1 fold), and decreased levels of mature NGF (-36 to 44%), and phospho-TrkA receptors (-45 to 49%). The results of this study support the argument that NGF signaling is altered in the aging brain, and that such alterations may contribute to an age-related decline in cognitive function. These results may also help to identify specific components of the NGF-signaling pathway that could serve as targets for novel drug discovery and development for age-related disorders of cognition (e.g., Alzheimer's disease).
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, United States.
| | | | | |
Collapse
|
23
|
Chronic antipsychotic treatment: protracted decreases in phospho-TrkA levels in the rat hippocampus. Int J Neuropsychopharmacol 2010; 13:799-805. [PMID: 20059802 PMCID: PMC4400726 DOI: 10.1017/s1461145709991040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is growing evidence of neurotrophin alterations in neuropsychiatric illnesses such as schizophrenia and further, neurotransmitters known to be adversely affected in schizophrenia (e.g. dopamine) can activate neurotrophin signalling pathways via G protein-coupled receptors. However, it is unclear how the primary therapeutic agents used in schizophrenia affect neurotrophin signalling. This is important given that all currently prescribed antipsychotic drugs serve as ligands at dopamine receptors. In this study, chronic effects of representative conventional and second-generation antipsychotics on nerve growth factor (NGF) receptor levels were assessed in the rat. The results indicated no significant drug effects on TrkA levels in any brain region analysed; however, three of the five antipsychotics analysed significantly decreased phospho-TrkA (i.e. the activated form of the receptor) in the hippocampus. These data indicate that chronic antipsychotic treatment may result in deleterious effects on neurotrophin signalling in an important brain region for information processing and cognition.
Collapse
|
24
|
Expressions of neuregulin 1beta and ErbB4 in prefrontal cortex and hippocampus of a rat schizophrenia model induced by chronic MK-801 administration. J Biomed Biotechnol 2010; 2010:859516. [PMID: 20467458 PMCID: PMC2864910 DOI: 10.1155/2010/859516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
Recent human genetic studies and postmortem brain examinations of schizophrenia patients strongly indicate that dysregulation of NRG1 and ErbB4 may be important pathogenic factors of schizophrenia. However, this hypothesis has not been validated and fully investigated in animal models of schizophrenia. In this study we quantitatively examined NRG1 and ErbB4 protein expressions by immunohistochemistry and Western blot in the brain of a rat schizophrenia model induced by chronic administration of MK-801 (a noncompetitive NMDA receptor antagonist). Our data showed that NRG1β and ErbB4 expressions were significantly increased in the rat prefrontal cortex and hippocampus but in different subregions. These findings suggest that altered expressions of NRG1 and ErbB4 might be attributed to the schizophrenia. Further study in the role and mechanism of NRG1 and ErbB4 may lead to better understanding of the pathophysiology for this disorder.
Collapse
|
25
|
Cao F, Gao F, Xu AJ, Chen ZJ, Chen SS, Yang H, Yu HH, Mei W, Liu XJ, Xiao XP, Yang SB, Tian XB, Wang XR, Tian YK. Regulation of spinal neuroimmune responses by prolonged morphine treatment in a rat model of cancer induced bone pain. Brain Res 2010; 1326:162-73. [PMID: 20176002 DOI: 10.1016/j.brainres.2010.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/15/2022]
|
26
|
Repeated exposures to low-level chlorpyrifos results in impairments in sustained attention and increased impulsivity in rats. Neurotoxicol Teratol 2010; 32:415-24. [PMID: 20350597 DOI: 10.1016/j.ntt.2010.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/10/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Organophosphates such as chlorpyrifos (CPF) are among the most commonly used pesticides in the world. Therefore, it is not surprising that measurable levels of organophosphates (including CPF) are found in over 50% of fresh fruits, vegetables and grains that we consume and that approximately 80% of adults in the US have detectable levels of CPF metabolites in their urine. It is well known that acute exposure to organophosphates can cause cognitive deficits; however, the effects of daily or intermittent contact with low levels of organophosphates (often reflective of environmental exposures) are not well understood. The objective of this study was to determine if repeated low-level exposures to CPF impaired the performance of the 5-Choice Serial Reaction Time Task (5C-SRTT), an animal model of sustained attention. Adult rats were trained to stably perform the 5C-SRTT, then treated with vehicle or CPF 18.0 mg/kg daily for 14 consecutive days or every other day for 30 days. Behavioral testing occurred daily during the CPF-exposure period and throughout a 30 day washout period to assess recovery. All CPF-treated animals exhibited deficits in percent correct, an increase in omissions and premature responses without signs of impaired motivation or overt toxicity. Deficits in 5C-SRTT accuracy were apparent well into the 30 day washout period despite significant recovery of cholinesterase activity. These results indicate that repeated exposures to relatively low levels of chlorpyrifos lead to protracted impairments of sustained attention and an increase in impulsive behaviors in rats.
