1
|
Gama Sosa MA, De Gasperi R, Lind RH, Pryor D, Vargas DC, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Sowa A, Zhu CW, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Intramural hematomas and astrocytic infiltration precede perivascular inflammation in a rat model of repetitive low-level blast injury. J Neuropathol Exp Neurol 2025; 84:337-352. [PMID: 39868756 PMCID: PMC11923744 DOI: 10.1093/jnen/nlaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures. These lesions resulted in intravascular cell death, cell layer reorganization, and plasma leakage into the intraperiarterial basal membranes that constitute the intraperiarterial drainage system (IPAD). Plasma metalloproteases, including MMP-9, in the IPAD basal membranes may degrade extracellular matrix components compromising normal cerebral interstitial fluid drainage, arterial structure and function leading to chronic vascular degenerative processes. Related subacute effects of blast exposure included increased MMP-9 expression in perivascular reactive astrocytes and the extension of astrocytic processes through the layers of affected vessels. These results, in combination with normal levels of proinflammatory cytokines and the absence of proinflammatory MHC II-expressing microglia, suggest an astrocytic role in the clearing of intravascular hematomas and provide further mechanistic evidence that blast-induced vascular degenerative processes may precede the onset of neurovascular inflammation.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Rachel H Lind
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Danielle C Vargas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
2
|
Norris C, Murphy SF, Talty CE, VandeVord PJ. Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats. Ann Biomed Eng 2024; 52:2641-2654. [PMID: 38851659 PMCID: PMC11402848 DOI: 10.1007/s10439-024-03544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body's adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Veterans Affairs Medical Center, Salem, VA, USA
| | - Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
- Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
3
|
Hegde G, Mondal SK, Hegde G, Jagadeesh G, Asokan S. Blast wave pressure measurement and analysis in air and granular media inside a shock tube using a fiber Bragg grating sensor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:045003. [PMID: 38602459 DOI: 10.1063/5.0187068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
In this work, we have demonstrated the use of a fiber Bragg grating (FBG) sensor to measure the pressure profile of blast waves generated inside a vertical shock tube (VST). An FBG pressure sensor probe has been designed and developed that can be incorporated into the wall of the VST. The VST facility is used to generate blast waves with decay times of the order of a few milliseconds to simulate explosive events. Pressure measurement experiments have been carried out at different incident blast wave peak pressures inside the VST. The FBG pressure sensor measurements are validated against a standard piezoelectric pressure transducer at an acquisition rate of 1 MHz. The pressure signals of both sensors are found to match well with similar rise times and decay profiles. The validated FBG pressure sensor is then incorporated into a sand column mounted in the test section of the VST to measure the pressure profile of blast wave-induced stress waves in granular media. The FBG and piezoelectric pressure sensor data are compared using fast Fourier transform analysis and continuous wavelet transform. The feasibility of FBG sensors for blast pressure measurement under harsh conditions imposed inside shock tube environments is established.
Collapse
Affiliation(s)
- Gautam Hegde
- Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Suraj Kumar Mondal
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Gopalkrishna Hegde
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - G Jagadeesh
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - S Asokan
- Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
4
|
Huang X, Xia B, Chang L, Liao Z, Zhao H, Zhang L, Cai Z. Experimental Study on Intracranial Pressure and Biomechanical Response in Rats Under the Blast Wave. J Neurotrauma 2024; 41:671-684. [PMID: 35906796 DOI: 10.1089/neu.2022.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Explosion overpressure propagates extracranially and causes craniocerebral injury after being transmitted into the brain. Studies on the extent of skull to reduce impact overpressure are still lacking. Therefore, it is necessary to study the relationship between intracranial pressure (ICP) and external field pressure and the situation of craniocerebral injury under the blast wave. Pressure sensor of ϕ 1.2 mm was disposed 3 mm posterior to the bregma of rat skull, and type I biological shock tube (BST-I) was used as the source of injury while a side-on air pressure sensor was installed at the horizontal position of the ICP sensor. Eleven groups of blast experiments with peak air overpressure ranging from 167 kPa to 482 kPa were performed to obtain the variation law of ICP and injury of rats. Data measured by sensors show that the peak pressure formed in the rat brain are lower than the external air overpressure; the differential pressure between the inside and outside of the brain is 27-231 kPa. When side-on air overpressure is ≤363 kPa, ICP is ≤132 kPa, and the hemorrhage area of the rat's brain is <15%, the injury is minor. When side-on air overpressure is 363 kPa-401 kPa, ICP range is from 132 kPa to 248 kPa, hemorrhage area is about 15%-20%, and the injury increases. When side-on air overpressure is 401 kPa-435 kPa, ICP range from 248 kPa to 348 kPa, the hemorrhage area is about 20%-24%, and the injury is serious. When side-on air overpressure ≥482 kPa, the peak ICP surged to 455 kPa and the peak negative ICP reached -84 kPa, the hemorrhage area exceeded 26%. When the external blast wave is weak, skull can absorb the blast wave better, reducing the pressure by 81.4%, when the external shockwave is strong, skull only reduces the pressure by 5.6%, but both can play certain protective role. The fitting curve of air overpressure and ICP can be used to predict the changes of ICP under different external blast overpressure. Analysis of cranial injury showed that the area of cranial hemorrhage with extremely severe injury increased by 107.9% compared with mild injury, increased by 53.3% compared with moderate injury, and increased by 21.6% compared with severe injury. This work may provide references for the dynamic response of biological cranial and brain injury mechanism under the effect of blast wave.
