1
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Li M, Yang L, Wang Z, Liu Y, Wan H, Shang Z. Progress of Micro-Stimulation Techniques to Alter Pigeons' Motor Behavior: A Review from the Perspectives of the Neural Basis and Neuro-Devices. Brain Sci 2024; 14:339. [PMID: 38671991 PMCID: PMC11047962 DOI: 10.3390/brainsci14040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pigeons have natural advantages in robotics research, including a wide range of activities, low energy consumption, good concealment performance, strong long-distance weight bearing and continuous flight ability, excellent navigation, and spatial cognitive ability, etc. They are typical model animals in the field of animal robot research and have important application value. A hot interdisciplinary research topic and the core content of pigeon robot research, altering pigeon motor behavior using brain stimulation involves multiple disciplines including animal ethology, neuroscience, electronic information technology and artificial intelligence technology, etc. In this paper, we review the progress of altering pigeon motor behavior using brain stimulation from the perspectives of the neural basis and neuro-devices. The recent literature on altering pigeon motor behavior using brain stimulation was investigated first. The neural basis, structure and function of a system to alter pigeon motor behavior using brain stimulation are briefly introduced below. Furthermore, a classified review was carried out based on the representative research achievements in this field in recent years. Our summary and discussion of the related research progress cover five aspects including the control targets, control parameters, control environment, control objectives, and control system. Future directions that need to be further studied are discussed, and the development trend in altering pigeon motor behavior using brain stimulation is projected.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (L.Y.); (Y.L.)
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China;
| | - Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (L.Y.); (Y.L.)
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China;
| | - Zhenlong Wang
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China;
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuhuai Liu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (L.Y.); (Y.L.)
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Hong Wan
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (L.Y.); (Y.L.)
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China;
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.L.); (L.Y.); (Y.L.)
- Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
3
|
Adreani NM, D'Amelio PB, Gahr M, Ter Maat A. Life-Stage Dependent Plasticity in the Auditory System of a Songbird Is Signal and Emitter-Specific. Front Neurosci 2020; 14:588672. [PMID: 33343284 PMCID: PMC7746620 DOI: 10.3389/fnins.2020.588672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Social animals flexibly use a variety of vocalizations to communicate in complex and dynamic environments. However, it remains unknown whether the auditory perception of different vocalizations changes according to the ecological context. By using miniature wireless devices to synchronously record vocal interactions and local neural activity in freely-behaving zebra finches in combination with playback experiments, we investigate whether the auditory processing of vocalizations changes across life-history stages. We show that during breeding, females (but not males) increase their estrogen levels and reply faster to their mates when interacting vocally. These changes are associated with an increase in the amplitude of the female’s neural auditory responses. Furthermore, the changes in auditory response are not general, but specific to a subset of functionally distinct vocalizations and dependent on the emitter’s identity. These results provide novel insights into auditory plasticity of communication systems, showing that the perception of specific signals can shift according to ecologically-determined physiological states.
Collapse
Affiliation(s)
- Nicolas M Adreani
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,Konrad Lorenz Research Center, University of Vienna, Grünau im Almtal, Austria
| | - Pietro B D'Amelio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| |
Collapse
|
4
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nat Commun 2019; 10:2577. [PMID: 31189912 PMCID: PMC6561963 DOI: 10.1038/s41467-019-10593-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Many organisms coordinate rhythmic motor actions with those of a partner to generate cooperative social behavior such as duet singing. The neural mechanisms that enable rhythmic interindividual coordination of motor actions are unknown. Here we investigate the neural basis of vocal duetting behavior by using an approach that enables simultaneous recordings of individual vocalizations and multiunit vocal premotor activity in songbird pairs ranging freely in their natural habitat. We find that in the duet-initiating bird, the onset of the partner’s contribution to the duet triggers a change in rhythm in the periodic neural discharges that are exclusively locked to the initiating bird’s own vocalizations. The resulting interindividually synchronized neural activity pattern elicits vocalizations that perfectly alternate between partners in the ongoing song. We suggest that rhythmic cooperative behavior requires exact interindividual coordination of premotor neural activity, which might be achieved by integration of sensory information originating from the interacting partner. Recording neural activity during coordinated behaviors in controlled environments limits opportunities for understanding natural interactions. Here, the authors record from freely moving duetting birds in their natural habitats to reveal the neural mechanisms of interindividual motor coordination.