Collapse
|
27
|
Evaluation of side effects through selective ablation of the mu opioid receptor expressing descending nociceptive facilitatory neurons in the rostral ventromedial medulla with dermorphin–saporin. Neurotoxicology 2009; 30:1096-106. [DOI: 10.1016/j.neuro.2009.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/29/2009] [Accepted: 06/12/2009] [Indexed: 12/22/2022]
|
28
|
Bohacek J, Bearl AM, Daniel JM. Long-term ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate choline acetyltransferase protein levels in the hippocampus and prefrontal cortex of middle-aged rats. J Neuroendocrinol 2008; 20:1023-7. [PMID: 18540996 DOI: 10.1111/j.1365-2826.2008.01752.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of oestrogen replacement therapy in preventing or delaying age-associated cognitive decline is controversial. Therapy success may critically depend on the time of treatment initiation following cessation of ovarian function. The present study aimed to assess, in middle-aged rats, whether the ability of oestradiol to modulate the cholinergic system depends on the timing of treatment initiation following ovariectomy. Using western blotting, protein levels of choline acetyltransferase (ChAT) were measured in the hippocampus and prefrontal cortex (PFC), which are both important areas with respect to cognitive function. In an initial experiment, we established the effects of oestradiol delivered via implanted capsules on ChAT levels in the hippocampus and PFC of young adult animals. In a second experiment, we tested the ability of the same oestradiol treatment paradigm to affect ChAT protein in 15-month-old middle-aged rats that had been ovariectomised either at the age of 10 months or at 15 months. In both experiments, rats were sacrificed 10 days after receiving implants and ChAT protein levels were measured. In both young adult and middle-aged animals, oestradiol treatment initiated immediately after ovariectomy significantly increased ChAT levels in the hippocampus but not in the PFC compared to cholesterol control treatment. However, when oestradiol treatment was initiated 5 months after ovariectomy, it failed to significantly increase ChAT levels in the hippocampus, but did so in the PFC. These data indicate that, after prolonged ovarian hormone deprivation, the ability of subsequent oestradiol treatment to modulate ChAT protein levels is altered in a site-specific manner.
Collapse
Affiliation(s)
- J Bohacek
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
29
|
Chronic antipsychotic drug administration alters the expression of neuregulin 1beta, ErbB2, ErbB3, and ErbB4 in the rat prefrontal cortex and hippocampus. Int J Neuropsychopharmacol 2008; 11:553-61. [PMID: 18184445 DOI: 10.1017/s1461145707008371] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Neuregulin 1 (NRG1) has been identified as a susceptibility gene for schizophrenia, and dysregulation of NRG1 and its ErbB receptors is implicated in the pathophysiology of the disorder. The present study examined the protein expression levels of NRG1beta, ErbB2, ErbB3 and ErbB4 in the rat prefrontal cortex and hippocampus following a 4-wk administration of haloperidol (1 mg/kg i.p.), clozapine (10 mg/kg i.p.), or risperidone (1 mg/kg i.p.) by using immunohistochemistry and Western blot. The results showed that haloperidol promoted the expression of NRG1beta and ErbB4, whereas clozapine inhibited NRG1beta expression in the rat prefrontal cortex. Both haloperidol and clozapine significantly increased the protein levels of NRG1beta and ErbB receptors in the rat hippocampus. Repeated administration of risperidone only increased the expression of NRG1beta and ErbB4 in the hippocampus. Our findings demonstrate that antipsychotic drugs differentially regulate the expression of NRG1 and ErbB receptors in the rat brain, which may provide insight into the molecular basis of the pharmacological profile of antipsychotic drugs.