Collapse
Affiliation(s)
- Xingyuan Huang
- Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, China
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Bingchen Xia
- Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, China
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Lijun Chang
- Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, China
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zhikang Liao
- Institute for Traffic Medicine, PLA Army Characteristic Medical Center, Chongqing, China
| | - Hui Zhao
- Institute for Traffic Medicine, PLA Army Characteristic Medical Center, Chongqing, China
| | - Lei Zhang
- Institute of Defense Engineering, AMS. PLA, Luoyang, Henan, China
| | - Zhihua Cai
- Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, China
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
5
|
De Gasperi R, Gama Sosa MA, Perez Garcia G, Perez GM, Pryor D, Morrison CLA, Lind R, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Zhu CW, Ahlers ST, Cook DG, Elder GA. Metabotropic Glutamate Receptor 2 Expression Is Chronically Elevated in Male Rats With Post-Traumatic Stress Disorder Related Behavioral Traits Following Repetitive Low-Level Blast Exposure. J Neurotrauma 2024; 41:714-733. [PMID: 37917117 PMCID: PMC10902502 DOI: 10.1089/neu.2023.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Chenel L-A. Morrison
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Northeast Regional Alliance Health Careers Opportunity Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Lind
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Pharmacology, and Psychiatry, University of Washington, Seattle, Washington, USA
- Department of Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
6
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
7
|
Mimura M, Akagi T, Kohmoto R, Fujita Y, Sato Y, Ikeda T. Measurement of vitreous humor pressure in vivo using an optic fiber pressure sensor. Sci Rep 2023; 13:18233. [PMID: 37880357 PMCID: PMC10600124 DOI: 10.1038/s41598-023-45616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
We conducted a study to assess the pressure difference between the aqueous and vitreous humors in rabbit eyes using a direct intraocular pressure (IOP) measurement method. A micro-optic-fiber pressure sensor was utilized for this purpose. Preliminary experiments with enucleated porcine eyes confirmed the sensor's accuracy in measuring both aqueous and vitreous humor pressure. The main study involved six healthy albino rabbits, where the sensor measured the pressure in the anterior chamber (aIOP) and posterior vitreous-cavity (pIOP). These measurements were compared to aIOP values obtained through rebound tonometry. Additionally, pre- and postoperative pressure comparisons were made after performing a vitrectomy. Results revealed a significant disparity between aqueous and vitreous humor pressures. Prior to vitrectomy, pIOP was 22.8 mmHg, over twice as high as aIOP (11.0 mmHg), but decreased to a similar level following the procedure. Comparison between the sensor measurements and rebound tonometry showed agreement in aIOP values. In conclusion, our study demonstrates that vitreous humor pressure is consistently higher than aqueous humor pressure, reaching the upper limit of normal IOP. Furthermore, vitrectomy effectively reduces pIOP, aligning it with aIOP. These findings contribute valuable insights into intraocular pressure dynamics and have implications for clinical interventions targeting ocular pressure regulation.
Collapse
Affiliation(s)
- Masashi Mimura
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan.
- Department of Ophthalmology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo , 663-8501, Japan.
- Department of Ophthalmology, Toho University Sakura Medical Center, Sakura-City, Chiba, Japan.
| | - Tadamichi Akagi
- Division of Ophthalmology and Visual Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Kohmoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yasushi Fujita
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yohei Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| |
Collapse
|
8
|
Lin D, Chen Y, Liang L, Huang Z, Guo Y, Cai P, Wang W. Effects of exposure to the explosive and environmental pollutant 2,4,6-trinitrotoluene on ovarian follicle development in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96412-96423. [PMID: 37567992 DOI: 10.1007/s11356-023-29161-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.
Collapse
Affiliation(s)
- Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lisheng Liang
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Sowa A, Tetreault T, Varghese M, Cook DG, Zhu CW, Tappan SJ, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Late chronic local inflammation, synaptic alterations, vascular remodeling and arteriovenous malformations in the brains of male rats exposed to repetitive low-level blast overpressures. Acta Neuropathol Commun 2023; 11:81. [PMID: 37173747 PMCID: PMC10176873 DOI: 10.1186/s40478-023-01553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
10
|
Garcia GP, Perez GM, Gasperi RD, Sosa MAG, Otero-Pagan A, Abutarboush R, Kawoos U, Statz JK, Patterson J, Zhu CW, Hof PR, Cook DG, Ahlers ST, Elder GA. (2R,6R)-Hydroxynorketamine Treatment of Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2023; 4:197-217. [PMID: 37020715 PMCID: PMC10068674 DOI: 10.1089/neur.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
11
|
Gasperi RD, Gama Sosa MA, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Katsel P, Cook DG, Ahlers ST, Elder GA. Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats. J Neurotrauma 2023; 40:561-577. [PMID: 36262047 PMCID: PMC10040418 DOI: 10.1089/neu.2022.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgina S. Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Parsons Corporation, Centreville, Virginia, USA
| | - Patrick R. Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pavel Katsel
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
12
|
da Silva Junior EB, Hamasaki EE, Smaili HY, Wozniak A, Tristão ESY, Loureiro MDP, Milano JB, de Meneses MS, de Oliveira RM, Ramina R. Fiber-Optic Intracranial Pressure Monitoring System Using Wi-Fi-An In Vivo Study. Neurosurgery 2023; 92:647-656. [PMID: 36512829 DOI: 10.1227/neu.0000000000002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Continuous invasive monitoring of intracranial pressure (ICP) is essential in neurocritical care for surveillance and management of raised ICP. Fluid-based systems and strain gauge microsensors remain the current standard. In the past few decades, several studies with wireless monitoring were developed aiming to reduce invasiveness and complications. OBJECTIVE To describe a novel Wi-Fi fiber-optic device for continuous ICP monitoring using smartphone in a swine model. METHODS Two ICP sensors (wireless prototype and wire-based reference) were implanted in the cerebral parenchyma of a swine model for a total of 120 minutes of continuous monitoring. Every 5 minutes, jugular veins compression was performed to evaluate ICP changes. The experimentation was divided in 3 phases for comparison and analysis. RESULTS Phase 1 showed agreement in ICP changes for both sensors during jugular compression and releasing, with a positive and strong Spearman correlation (r = 0.829, P < .001). Phase 2 started after inversion of the sensors in the burr holes; there was a positive and moderately weak Spearman correlation (r = 0.262, P < .001). For phase 3, the sensors were returned to the first burr holes; the prototype behaved similarly to the reference sensor, presenting a positive and moderately strong Spearman correlation (r = 0.669, P < .001). CONCLUSION A Wi-Fi ICP monitoring system was demonstrated in a comprehensive and feasible way. It was possible to observe, using smartphone, an adequate correlation regarding ICP variations. Further adaptations are already being developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ricardo Ramina
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Brazil
| |
Collapse
|
13
|
Du Z, Li Z, Wang P, Wang X, Zhang J, Zhuang Z, Liu Z. Revealing the Effect of Skull Deformation on Intracranial Pressure Variation During the Direct Interaction Between Blast Wave and Surrogate Head. Ann Biomed Eng 2022; 50:1038-1052. [PMID: 35668281 DOI: 10.1007/s10439-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
Intracranial pressure (ICP) during the interaction between blast wave and the head is a crucial evaluation criterion for blast-induced traumatic brain injury (bTBI). ICP variation is mainly induced by the blast wave transmission and skull deformation. However, how the skull deformation influences the ICP remains unclear, which is meaningful for mitigating bTBI. In this study, both experimental and numerical models are developed to elucidate the effect of skull deformation on ICP variation. Firstly, we performed the shock tube experiment of the high-fidelity surrogate head to measure the ICP, the blast overpressure, and the skull surface strain of specific positions. The results show that the ICP profiles of all measured points show oscillations with positive and negative change, and the variation is consistent with the skull surface strain. Further numerical analysis reveals that when the blast wave reaches the measured point, the peak overpressure transmits directly through the skull to the brain, forming the local positive ICP peak, and the impulse induces the local inward deformation of the skull. As the peak overpressure passes through, the blast impulse impacts the nearby skull supported by the soft and incompressible brain tissue and extrudes the skull outward in the initial position. The inward and outward skull deformation leads to the oscillation of ICP. These numerical analyses agree with experimental results, which explain the appearance of negative and positive ICP peaks and the synchronization of negative ICP with surface strain. The study has implications for medical injury diagnosis and protective equipment design.