Collapse
|
6
|
Gill LF, D'Amelio PB, Adreani NM, Sagunsky H, Gahr MC, Maat A. A minimum‐impact, flexible tool to study vocal communication of small animals with precise individual‐level resolution. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa F. Gill
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Pietro B. D'Amelio
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Nicolas M. Adreani
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Hannes Sagunsky
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Manfred C. Gahr
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Andries Maat
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| |
Collapse
|
7
|
A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability. SENSORS 2015; 15:22776-97. [PMID: 26371006 PMCID: PMC4610520 DOI: 10.3390/s150922776] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 12/16/2022]
Abstract
We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals.
Collapse
|
8
|
Duer A, Paffhausen BH, Menzel R. High order neural correlates of social behavior in the honeybee brain. J Neurosci Methods 2015; 254:1-9. [PMID: 26192327 DOI: 10.1016/j.jneumeth.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Honeybees are well established models of neural correlates of sensory function, learning and memory formation. Here we report a novel approach allowing to record high-order mushroom body-extrinsic interneurons in the brain of worker bees within a functional colony. New method The use of two 100 cm long twisted copper electrodes allowed recording of up to four units of mushroom body-extrinsic neurons simultaneously for up to 24h in animals moving freely between members of the colony. Every worker, including the recorded bee, hatched in the experimental environment. The group consisted of 200 animals in average. RESULTS Animals explored different regions of the comb and interacted with other colony members. The activities of the units were not selective for locations on the comb, body directions with respect to gravity and olfactory signals on the comb, or different social interactions. However, combinations of these parameters defined neural activity in a unit-specific way. In addition, units recorded from the same animal co-varied according to unknown factors. Comparison with existing method(s): All electrophysiological studies with honey bees were performed so far on constrained animals outside their natural behavioral contexts. Yet no neuronal correlates were measured in a social context. Free mobility of recoded insects over a range of a quarter square meter allows addressing questions concerning neural correlates of social communication, planning of tasks within the colony and attention-like processes. CONCLUSIONS The method makes it possible to study neural correlates of social behavior in a near-natural setting within the honeybee colony.
Collapse
Affiliation(s)
- Aron Duer
- Institute of Biology, Neurobiology of the Freie Universität Berlin, Germany
| | | | - Randolf Menzel
- Institute of Biology, Neurobiology of the Freie Universität Berlin, Germany.
| |
Collapse
|
9
|
Hasegawa T, Fujimoto H, Tashiro K, Nonomura M, Tsuchiya A, Watanabe D. A wireless neural recording system with a precision motorized microdrive for freely behaving animals. Sci Rep 2015; 5:7853. [PMID: 25597933 PMCID: PMC4297970 DOI: 10.1038/srep07853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/16/2014] [Indexed: 12/03/2022] Open
Abstract
The brain is composed of many different types of neurons. Therefore, analysis of brain activity with single-cell resolution could provide fundamental insights into brain mechanisms. However, the electrical signal of an individual neuron is very small, and precise isolation of single neuronal activity from moving subjects is still challenging. To measure single-unit signals in actively behaving states, establishment of technologies that enable fine control of electrode positioning and strict spike sorting is essential. To further apply such a single-cell recording approach to small brain areas in naturally behaving animals in large spaces or during social interaction, we developed a compact wireless recording system with a motorized microdrive. Wireless control of electrode placement facilitates the exploration of single neuronal activity without affecting animal behaviors. Because the system is equipped with a newly developed data-encoding program, the recorded data are readily compressed almost to theoretical limits and securely transmitted to a host computer. Brain activity can thereby be stably monitored in real time and further analyzed using online or offline spike sorting. Our wireless recording approach using a precision motorized microdrive will become a powerful tool for studying brain mechanisms underlying natural or social behaviors.
Collapse
Affiliation(s)
- Taku Hasegawa
- 1] Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan [3] Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hisataka Fujimoto
- 1] Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan [2] Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Tashiro
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mayu Nonomura
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Tsuchiya
- Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- 1] Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Zebra finch mates use their forebrain song system in unlearned call communication. PLoS One 2014; 9:e109334. [PMID: 25313846 PMCID: PMC4196903 DOI: 10.1371/journal.pone.0109334] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.