Collapse
|
30
|
Terry AV, Gearhart DA, Warner S, Hohnadel EJ, Middlemore ML, Zhang G, Bartlett MG, Mahadik SP. Protracted effects of chronic oral haloperidol and risperidone on nerve growth factor, cholinergic neurons, and spatial reference learning in rats. Neuroscience 2007; 150:413-24. [PMID: 17942237 DOI: 10.1016/j.neuroscience.2007.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/10/2007] [Accepted: 09/11/2007] [Indexed: 11/26/2022]
Abstract
The primary therapeutic agents used for schizophrenia, antipsychotic drugs, ameliorate psychotic symptoms; however, their chronic effects on cognition (or the physiologic processes of the brain that support cognition) are largely unknown. The purpose of this rodent study was to extend our previous work on this subject by investigating persistent effects (i.e. during a 14 day drug-free washout period) of chronic treatment (i.e. ranging from 45 days to 6 months) with a representative first and second generation antipsychotic. Drug effects on learning and memory and important neurobiological substrates of memory, the neurotrophin, nerve growth factor (NGF) and its receptors, and certain components of the basal forebrain cholinergic system were investigated. Behavioral effects of oral haloperidol (2.0 mg/kg/day), or risperidone (2.5 mg/kg/day) were assessed in an open field, a water maze task, and a radial arm maze procedure and neurochemical effects in brain tissue were subsequently measured by enzyme-linked immunosorbent assays (ELISAs). The results indicated that both antipsychotics produced time-dependent and protracted deficits in the performance of a water maze procedure when compared with vehicle-treated controls, while neither drug was associated with significant alterations in radial arm maze performance. Interestingly, haloperidol, but not risperidone, was detectible in the rodent brain in appreciable levels for up to 2 weeks after drug discontinuation. Both antipsychotics were also associated with reduced levels of NGF protein in the basal forebrain and prefrontal cortex and significant (or nearly significant) decreases in phosphorylated tropomyosin-receptor kinase A (TrkA) protein and the vesicular acetylcholine transporter (depending on the brain region analyzed). Neither antipsychotic markedly affected TrkA or p75 neurotrophin receptor levels. These data in rats indicate that chronic treatment with either haloperidol or risperidone may be associated with protracted negative effects on cognitive function as well as important neurotrophin and neurotransmitter pathways that support cognition.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, CB-3618, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA 30912-2300, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Buckley PF, Mahadik S, Pillai A, Terry A. Neurotrophins and schizophrenia. Schizophr Res 2007; 94:1-11. [PMID: 17524622 DOI: 10.1016/j.schres.2007.01.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
Neurotrophins have established roles in neuronal development, synaptogenesis, and response to stress/anxious stimuli. Moreover, these agents are neuromodulators of monoaminergic, GABAergic, and cholinergic systems. Amidst a growing appreciation of the developmental neurobiology of schizophrenia--as well as the propensity for progressive brain changes--there is emergent information on abnormalities in the expression of neurotrophins in schizophrenia. This article reviews the literature on neurotrophins and schizophrenia. A schema for understanding the neurobiology of relapse in schizophrenia is offered.
Collapse
Affiliation(s)
- Peter F Buckley
- Department of Psychiatry and Health Behavior, Medical College of Georgia, 1515 Pope Avenue, Augusta, Georgia 30912, United States.
| | | | | | | |
Collapse
|
32
|
Terry AV, Gearhart DA. Time dependent decreases in central alpha7 nicotinic acetylcholine receptors associated with haloperidol and risperidone treatment in rats. Eur J Pharmacol 2007; 571:29-32. [PMID: 17601556 PMCID: PMC2084358 DOI: 10.1016/j.ejphar.2007.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/29/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Alpha(7) nicotinic acetylcholine receptor deficits may contribute to cognitive dysfunction in schizophrenia; however, the contribution of antipsychotic drug exposure to these deficits is unknown. In this study, rats were treated orally with haloperidol (2.0 mg/kg/day) or risperidone (2.5 mg/kg/day) for 15 or 90 days. Subsequent immunoassays indicated that both antipsychotics were associated with alpha(7) nicotinic receptor decreases in the basal forebrain and prefrontal cortex when administered for 90 (but not 15) days, a result that was confirmed in autoradiographic experiments. These data suggest that haloperidol and risperidone may be associated with time dependent decreases in an important neurobiological substrate of memory.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, 1120 Fifteenth Street, Augusta, Georgia 30912-2450, USA.