Collapse
Affiliation(s)
- Zhibo Du
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhijie Li
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Peng Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinghao Wang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiarui Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhuo Zhuang
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
14
|
Walsh SA, Davis TA. Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury. J Inflamm (Lond) 2022; 19:6. [PMID: 35551611 PMCID: PMC9097360 DOI: 10.1186/s12950-022-00303-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background Assessment of immune status in critically ill patients is often based on serial tracking of systemic cytokine levels and clinical laboratory values. Exosomes are extracellular vesicles that can be secreted and internalized by cells to transport important cellular cargo in the regulation of numerous physiological and pathological processes. Here, we characterize the early compartmentalization profile of key proinflammatory mediators in serum exosomes in the steady state and following trauma. Adult male Sprague-Dawley rats (91 including naïve) were divided into one of four traumatic injury model groups incorporating whole-body blast, fracture, soft-tissue crush injury, tourniquet-induced ischemia, and limb amputation. Serum was collected at 1, 3, 6, and 24 h, and 3- and 7-day post-injury. Electrochemiluminescence-based immunoassays for 9 key proinflammatory mediators in whole serum, isolated serum exosomes, and exosome depleted serum were analyzed and compared between naïve and injured rats. Serum clinical chemistry analysis was performed to determine pathological changes. Results In naïve animals, substantial amounts of IL-1β, IL-10, and TNF-α were encapsulated, IL-6 was completely encapsulated, and CXCL1 freely circulating. One hour after blast injury alone, levels of exosome encapsulated IFN-γ, IL-10, IL-6, IL-13, IL-4, and TNF-α increased, whereas freely circulating and membrane-associated levels remained undetectable or low. Rats with the most severe polytraumatic injuries with end organ complications had the earliest rise and most pronounced concentration of IL-1β, IL-10, TNF-α, and IL-6 across all serum compartments. Moreover, CXCL1 levels increased in relation to injury severity, but remained almost entirely freely circulating at all timepoints. Conclusion These findings highlight that conventional ELISA-based assessments, which detect only free circulating and exosome membrane-bound mediators, underestimate the full immunoinflammatory response to trauma. Inclusion of exosome encapsulated mediators may be a better, more accurate and clinically useful early strategy to identify, diagnose, and monitor patients at highest risk for post-traumatic inflammation-associated complications.
Collapse
Affiliation(s)
- Sarah A Walsh
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
15
|
Liu Y, Lu Y, Shao Y, Wu Y, He J, Wu C. Mechanism of the traumatic brain injury induced by blast wave using the energy assessment method. Med Eng Phys 2022; 101:103767. [DOI: 10.1016/j.medengphy.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 11/26/2022]
|
16
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
17
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
18
|
Walle L, Sudhoff H, Frerichs O, Todt I. Intraluminal Monitoring of Micro Vessels. A Surgical Feasibility Study. Front Surg 2021; 8:681797. [PMID: 34368216 PMCID: PMC8333698 DOI: 10.3389/fsurg.2021.681797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Monitoring of vessel perfusion is of high clinical importance in vascular anastomosis of free flaps. Current sensor systems are based on different principles and show limitations in validity and accuracy. Fiber optic pressure sensors exhibit high accuracy and are small in size. The aim of the present study was to evaluate the surgical feasibility of intraluminal pressure (ILP) measurements with a fiber optic pressure sensor in an animal model. Methods: In a microsurgical setting we sedated 10 Wistar rats with weight adapted phenobarbital, xylazine, and fentanyl. We performed a surgical approach to A. carotis communis and V. jugularis and introduced a 600 μm fiber optic pressure sensor into the vessels followed by measuring the ILP. The sensor was stabilized by the surrounding tissue, and the vessels were closed. Results: In all cases, surgical placement was uneventful. Measurement of intra-venous and intra-arterial pressure was possible and stable over the whole measurement period of an hour. Conclusion: Fiber optic pressure measurement in microvessels is possible and surgically feasible. An application to monitor the perfusion of free flaps seems possible.
Collapse
Affiliation(s)
- Leonard Walle
- Department of Otolaryngology, Head and Neck Surgery, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Plastic Surgery, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Onno Frerichs
- Department of Otolaryngology, Head and Neck Surgery, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Ingo Todt
- Department of Plastic Surgery, Medical School OWL, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Perez Garcia G, De Gasperi R, Gama Sosa MA, Perez GM, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Dickstein DL, Cook DG, Gandy S, Ahlers ST, Elder GA. Laterality and region-specific tau phosphorylation correlate with PTSD-related behavioral traits in rats exposed to repetitive low-level blast. Acta Neuropathol Commun 2021; 9:33. [PMID: 33648608 PMCID: PMC7923605 DOI: 10.1186/s40478-021-01128-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Military veterans who experience blast-related traumatic brain injuries often suffer from chronic cognitive and neurobehavioral syndromes. Reports of abnormal tau processing following blast injury have raised concerns that some cases may have a neurodegenerative basis. Rats exposed to repetitive low-level blast exhibit chronic neurobehavioral traits and accumulate tau phosphorylated at threonine 181 (Thr181). Using data previously reported in separate studies we tested the hypothesis that region-specific patterns of Thr181 phosphorylation correlate with behavioral measures also previously determined and reported in the same animals. Elevated p-tau Thr181 in anterior neocortical regions and right hippocampus correlated with anxiety as well as fear learning and novel object localization. There were no correlations with levels in amygdala or posterior neocortical regions. Particularly striking were asymmetrical effects on the right and left hippocampus. No systematic variation in head orientation toward the blast wave seems to explain the laterality. Levels did not correlate with behavioral measures of hyperarousal. Results were specific to Thr181 in that no correlations were observed for three other phospho-acceptor sites (threonine 231, serine 396, and serine 404). No consistent correlations were linked with total tau. These correlations are significant in suggesting that p-tau accumulation in anterior neocortical regions and the hippocampus may lead to disinhibited amygdala function without p-tau elevation in the amygdala itself. They also suggest an association linking blast injury with tauopathy, which has implications for understanding the relationship of chronic blast-related neurobehavioral syndromes in humans to neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine At Mount Sinai, One Gustave Levy, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and Mount Sinai NFL Neurological Care Center, Icahn School of Medicine At Mount Sinai, 5 East 98th Street, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Neurology Service (3E16), 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