Collapse
|
11
|
Menardy F, Giret N, Del Negro C. The presence of an audience modulates responses to familiar call stimuli in the male zebra finch forebrain. Eur J Neurosci 2014; 40:3338-50. [PMID: 25145963 DOI: 10.1111/ejn.12696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
The ability to recognize familiar individuals is crucial for establishing social relationships. The zebra finch, a highly social songbird species that forms lifelong pair bonds, uses a vocalization, the distance call, to identify its mate. However, in males, this ability depends on social conditions, requiring the presence of an audience. To evaluate whether the presence of bystanders modulates the auditory processing underlying recognition abilities, we assessed, by using a lightweight telemetry system, whether electrophysiological responses driven by familiar and unfamiliar female calls in a high-level auditory area [the caudomedial nidopallium (NCM)] were modulated by the presence of conspecific males. Males had experienced the call of their mate for several months and the call of a familiar female for several days. When they were exposed to female calls in the presence of two male conspecifics, NCM neurons showed greater responses to the playback of familiar female calls, including the mate's call, than to unfamiliar ones. In contrast, no such discrimination was observed in males when they were alone or when call-evoked responses were collected under anaesthesia. Together, these results suggest that NCM neuronal activity is profoundly influenced by social conditions, providing new evidence that the properties of NCM neurons are not simply determined by the acoustic structure of auditory stimuli. They also show that neurons in the NCM form part of a network that can be shaped by experience and that probably plays an important role in the emergence of communication sound recognition.
Collapse
Affiliation(s)
- F Menardy
- CNPS, UMR CNRS 8195, University Paris-Sud, 91405, Orsay, France
| | | | | |
Collapse
|
12
|
Di Pascoli S, Puntin D, Pinciaroli A, Balaban E, Pompeiano M. Design and implementation of a wireless in-ovo EEG/EMG recorder. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:832-840. [PMID: 24473547 DOI: 10.1109/tbcas.2013.2251343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The developmental origins of sleep and brain activity rhythms in higher vertebrate animals (birds and mammals) are currently unknown. In order to create an experimental system in which these could be better elucidated, we designed, built and tested a system for recording EEG and EMG signals in-ovo from chicken embryos incubated for 16-21 days. This system can remain attached to the individual subject through the process of hatching and continue to be worn post-natally. Electrode wires surgically implanted on the head of the embryo are connected to a battery-operated ultraportable transmitter which can either be attached to the eggshell or worn on the back. The transmitter processes up to 6 channels of data with a maximum sampling frequency of 500 Hz and a resolution of 12 bits. The radio link uses a carrier frequency of 4 MHz, and has a maximum transfer rate of 500 kbit/s; receiving antennas compatible with both in-egg recordings and post-natal recordings from freely-moving birds were produced. A receiver connected with one USB port of a PC transmits the data for digital storage. This system is based on discrete, off-the-shelf components, can provide a few days of continuous operation with a single lithium coin battery, and has a noise floor level of 0.35 μV. The transmitter dimensions are 16 × 13 × 1.5 mm and the weight without the battery is 0.7 g. The microprocessor allows flexible operation modes not usually made available in other small multichannel acquisition systems implemented by means of ad hoc mixed signal chips.
Collapse
|
13
|
Blustein D, Rosenthal N, Ayers J. Designing and implementing nervous system simulations on LEGO robots. J Vis Exp 2013:e50519. [PMID: 23728477 DOI: 10.3791/50519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
Collapse
|
14
|
Menardy F, Touiki K, Dutrieux G, Bozon B, Vignal C, Mathevon N, Del Negro C. Social experience affects neuronal responses to male calls in adult female zebra finches. Eur J Neurosci 2012; 35:1322-36. [PMID: 22512260 DOI: 10.1111/j.1460-9568.2012.08047.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasticity studies have consistently shown that behavioural relevance can change the neural representation of sounds in the auditory system, but what occurs in the context of natural acoustic communication where significance could be acquired through social interaction remains to be explored. The zebra finch, a highly social songbird species that forms lifelong pair bonds and uses a vocalization, the distance call, to identify its mate, offers an opportunity to address this issue. Here, we recorded spiking activity in females while presenting distance calls that differed in their degree of familiarity: calls produced by the mate, by a familiar male, or by an unfamiliar male. We focused on the caudomedial nidopallium (NCM), a secondary auditory forebrain region. Both the mate's call and the familiar call evoked responses that differed in magnitude from responses to the unfamiliar call. This distinction between responses was seen both in single unit recordings from anesthetized females and in multiunit recordings from awake freely moving females. In contrast, control females that had not heard them previously displayed responses of similar magnitudes to all three calls. In addition, more cells showed highly selective responses in mated than in control females, suggesting that experience-dependent plasticity in call-evoked responses resulted in enhanced discrimination of auditory stimuli. Our results as a whole demonstrate major changes in the representation of natural vocalizations in the NCM within the context of individual recognition. The functional properties of NCM neurons may thus change continuously to adapt to the social environment.