| | | |
Collapse
|
33
|
Terry AV, Gearhart DA, Beck WD, Truan JN, Middlemore ML, Williamson LN, Bartlett MG, Prendergast MA, Sickles DW, Buccafusco JJ. Chronic, intermittent exposure to chlorpyrifos in rats: protracted effects on axonal transport, neurotrophin receptors, cholinergic markers, and information processing. J Pharmacol Exp Ther 2007; 322:1117-28. [PMID: 17548533 DOI: 10.1124/jpet.107.125625] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent behavioral abnormalities have been commonly associated with acute organophosphate (OP) pesticide poisoning; however, relatively little is known about the consequences of chronic OP exposures that are not associated with acute cholinergic symptoms. In this study, the behavioral and neurochemical effects of chronic, intermittent, and subthreshold exposures to the OP pesticide, chlorpyrifos (CPF), were investigated. Rats were injected with CPF s.c. (dose range, 2.5-18.0 mg/kg) every other day over the course of 30 days and then were given a 2-week CPF-free washout period. In behavioral experiments conducted during the washout period, dose-dependent decrements in a water-maze hidden platform task and a prepulse inhibition procedure were observed, without significant effects on open-field activity, Rotorod performance, grip strength, or a spontaneous novel object recognition task. After washout, levels of CPF and its metabolite 3,5,6-trichloro-2-pyridinol were minimal in plasma and brain; however, cholinesterase inhibition was still detectable. Furthermore, the 18.0 mg/kg dose of CPF was associated with (brain region-dependent) decreases in nerve growth factor receptors and cholinergic proteins including the vesicular acetylcholine transporter, the high-affinity choline transporter, and the alpha(7)-nicotinic acetylcholine receptor. These deficits were accompanied by decreases in anterograde and retrograde axonal transport measured in sciatic nerves ex vivo. Thus, low-level (intermittent) exposure to CPF has persistent effects on neurotrophin receptors and cholinergic proteins, possibly through inhibition of fast axonal transport. Such neurochemical changes may lead to deficits in information processing and cognitive function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, University of Georgia College of Pharmacy, Augusta, Georgia 30912-2300, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Terry AV, Gearhart DA, Warner SE, Zhang G, Bartlett MG, Middlemore ML, Beck WD, Mahadik SP, Waller JL. Oral haloperidol or risperidone treatment in rats: temporal effects on nerve growth factor receptors, cholinergic neurons, and memory performance. Neuroscience 2007; 146:1316-32. [PMID: 17434684 PMCID: PMC1978102 DOI: 10.1016/j.neuroscience.2007.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/27/2007] [Accepted: 03/03/2007] [Indexed: 11/24/2022]
Abstract
First and second generation antipsychotics (FGAs and SGAs) ameliorate psychotic symptoms of schizophrenia, however, their chronic effects on information processing and memory function (i.e. key determinants of long term functional outcome) are largely unknown. In this rodent study the effects of different time periods (ranging from 2 weeks to 6 months) of oral treatment with the FGA, haloperidol (2.0 mg/kg/day), or the SGA, risperidone (2.5 mg/kg/day) on a water maze repeated acquisition procedure, the levels of nerve growth factor receptors, and two important cholinergic proteins, the vesicular acetylcholine transporter and the high affinity choline transporter were evaluated. The effects of the antipsychotics on a spontaneous novel object recognition procedure were also assessed during days 8-14 and 31-38 of treatment. Haloperidol (but not risperidone) was associated with impairments in water maze hidden platform trial performance at each of the time periods evaluated up to 45 days, but not when tested during days 83-90. In contrast, risperidone did not impair water maze task performance at the early time periods and it was actually associated with improved performance during the 83-90 day period. Both antipsychotics, however, were associated with significant water maze impairments during the 174-180 day period. Further, haloperidol was associated with decrements in short delay performance in the spontaneous novel object recognition task during both the 8-14 and 31-38 day periods of treatment, while risperidone was associated with short delay impairment during the 31-38 day time period. Both antipsychotics were also associated with time dependent alterations in the vesicular acetylcholine transporter, the high affinity choline transporter, as well as tyrosine kinase A, and p75 neurotrophin receptors in specific brain regions. These data from rats support the notion that while risperidone may hold some advantages over haloperidol, both antipsychotics can produce time-dependent alterations in neurotrophin receptors and cholinergic proteins as well as impairments in the performance of tasks designed to assess spatial learning and episodic memory.