| |
Collapse
|
20
|
Perez Garcia G, Perez GM, De Gasperi R, Gama Sosa MA, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Progressive Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast. J Neurotrauma 2021; 38:2030-2045. [PMID: 33115338 DOI: 10.1089/neu.2020.7398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBI) in the conflicts in Iraq and Afghanistan currently have chronic cognitive and mental health problems including post-traumatic stress disorder (PTSD). Besides static symptoms, new symptoms may emerge or existing symptoms may worsen. TBI is also a risk factor for later development of neurodegenerative diseases. In rats exposed to repetitive low-level blast overpressure (BOP), robust and enduring cognitive and PTSD-related behavioral traits develop that are present for at least one year after blast exposure. Here we determined the time-course of the appearance of these traits by testing rats in the immediate post-blast period. Three cohorts of rats examined within the first eight weeks exhibited no behavioral phenotype or, in one cohort, features of anxiety. None showed the altered cued fear responses or impaired novel object recognition characteristic of the fully developed phenotype. Two cohorts retested 36 to 42 weeks after blast exposure exhibited the expanded behavioral phenotype including anxiety as well as altered cued fear learning and impaired novel object recognition. Combined with previous work, the chronic behavioral phenotype has been observed in six cohorts of blast-exposed rats studied at 3-4 months or longer after blast injury, and the three cohorts studied here document the progressive nature of the cognitive/behavioral phenotype. These studies suggest the existence of a latent, delayed emerging and progressive blast-induced cognitive and behavioral phenotype. The delayed onset has implications for the evolution of post-blast neurobehavioral syndromes in military veterans and its modeling in experimental animals.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Patrick R Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
21
|
Islam S, Shah V, Gidde STR, Hutapea P, Song SH, Picone J, Kim A. A Machine Learning Enabled Wireless Intracranial Brain Deformation Sensing System. IEEE Trans Biomed Eng 2020; 67:3521-3530. [PMID: 32340930 DOI: 10.1109/tbme.2020.2990071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A leading cause of traumatic brain injury (TBI) is intracranial brain deformation due to mechanical impact. This deformation is viscoelastic and differs from a traditional rigid transformation. In this paper, we describe a machine learning enabled wireless sensing system that predicts the trajectory of intracranial brain deformation. The sensing system consists of an implantable soft magnet and an external magnetic sensor array with a sensing volume of 12 × 12 × 4 mm3. Machine learning algorithm predicts the brain deformation by interpreting the magnetic sensor outputs created by the change in position of the implanted soft magnet. Three different machine learning models were trained on calibration data: (1) random forests, (2) k-nearest neighbors, and (3) a multi-layer perceptron-based neural network. These models were validated using both in vitro (a needle inserted into PVC gel) and in vivo (blast exposure to live and dead rat brains) experiments. The in vitro gel deformation predicted by these machine learning models showed excellent agreement with the camera measurements and had absolute error = 138 μm, Fréchet distance = 372 μm with normalized Procrustes disparity = 0.034. The in vivo brain deformation predicted by these models had absolute error = 50 μm, Fréchet distance = 95 μm with normalized Procrustes disparity = 0.055 for dead animal and absolute error = 125 μm, Fréchet distance = 289 μm with normalized Procrustes disparity = 0.2 for live animal respectively. These results suggest that the proposed machine learning enabled sensor system can be an effective tool for measuring in situ brain deformation.
Collapse
|
22
|
Liu Y, Jing Z, Li R, Zhang Y, Liu Q, Li A, Zhang C, Peng W. Miniature fiber-optic tip pressure sensor assembled by hydroxide catalysis bonding technology. OPTICS EXPRESS 2020; 28:948-958. [PMID: 32121814 DOI: 10.1364/oe.380589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
A miniature fiber-optic tip Fabry-Perot (FP) pressure sensor with excellent high-temperature survivability, assembled by hydroxide catalysis bonding (HCB) technology, is proposed and experimentally demonstrated. A standard single-mode fiber is fusion spliced to a fused silica hollow tube with an outer diameter (OD) of 125 µm, and a 1-µm-thick circular silicon diaphragm with a diameter slightly larger than the OD is bonded to the other endface of the hollow tube by HCB technology. The ultrathin silicon diaphragm is prepared on a silicon-on-insulator (SOI) wafer produced by microelectromechanical systems (MEMS), providing the capability of large-scale mass production. The HCB technology enables a polymer-free bonding between diaphragm and hollow tube on fiber tip with the obvious advantages of high alignment precision, normal pressure and temperature (NPT) operation, and reliable effectiveness. The static pressure and temperature response of the proposed sensor are discussed. Results show that the sensor has a measurable pressure range of 0∼100 kPa, which is well consistent with the measurement range of biological blood pressure. The pressure sensitivity is up to 2.13 nm/kPa with a resolution of 0.32% (0.32kPa). Besides, the sensor possesses a unique high-temperature resistant capability up to 600 °C, which can easily survive even in high-temperature sterilization processes, and it has a low temperature dependence of 0.09 kPa/°C due to the induced HCB bonding technology and the silicon-based diaphragm. Thus, the proposed fiber tip pressure sensor is desirable for invasive biomedical pressure diagnostics and pressure monitoring in related harsh environments.