Collapse
Affiliation(s)
- F Menardy
- CNPS, UMR CNRS 8195, Paris-Sud University, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between the neural and vascular response regions are not fully understood and require further attention to elucidate the mechanism of vascular control of CBF supply to the underlying focal and surrounding neural activity. The in-depth understanding of the anesthesia actions on neurovascular elements allows for better decision-making regarding the anesthetics used in specific models for neurovascular experiments and may also help elucidate the signal source issues in hemodynamic-based neuroimaging techniques.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan.
| | | |
Collapse
|
16
|
An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS One 2011; 6:e24666. [PMID: 21969859 PMCID: PMC3182168 DOI: 10.1371/journal.pone.0024666] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets.
Collapse
|
17
|
Roy S, Wang X. Wireless multi-channel single unit recording in freely moving and vocalizing primates. J Neurosci Methods 2011; 203:28-40. [PMID: 21933683 DOI: 10.1016/j.jneumeth.2011.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
Abstract
The ability to record well-isolated action potentials from individual neurons in naturally behaving animals is crucial for understanding neural mechanisms underlying natural behaviors. Traditional neurophysiology techniques, however, require the animal to be restrained which often restricts natural behavior. An example is the common marmoset (Callithrix jacchus), a highly vocal New World primate species, used in our laboratory to study the neural correlates of vocal production and sensory feedback. When restrained by traditional neurophysiological techniques marmoset vocal behavior is severely inhibited. Tethered recording systems, while proven effective in rodents pose limitations in arboreal animals such as the marmoset that typically roam in a three-dimensional environment. To overcome these obstacles, we have developed a wireless neural recording technique that is capable of collecting single-unit data from chronically implanted multi-electrodes in freely moving marmosets. A lightweight, low power and low noise wireless transmitter (headstage) is attached to a multi-electrode array placed in the premotor cortex of the marmoset. The wireless headstage is capable of transmitting 15 channels of neural data with signal-to-noise ratio (SNR) comparable to a tethered system. To minimize radio-frequency (RF) and electro-magnetic interference (EMI), the experiments were conducted within a custom designed RF/EMI and acoustically shielded chamber. The individual electrodes of the multi-electrode array were periodically advanced to densely sample the cortical layers. We recorded single-unit data over a period of several months from the frontal cortex of two marmosets. These recordings demonstrate the feasibility of using our wireless recording method to study single neuron activity in freely roaming primates.
Collapse
Affiliation(s)
- Sabyasachi Roy
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
18
|
Gregory JA, Borna A, Roy S, Wang X, Lewandowski B, Schmidt M, Najafi K. Low-cost wireless neural recording system and software. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:3833-6. [PMID: 19965244 DOI: 10.1109/iembs.2009.5335132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a flexible wireless neural recording system, which is comprised of a 15-channel analog FM transmitter, digital receiver and custom user interface software for data acquisition. The analog front-end is constructed from commercial off the shelf (COTS) components and weighs 6.3g (including batteries) and is capable of transmitting over 24 hours up to a range over 3m with a 25microV(rms) in-vivo noise floor. The Software Defined Radio (SDR) and the acquisition software provide a data acquisition platform with real time data display and can be customized based on the specifications of various experiments. The described system was characterized with in-vitro and in-vivo experiments and the results are presented.
Collapse
Affiliation(s)
- Jeffrey A Gregory
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Laboratory research using songbirds as a model system for investigating basic questions of neurobiological function has expanded rapidly and recently, with approximately 120 laboratories working with songbirds worldwide. In the United States alone, of the approximately 80 such laboratories nearly a third have been established in the past 10 years. Yet many animal facilities are not outfitted to manage these animals, and as a consequence laboratories often use alternative housing arrangements established by institutional animal care and use committees (IACUCs). These committees invariably differ in their expertise level with birds and thus guidelines also vary considerably from one institution to another. In this article I address a number of factors to consider for effective oversight of research involving songbirds.
Collapse
Affiliation(s)
- Marc F Schmidt
- Department of Biology, 312 Leidy Laboratories, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|
20
|
Chorev E, Epsztein J, Houweling AR, Lee AK, Brecht M. Electrophysiological recordings from behaving animals—going beyond spikes. Curr Opin Neurobiol 2009; 19:513-9. [DOI: 10.1016/j.conb.2009.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 01/07/2023]
|
21
|
A digital programmable telemetric system for recording extracellular action potentials. Behav Res Methods 2009; 41:352-8. [PMID: 19363175 DOI: 10.3758/brm.41.2.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article describes the design and preliminary evaluation of a small-sized and low energy consumption wearable wireless telemetry system for the recording of extracellular neuronal activity, with the possibility of selecting one of four channels. The system comprises four radio frequency (RF) transceivers, three microcontrollers, and a digital amplifier and filter. This constitutes an innovative distributed processing approach. Gain, cutoff frequencies, and channel selection are remotely adjusted. Digital data transmission is used for both the bioelectrical signals and the control commands. This feature offers superior immunity to external RF interference. Real-time viewing of the acquired data allows the researcher to select only relevant data for storage. Simultaneous recordings of neuronal activity from the striatum of a freely moving rat, both with the wireless device and with a wired data acquisition system, are shown.