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, CB-3618, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA 30912-2300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 2006; 103:11719-23. [PMID: 16868082 PMCID: PMC1544236 DOI: 10.1073/pnas.0604318103] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-based anticancer agents are promising chemotherapeutic agents. Among these agents, Herceptin (trastuzumab), a humanized anti-human epidermal growth factor receptor 2 (HER2/c-erbB2) monoclonal antibody, has been used successfully in patients with breast cancer. However, in patients with brain metastasis, the blood-brain barrier limits its use, and a different delivery method is needed to treat these patients. Here, we report that Herceptin can be delivered locally and noninvasively into the mouse central nervous system through the blood-brain barrier under image guidance by using an MRI-guided focused ultrasound blood-brain barrier disruption technique. The amount of Herceptin delivered to the target tissue was correlated with the extent of the MRI-monitored barrier opening, making it possible to estimate indirectly the amount of Herceptin delivered. Histological changes attributable to this procedure were minimal. This method may represent a powerful technique for the delivery of macromolecular agents such as antibodies to treat patients with diseases of the central nervous system.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Nathan McDannold
- Department of Radiology, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Ferenc A. Jolesz
- Department of Radiology, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Kullervo Hynynen
- Department of Radiology, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Terry AV, Parikh V, Gearhart DA, Pillai A, Hohnadel E, Warner S, Nasrallah HA, Mahadik SP. Time-Dependent Effects of Haloperidol and Ziprasidone on Nerve Growth Factor, Cholinergic Neurons, and Spatial Learning in Rats. J Pharmacol Exp Ther 2006; 318:709-24. [PMID: 16702442 DOI: 10.1124/jpet.105.099218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this rodent study, we evaluated the effects of different time periods (7, 14, 45, and 90 days) of oral treatment with haloperidol (HAL; 2.0 mg/kg/day) or ziprasidone (ZIP; 12.0 mg/kg/day) on nerve growth factor (NGF) and choline acetyltransferase (ChAT) levels in the hippocampus, and we subsequently assessed water maze task performance, prepulse inhibition (PPI) of the auditory gating response, and several NGF-related proteins and cholinergic markers after 90 days of treatment. Seven and 14 days of treatment with either HAL or ZIP resulted in a notable increase in NGF and ChAT immunoreactivity in the dentate gyrus (DG), CA1, and CA3 areas of the hippocampus. After 45 days, NGF and ChAT immunoreactivity had abated to control levels in ZIP-treated animals, but it was markedly reduced in HAL-treated subjects. After 90 days of treatment, NGF and ChAT levels were substantially lower than controls in both antipsychotic groups. Furthermore, after 90 days of treatment and a drug-free washout period, water maze performance (but not PPI) was impaired in both antipsychotic groups, although the decrement was greater in the HAL group. Several NGF-related and cholinergic proteins were diminished in the brains of subjects treated with either neuroleptic as well. These data support the premise that, although ZIP (given chronically) seems somewhat superior to HAL due to less pronounced behavioral effects and a more delayed appearance of neurochemical deficits, both antipsychotics produce time-dependent deleterious effects on NGF, cholinergic markers (i.e., important neurobiological substrates of memory), and cognitive function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, CB-3618, Medical College of Georgia, 1120 Fifteenth St., Augusta, GA 30912-2450, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kozutsumi D, Shimizu K, Morikubo K, Ohshiba Y, Yamaji T, Kino K. Enzyme-linked immunosorbent assay of a linear, recombinant peptide designed for immunotherapy of Japanese cedar pollinosis. J Pharmacol Toxicol Methods 2006; 55:65-70. [PMID: 16650781 DOI: 10.1016/j.vascn.2006.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/14/2006] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Cry-consensus peptide, a recombinant T-cell epitope peptide for immunotherapy of Japanese cedar pollinosis, is a linear peptide that does not have disulfide bonds because no cysteine residue exists in the molecule. We examined whether a sandwich enzyme-linked immunosorbent assay (ELISA) could be performed for linear peptides such as Cry-consensus peptide. METHODS The 3-dimensional conformation of Cry-consensus peptide was examined by (1)H NMR analysis. Nineteen monoclonal antibodies (mAbs) that recognized various domains of Cry-consensus peptide were established to use in a sandwich ELISA. The relationship between the recognition sites of mAbs and the sensitivity of the ELISA was investigated to optimize the selection of the combination of the capture and the detection antibodies. ELISA inhibitors in serum and plasma were also studied to improve the stability and the sensitivity of determination. RESULTS (1)H NMR analysis of Cry-consensus peptide suggested that Cry-consensus peptide molecule had no portions with rigid conformation. The sensitivity of the ELISA showed a good correlation with the distance between the respective binding sites of the capture and the detection antibodies. Human serum albumin and alpha1-acid glycoprotein strongly inhibited the binding of the capture mAb to Cry-consensus peptide in a dose-dependent manner, and heparin also inhibited the binding in the concentration at which it is used as anticoagulant. Taken together, the findings indicated that an optimized method showed good linearity and minimal variation from 0 to 1000 ng/ml of Cry-consensus peptide. DISCUSSION These data indicate that this method is useful for monitoring Cry-consensus peptide concentrations in plasma or serum.
Collapse
Affiliation(s)
- Daisuke Kozutsumi
- Research and Development Section, Pharmaceuticals Development Department, Meiji Dairies Corporation, 540 Naruda, Odawara, Kanagawa 250-0862, Japan.
| | | | | | | | | | | |
Collapse
|