Collapse
|
23
|
Sutar S, Ganpule S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech Model Mechanobiol 2019; 19:875-892. [PMID: 31745681 DOI: 10.1007/s10237-019-01256-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a critical health concern. This issue is being addressed in terms of identifying a cause-effect relationship between the mechanical insult in the form of a blast and resulting injury to the brain. Understanding wave propagation through the head is an important aspect in this regard. The objective of this work was to study the blast wave propagation through the layered architecture of the head with an emphasis on understanding the wave transmission mechanism. Toward this end, one-dimensional (1D) finite element head model is built for a simplified surrogate, human, and rat. Motivated from experimental investigations, four different head layer configurations have been considered. These configurations are: (A) Skull-Brain, (B) Skin-Skull-Brain, (C) Skin-Skull-Dura-Arachnoid-CSF-Pia-Brain, (D) Skin-Skull-Dura-Arachnoid-AT-Pia-Brain. The validated head model is subjected to flattop and Friedlander loading implied in the blast, and the resulting response is evaluated in terms of brain pressures. Our results suggest that wave propagation through head parenchyma plays an important role in blast wave transmission. The thickness, material properties of head layers, and rise time of an input pulse govern the temporal evolution of pressure in the brain. The key findings of this work are: (a) Skin and meninges amplify the applied input pressure, whereas air sinus has an attenuation effect. (b) Model is able to describe experimentally recorded peak pressures and rise times in the brain, including variations within the aforementioned experimental head models of TBI. This reinforces that the wave transmission is an important loading pathway to the brain. (c) Equivalent layer theory for modeling meningeal layers as a single layer has been proposed, and it gives reasonable agreement with each meningeal layer modeled explicitly. This modeling approach has a great utility in 3D head models. The potential applications of 1D head model in evaluation of new helmet materials, brain sensor calibration, and brain pressure estimation for a given explosive strength have also been demonstrated. Overall, these results provide important insights into the understanding of mechanics of blast wave transmission in the head.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
24
|
Statz JK, Ciarlone SL, Goodrich JA, McCarron RM, Walker PB, Norris JN, Ahlers ST, Tschiffely AE. Affective profiling for anxiety-like behavior in a rodent model of mTBI. Behav Brain Res 2019; 368:111895. [DOI: 10.1016/j.bbr.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
|
25
|
Abutarboush R, Gu M, Kawoos U, Mullah SH, Chen Y, Goodrich SY, Lashof-Sullivan M, McCarron RM, Statz JK, Bell RS, Stone JR, Ahlers ST. Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure. J Neurotrauma 2019; 36:3138-3157. [PMID: 31210096 PMCID: PMC6818492 DOI: 10.1089/neu.2019.6423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to blast overpressure may result in cerebrovascular impairment, including cerebral vasospasm. The mechanisms contributing to this vascular response are unclear. The aim of this study was to evaluate the relationship between blast and functional alterations of the cerebral microcirculation and to investigate potential underlying changes in vascular microstructure. Cerebrovascular responses were assessed in sham- and blast-exposed male rats at multiple time points from 2 h through 28 days after a single 130-kPa (18.9-psi) exposure. Pial microcirculation was assessed through a cranial window created in the parietal bone of anesthetized rats. Pial arteriolar reactivity was evaluated in vivo using hypercapnia, barium chloride, and serotonin. We found that exposure to blast leads to impairment of arteriolar reactivity >24 h after blast exposure, suggesting delayed injury mechanisms that are not simply attributed to direct mechanical deformation. Observed vascular impairment included a reduction in hypercapnia-induced vasodilation, increase in barium-induced constriction, and reversal of the serotonin effect from constriction to dilation. A reduction in vascular smooth muscle contractile proteins consistent with vascular wall proliferation was observed, as well as delayed reduction in nitric oxide synthase and increase in endothelin-1 B receptors, mainly in astrocytes. Collectively, the data show that exposure to blast results in delayed and prolonged alterations in cerebrovascular reactivity that are associated with changes in the microarchitecture of the vessel wall and astrocytes. These changes may contribute to long-term pathologies involving dysfunction of the neurovascular unit, including cerebral vasospasm.
Collapse
Affiliation(s)
- Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Saad H Mullah
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Margaret Lashof-Sullivan
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Richard M McCarron
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Randy S Bell
- Neurosurgery Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia Medical Center, Charlottesville, Virginia
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
26
|
Musolino ST, Schartner EP, Hutchinson MR, Salem A. Improved method for optical fiber temperature probe implantation in brains of free-moving rats. J Neurosci Methods 2019; 313:24-28. [DOI: 10.1016/j.jneumeth.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
|
27
|
Gama Sosa MA, De Gasperi R, Perez Garcia GS, Perez GM, Searcy C, Vargas D, Spencer A, Janssen PL, Tschiffely AE, McCarron RM, Ache B, Manoharan R, Janssen WG, Tappan SJ, Hanson RW, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure disrupts gliovascular and neurovascular connections and induces a chronic vascular pathology in rat brain. Acta Neuropathol Commun 2019; 7:6. [PMID: 30626447 PMCID: PMC6327415 DOI: 10.1186/s40478-018-0647-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023] Open
Abstract
Much concern exists over the role of blast-induced traumatic brain injury (TBI) in the chronic cognitive and mental health problems that develop in veterans and active duty military personnel. The brain vasculature is particularly sensitive to blast injury. The aim of this study was to characterize the evolving molecular and histologic alterations in the neurovascular unit induced by three repetitive low-energy blast exposures (3 × 74.5 kPa) in a rat model mimicking human mild TBI or subclinical blast exposure. High-resolution two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of purified brain vascular fractions from blast-exposed animals 6 weeks post-exposure showed decreased levels of vascular-associated glial fibrillary acidic protein (GFAP) and several neuronal intermediate filament proteins (α-internexin and the low, middle, and high molecular weight neurofilament subunits). Loss of these proteins suggested that blast exposure disrupts gliovascular and neurovascular interactions. Electron microscopy confirmed blast-induced effects on perivascular astrocytes including swelling and degeneration of astrocytic endfeet in the brain cortical vasculature. Because the astrocyte is a major sensor of neuronal activity and regulator of cerebral blood flow, structural disruption of gliovascular integrity within the neurovascular unit should impair cerebral autoregulation. Disrupted neurovascular connections to pial and parenchymal blood vessels might also affect brain circulation. Blast exposures also induced structural and functional alterations in the arterial smooth muscle layer. Interestingly, by 8 months after blast exposure, GFAP and neuronal intermediate filament expression had recovered to control levels in isolated brain vascular fractions. However, despite this recovery, a widespread vascular pathology was still apparent at 10 months after blast exposure histologically and on micro-computed tomography scanning. Thus, low-level blast exposure disrupts gliovascular and neurovascular connections while inducing a chronic vascular pathology.
Collapse
|
28
|
Divani AA, Salazar P, Monga M, Beilman GJ, SantaCruz KS. Inducing Different Brain Injury Levels Using Shock Wave Lithotripsy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2925-2933. [PMID: 29689641 DOI: 10.1002/jum.14656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To assess the feasibility of inducing different severities of shock wave (SW)-induced traumatic brain injury (TBI) using lithotripsy. METHODS Wistar rats (n = 36) were divided into 2 groups: group 1 (n = 20) received 5 SW pulses, and group 2 (n = 16) received 15 SWs pulses. The SW pulses were delivered to the right side of the frontal cortex. Neurologic and behavioral assessments (Garcia test, beam walking, rotarod, and elevated plus maze) were performed at the baseline and at 3, 6, 24, 72, and 168 hours after injury. At day 7 after injury (168 hours), we performed cerebral angiography to assess the presence of cerebral vasospasm and vascular damage due to SW-induced TBI. At the conclusion of the study, the animals were euthanized to assess damage to brain tissue using an overall histologic severity score. RESULTS The Garcia score was significantly higher, and the anxiety index (based on the elevated plus maze) was significantly lower in group 1 compared to group 2 (P < .05). The anxiety index for group 1 returned to the baseline level in a fast nonlinear fashion, whereas the anxiety index for group 2 followed a distinct slow linear reduction. Cerebral angiograms revealed a more severe vasospasm for the animals in group 2 compared to group 1 (P = .027). We observed a statistically significant difference in the overall histologic severity scores between the groups. The median (interquartile range) overall histologic severity scores for groups 1 and 2 were 3.0 (2.75) and 6.5 (6.0), respectively (P = .023). CONCLUSIONS We have successfully established different SW-induced TBI severities in our SW-induced TBI model by delivering different numbers of SW pulses to brain tissue.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Greg J Beilman
- Department of Surgery, Division of Surgical Critical Care and Acute Care Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen S SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Wang Z, Wen G, Wu Z, Yang J, Chen L, Liu W. Fiber optic method for obtaining the peak reflected pressure of shock waves. OPTICS EXPRESS 2018; 26:15199-15210. [PMID: 30114770 DOI: 10.1364/oe.26.015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Most of fiber-optic pressure sensors used in shock wave measurements are based on deformations of sensing elements. These approaches result in low dynamic pressure ranges for these sensors used in the air. A novel fiber-optic method based on the relationship between pressure and the acceleration of a diaphragm is proposed to obtain peak reflected pressure of shock waves in the air. The optical sensor is designed with a thin circular diaphragm as the sensing element, and the Fabry-Perot optical interferometry is used to detect the acceleration of the diaphragm. Shock tube and explosive-blast experiments prove that the proposed fiber optic method is feasible and has the advantages of no calibration, high precision and fast response time. The proposed fiber-optic pressure method has potential in practical applications for shock wave measurements.