Collapse
|
22
|
Passive and self-powered autonomous sensors for remote measurements. SENSORS 2009; 9:943-60. [PMID: 22399949 PMCID: PMC3280841 DOI: 10.3390/s90200943] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/17/2022]
Abstract
Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.
Collapse
|
23
|
Ye X, Wang P, Liu J, Zhang S, Jiang J, Wang Q, Chen W, Zheng X. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals. J Neurosci Methods 2008; 174:186-93. [DOI: 10.1016/j.jneumeth.2008.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 11/25/2022]
|
24
|
Eliades SJ, Wang X. Chronic multi-electrode neural recording in free-roaming monkeys. J Neurosci Methods 2008; 172:201-14. [PMID: 18572250 DOI: 10.1016/j.jneumeth.2008.04.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 11/15/2022]
Abstract
Many behaviors of interest to neurophysiologists are difficult to study under laboratory conditions because such behaviors are often inhibited when an animal is restrained and socially isolated. Even under the best conditions, such behaviors may be sparse enough as to require long duration neural recordings or simultaneous recording of multiple neurons to gather a sufficient amount of data for analysis. We have developed a preparation for chronic, multi-electrode recordings in the auditory cortex of marmoset monkeys, small primates, as well as techniques for neurophysiological recordings when the animals are free-roaming while singly caged in the environment of the monkey colony. In this report, we describe our solutions to overcome the problems associated with chronic recordings in free-roaming animals, where three-dimensional movements present particular challenges.
Collapse
Affiliation(s)
- Steven J Eliades
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
25
|
Ativanichayaphong T, He JW, Hagains CE, Peng YB, Chiao JC. A combined wireless neural stimulating and recording system for study of pain processing. J Neurosci Methods 2008; 170:25-34. [PMID: 18262282 DOI: 10.1016/j.jneumeth.2007.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/11/2007] [Accepted: 12/19/2007] [Indexed: 11/18/2022]
Abstract
Clinical studies have shown that spinal or cortical neurostimulation could significantly improve pain relief. The currently available stimulators, however, are used only to generate specific electrical signals without the knowledge of physiologically responses caused from the stimulation. We thus propose a new system that can adaptively generate the optimized stimulating signals base on the correlated neuron activities. This new method could significantly improve the efficiency of neurostimulation for pain relief. We have developed an integrated wireless recording and stimulating system to transmit the neuronal signals and to activate the stimulator over the wireless link. A wearable prototype has been developed consisting of amplifiers, wireless modules and a microcontroller remotely controlled by a Labview program in a computer to generate desired stimulating pulses. The components were assembled on a board with a size of 2.5 cm x 5 cm to be carried by a rat. To validate our system, lumbar spinal cord dorsal horn neuron activities of anesthetized rats have been recorded in responses to various types of peripheral graded mechanical stimuli. The stimulation at the periaqueductal gray and anterior cingulate cortex with different combinations of electrical parameters showed a comparable inhibition of spinal cord dorsal horns activities in response to the mechanical stimuli. The Labview program was also used to monitor the neuronal activities and automatically activate the stimulator with designated pulses. Our wireless system has provided an opportunity for further study of pain processing with closed-loop stimulation paradigm in a potential new pain relief method.
Collapse
|
26
|
Abstract
The process through which young male songbirds learn the characteristics of the songs of an adult male of their own species has strong similarities with speech acquisition in human infants. Both involve two phases: a period of auditory memorization followed by a period during which the individual develops its own vocalizations. The avian 'song system', a network of brain nuclei, is the probable neural substrate for the second phase of sensorimotor learning. By contrast, the neural representation of song memory acquired in the first phase is localized outside the song system, in different regions of the avian equivalent of the human auditory association cortex.
Collapse
Affiliation(s)
- Johan J Bolhuis
- Behavioural Biology, Department of Biology and Helmholtz Institute, Padualaan 8, Utrecht University, The Netherlands.
| | | |
Collapse
|