Collapse
|
30
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Lashof-Sullivan M, Maudlin-Jeronimo E, Stone JR, Haghighi F, Ahlers ST, Elder GA. Chronic post-traumatic stress disorder-related traits in a rat model of low-level blast exposure. Behav Brain Res 2018; 340:117-125. [PMID: 27693852 PMCID: PMC11181290 DOI: 10.1016/j.bbr.2016.09.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The postconcussion syndrome following mild traumatic brain injuries (mTBI) has been regarded as a mostly benign syndrome that typically resolves in the immediate months following injury. However, in some individuals, symptoms become chronic and persistent. This has been a striking feature of the mostly blast-related mTBIs that have been seen in veterans returning from the recent conflicts in Iraq and Afghanistan. In these veterans a chronic syndrome with features of both the postconcussion syndrome and post-traumatic stress disorder has been prominent. Animal modeling of blast-related TBI has developed rapidly over the last decade leading to advances in the understanding of blast pathophysiology. However, most studies have focused on acute to subacute effects of blast on the nervous system and have typically studied higher intensity blast exposures with energies more comparable to that involved in human moderate to severe TBI. Fewer animal studies have addressed the chronic effects of lower level blast exposures that are more comparable to those involved in human mTBI or subclinical blast. Here we describe a rat model of repetitive low-level blast exposure that induces a variety of anxiety and PTSD-related behavioral traits including exaggerated fear responses that were present when animals were tested between 28 and 35 weeks after the last blast exposure. These animals provide a model to study the chronic and persistent behavioral effects of blast including the relationship of PTSD to mTBI in dual diagnosis veterans.
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Margaret Lashof-Sullivan
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eric Maudlin-Jeronimo
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Fatemeh Haghighi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
31
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
32
|
Seavey JG, Wheatley BM, Pavey GJ, Tomasino AM, Hanson MA, Sanders EM, Dey D, Moss KL, Potter BK, Forsberg JA, Qureshi AT, Davis TA. Early local delivery of vancomycin suppresses ectopic bone formation in a rat model of trauma-induced heterotopic ossification. J Orthop Res 2017; 35:2397-2406. [PMID: 28390182 DOI: 10.1002/jor.23544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is a debilitating sequela of high-energy injuries. It frequently requires surgical excision once symptomatic and there is no practical prophylaxis for combat-injured patients. In this study, we examined the effect of local vancomycin powder on HO formation in a small animal model of blast-related, post-traumatic HO. Male Sprague-Dawley rats were subjected to a polytraumatic extremity injury and amputation with or without methicillin-resistant Staphylococcus aureus infection. Animals were randomized to receive a single local application of vancomycin (20 mg/kg) at the time of injury (POD-0, n = 34) or on postoperative day-3 (POD-3, n = 11). Quantitative volumetric measurement of ectopic bone was calculated at 12-weeks post-injury by micro-CT. Bone marrow and muscle tissues were also collected to determine the bacterial burden. Blood for serum cytokine analysis was collected at baseline and post-injury. Vancomycin treatment on POD-0 suppressed HO formation by 86% and prevented bone marrow and soft tissue infections. We concurrently observed a marked reduction histologically in nonviable tissue, chronic inflammatory cell infiltrates, bone infection, fibrous tissue, and areas of bone necrosis within this same cohort. Delayed treatment was significantly less efficacious. Neither treatment had a marked effect on the production of pro-inflammatory cytokines. Our study demonstrates that local vancomycin treatment at the time of injury significantly reduces HO formation in both the presence and absence of infection, with decreased efficacy if not given early. These findings further support the concept that the therapeutic window for prophylaxis is narrow, highlighting the need to develop early treatment strategies for clinical management. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2397-2406, 2017.
Collapse
Affiliation(s)
- Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gabriel J Pavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Margaret A Hanson
- Department of Pathology, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Kaitlyn L Moss
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Benjamin K Potter
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
33
|
Cernak I. Understanding blast-induced neurotrauma: how far have we come? Concussion 2017; 2:CNC42. [PMID: 30202583 PMCID: PMC6093818 DOI: 10.2217/cnc-2017-0006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Blast injuries, including blast-induced neurotrauma (BINT), are caused by blast waves generated during an explosion. Accordingly, their history coincides with that of explosives. Hence, it is intriguing that, after more than 1000 years of using explosives, our understanding of the pathological consequences of blast and body/brain interactions is extremely limited. Postconflict recovery mechanisms seemingly include the suppression of painful experiences, such as explosive injuries. Unfortunately, ignoring the knowledge generated by previous generations of scientists retards research progress, leading to superfluous and repetitive studies. This article summarizes clinical and experimental findings published about blast injuries and BINT following the wars of the 20th and 21th centuries. Moreover, it offers a personal view on potential factors interfering with the progress of BINT research working toward providing better diagnosis, treatment and rehabilitation for military personnel affected by blast exposure.
Collapse
Affiliation(s)
- Ibolja Cernak
- Faculty of Rehabilitation Medicine, University of Alberta, Corbett Hall 3–48, Edmonton Alberta, T6G 2G4, Canada
| |
Collapse
|
34
|
Streijger F, So K, Manouchehri N, Tigchelaar S, Lee JHT, Okon EB, Shortt K, Kim SE, McInnes K, Cripton P, Kwon BK. Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model. J Neurotrauma 2017; 34:3336-3350. [PMID: 28844181 DOI: 10.1089/neu.2017.5034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers many perturbations within the injured cord, such as decreased perfusion, reduced tissue oxygenation, increased hydrostatic pressure, and disrupted bioenergetics. While much attention is directed to neuroprotective interventions that might alleviate these early pathophysiologic responses to traumatic injury, the temporo-spatial characteristics of these responses within the injured cord are not well documented. In this study, we utilized our Yucatan mini-pig model of traumatic SCI to characterize intraparenchymal hemodynamic and metabolic changes within the spinal cord for 1 week post-injury. Animals were subjected to a contusion/compression SCI at T10. Prior to injury, probes for microdialysis and the measurement of spinal cord blood flow (SCBF), oxygenation (in partial pressure of oxygen; PaPO2), and hydrostatic pressure were inserted into the spinal cord 0.2 and 2.2 cm from the injury site. Measurements occurred under anesthesia for 4 h post-injury, after which the animals were recovered and measurements continued for 7 days. Close to the lesion (0.2 cm), SCBF levels decreased immediately after SCI, followed by an increase in the subsequent days. Similarly, PaPO2 plummeted, where levels remained diminished for up to 7 days post-injury. Lactate/pyruvate (L/P) ratio increased within minutes. Further away from the injury site (2.2 cm), L/P ratio also gradually increased. Hydrostatic pressure remained consistently elevated for days and negatively correlated with changes in SCBF. An imbalance between SCBF and tissue metabolism also was observed, resulting in metabolic stress and insufficient oxygen levels. Taken together, traumatic SCI resulted in an expanding area of ischemia/hypoxia, with ongoing physiological perturbations sustained out to 7 days post-injury. This suggests that our clinical practice of hemodynamically supporting patients out to 7 days post-injury may fail to address persistent ischemia within the injured cord. A detailed understanding of these pathophysiological mechanisms after SCI is essential to promote best practices for acute SCI patients.
Collapse
Affiliation(s)
- Femke Streijger
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Kitty So
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Jae H T Lee
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Elena B Okon
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - So-Eun Kim
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Kurt McInnes
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,2 Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Cripton
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,2 Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Brian K Kwon
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,3 Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Wang Y, Sawyer TW, Tse YC, Fan C, Hennes G, Barnes J, Josey T, Weiss T, Nelson P, Wong TP. Primary Blast-Induced Changes in Akt and GSK 3β Phosphorylation in Rat Hippocampus. Front Neurol 2017; 8:413. [PMID: 28868045 PMCID: PMC5563325 DOI: 10.3389/fneur.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Thomas W Sawyer
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Yiu Chung Tse
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Changyang Fan
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Julia Barnes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tyson Josey
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tracy Weiss
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Peggy Nelson
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Hall AA, Mendoza MI, Zhou H, Shaughness M, Maudlin-Jeronimo E, McCarron RM, Ahlers ST. Repeated Low Intensity Blast Exposure Is Associated with Damaged Endothelial Glycocalyx and Downstream Behavioral Deficits. Front Behav Neurosci 2017. [PMID: 28649193 PMCID: PMC5465256 DOI: 10.3389/fnbeh.2017.00104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Current clinical research into mild traumatic brain injury (mTBI) has focused on white matter changes as identified by advanced MRI based imaging techniques. However, perivascular tau accumulation in the brains of individuals diagnosed with mTBI suggests that the vasculature plays a key role in the pathology. This study used a rat model to examine whether the endothelial glycocalyx, a layer of the vasculature responsible for sensing luminal shear forces, is damaged by exposure to repeated low intensity blast, and whether this layer is associated with observed behavioral deficits. The blast exposure used consisted of 12, 40 kPa blast exposures conducted with a minimum of 24 h between blasts. We found that repeated blast exposure reduced glycocalyx length and density in various brain regions indicating damage. This blast exposure paradigm was associated with a mild performance decrement in the Morris water maze (MWM) which assesses learning and memory. Administration of hyaluronidase, an enzyme that binds to and degrades hyaluronan (a major structural component of the glycocalyx) prior to blast exposure reduced the observed behavioral deficits and induced a thickening of the glycocalyx layer. Taken together these findings demonstrate that the endothelial glycocalyx degradation following repeated blast is associated with behavioral decrements which can be prevented by treatment with hyaluronidase.
Collapse
Affiliation(s)
- Aaron A Hall
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Mirian I Mendoza
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Hanbing Zhou
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Michael Shaughness
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Eric Maudlin-Jeronimo
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Richard M McCarron
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Stephen T Ahlers
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| |
Collapse
|
37
|
Kawoos U, McCarron RM, Chavko M. Protective Effect of N-Acetylcysteine Amide on Blast-Induced Increase in Intracranial Pressure in Rats. Front Neurol 2017. [PMID: 28634463 PMCID: PMC5459930 DOI: 10.3389/fneur.2017.00219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blast-induced traumatic brain injury is associated with acute and possibly chronic elevation of intracranial pressure (ICP). The outcome after TBI is dependent on the progression of complex processes which are mediated by oxidative stress. So far, no effective pharmacological protection against TBI exists. In this study, rats were exposed to a single or repetitive blast overpressure (BOP) at moderate intensities of 72 or 110 kPa in a compressed air-driven shock tube. The degree and duration of the increase in ICP were proportional to the intensity and frequency of the blast exposure(s). In most cases, a single dose of antioxidant N-acetylcysteine amide (NACA) (500 mg/kg) administered intravenously 2 h after exposure to BOP significantly attenuated blast-induced increase in ICP. A single dose of NACA was not effective in improving the outcome in the group of animals that were subjected to repetitive blast exposures at 110 kPa on the same day. In this group, two treatments with NACA at 2 and 4 h post-BOP exposure resulted in significant attenuation of elevated ICP. Treatment with NACA prior to BOP exposure completely prevented the elevation of ICP. The findings indicate that oxidative stress plays an important role in blast-induced elevated ICP as treatment with NACA-ameliorated ICP increase, which is frequently related to poor functional recovery after TBI.
Collapse
Affiliation(s)
- Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Mikulas Chavko
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
38
|
Zhang Z, Liang Z, Li H, Li C, Yang Z, Li Y, She D, Cao L, Wang W, Liu C, Chen L. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells. PLoS One 2017; 12:e0173884. [PMID: 28323898 PMCID: PMC5360309 DOI: 10.1371/journal.pone.0173884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis.
Collapse
Affiliation(s)
- Zhaorui Zhang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Zhixin Liang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Huaidong Li
- Department of Respiratory Disease, The 88th Hospital of Chinese PLA, Tai’an City, Shandong Province, People’s Republic of China
| | - Chunsun Li
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Zhen Yang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Yanqin Li
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Danyang She
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Lu Cao
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Wenjie Wang
- Department of State Key Laboratory of Explosion Science and Technology, The Beijing University of Technology, Beijing City, People’s Republic of China
| | - Changlin Liu
- Department of State Key Laboratory of Explosion Science and Technology, The Beijing University of Technology, Beijing City, People’s Republic of China
| | - Liangan Chen
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
- * E-mail:
| |
Collapse
|
39
|
Abstract
Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.
Collapse
Affiliation(s)
- Ya-Lei Ning
- Molecular Biology Center, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University,Chongqing 400042, China
| | | |
Collapse
|
40
|
Yeh P, Guan Koay C, Wang B, Morissette J, Sham E, Senseney J, Joy D, Kubli A, Yeh C, Eskay V, Liu W, French LM, Oakes TR, Riedy G, Ollinger J. Compromised Neurocircuitry in Chronic Blast-Related Mild Traumatic Brain Injury. Hum Brain Mapp 2017; 38:352-369. [PMID: 27629984 PMCID: PMC6867097 DOI: 10.1002/hbm.23365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to apply recently developed automated fiber segmentation and quantification methods using diffusion tensor imaging (DTI) and DTI-based deterministic and probabilistic tractography to access local and global diffusion changes in blast-induced mild traumatic brain injury (bmTBI). Two hundred and two (202) male active US service members who reported persistent post-concussion symptoms for more than 6 months after injury were recruited. An additional forty (40) male military controls were included for comparison. DTI results were examined in relation to post-concussion and post-traumatic stress disorder (PTSD) symptoms. No significant group difference in DTI metrics was found using voxel-wise analysis. However, group comparison using tract profile analysis and tract specific analysis, as well as single subject analysis using tract profile analysis revealed the most prominent white matter microstructural injury in chronic bmTBI patients over the frontal fiber tracts, that is, the front-limbic projection fibers (cingulum bundle, uncinate fasciculus), the fronto-parieto-temporal association fibers (superior longitudinal fasciculus), and the fronto-striatal pathways (anterior thalamic radiation). Effects were noted to be sensitive to the number of previous blast exposures, with a negative association between fractional anisotropy (FA) and time since most severe blast exposure in a subset of the multiple blast-exposed group. However, these patterns were not observed in the subgroups classified using macrostructural changes (T2 white matter hyperintensities). Moreover, post-concussion symptoms and PTSD symptoms, as well as neuropsychological function were associated with low FA in the major nodes of compromised neurocircuitry. Hum Brain Mapp 38:352-369, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping‐Hong Yeh
- Henry Jackson Foundation for the Advancement of Military MedicineRockledgeMaryland
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Cheng Guan Koay
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Binquan Wang
- Henry Jackson Foundation for the Advancement of Military MedicineRockledgeMaryland
| | - John Morissette
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Elyssa Sham
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Justin Senseney
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - David Joy
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Alex Kubli
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Chen‐Haur Yeh
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Victora Eskay
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Wei Liu
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Louis M. French
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
- Center for Neuroscience and Regenerative Medicine (CNRM)Uniformed Services University of the Health Sciences (USUHS)BethesdaMaryland
| | - Terrence R. Oakes
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| | - Gerard Riedy
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
- Center for Neuroscience and Regenerative Medicine (CNRM)Uniformed Services University of the Health Sciences (USUHS)BethesdaMaryland
| | - John Ollinger
- National Intrepid Center of Excellence (NICoE)Walter Reed National Military Medical CenterBethesdaMaryland
| |
Collapse
|
41
|
Kawoos U, Gu M, Lankasky J, McCarron RM, Chavko M. Effects of Exposure to Blast Overpressure on Intracranial Pressure and Blood-Brain Barrier Permeability in a Rat Model. PLoS One 2016; 11:e0167510. [PMID: 27907158 PMCID: PMC5132256 DOI: 10.1371/journal.pone.0167510] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to blast overpressure (BOP) activates a cascade of pathological processes including changes in intracranial pressure (ICP) and blood-brain barrier (BBB) permeability resulting in traumatic brain injury (TBI). In this study the effect of single and multiple exposures at two intensities of BOP on changes in ICP and BBB permeability in Sprague-Dawley rats was evaluated. Animals were exposed to a single or three repetitive (separated by 0.5 h) BOPs at 72 kPa or 110 kPa. ICP was monitored continuously via telemetry for 6 days after exposure to BOP. The alteration in the permeability of BBB was determined by extravasation of Evans Blue (EB) into brain parenchyma. A significant increase in ICP was observed in all groups except the single 72 kPa BOP group. At the same time a marked increase in BBB permeability was also seen in various parts of the brain. The extent of ICP increase as well as BBB permeability change was dependent on intensity and frequency of blast.
Collapse
Affiliation(s)
- Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Ming Gu
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jason Lankasky
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Mikulas Chavko
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|
42
|
Feng K, Zhang L, Jin X, Chen C, Kallakuri S, Saif T, Cavanaugh J, King A. Biomechanical Responses of the Brain in Swine Subject to Free-Field Blasts. Front Neurol 2016; 7:179. [PMID: 27822197 PMCID: PMC5075707 DOI: 10.3389/fneur.2016.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo. This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field. The incident overpressure (IOP) was generated using 3.6 kg of C4 charge placed at three standoff distances from the swine. Five swine were exposed to a total of 19 blasts. The three average peak IOP pressure levels in this study were 148.8, 278.9, and 409.2 kPa as measured by a pencil probe. The duration of the first positive wave was in the range of 2.1–3 ms. Pressure changes in the brain and head kinematics were recorded with intracranial pressure (ICP) sensors, linear accelerometers, and angular rate sensors. The corresponding average peak ICPs were in the range of 79–143, 210–281, and 311–414 kPa designated as low, medium, and high blast level, respectively. Peak head linear accelerations were in the range of 120–412 g. A positive correlation between IOP and its corresponding biomechanical responses of the brain was also observed. These experimental data can be used to validate computer models of bTBI.
Collapse
Affiliation(s)
- Ke Feng
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Xin Jin
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Tal Saif
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - John Cavanaugh
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Albert King
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| |
Collapse
|
43
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Lashof-Sullivan M, Maudlin-Jeronimo E, Stone JR, Haghighi F, Ahlers ST, Elder GA. Exposure to a Predator Scent Induces Chronic Behavioral Changes in Rats Previously Exposed to Low-level Blast: Implications for the Relationship of Blast-Related TBI to PTSD. Front Neurol 2016; 7:176. [PMID: 27803688 PMCID: PMC5067529 DOI: 10.3389/fneur.2016.00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Blast-related mild traumatic brain injury (mTBI) has been unfortunately common in veterans who served in the recent conflicts in Iraq and Afghanistan. The postconcussion syndrome associated with these mTBIs has frequently appeared in combination with post-traumatic stress disorder (PTSD). The presence of PTSD has complicated diagnosis, since clinically, PTSD and the postconcussion syndrome of mTBI have many overlapping symptoms. In particular, establishing how much of the symptom complex can be attributed to the psychological trauma associated with PTSD in contrast to the physical injury of traumatic brain injury has proven difficult. Indeed, some have suggested that much of what is now being called blast-related postconcussion syndrome is better explained by PTSD. The relationship between the postconcussion syndrome of mTBI and PTSD is complex. Association of the two disorders might be viewed as additive effects of independent psychological and physical traumas suffered in a war zone. However, we previously found that rats exposed to repetitive low-level blast exposure in the absence of a psychological stressor developed a variety of anxiety and PTSD-related behavioral traits that were present months following the last blast exposure. Here, we show that a single predator scent challenge delivered 8 months after the last blast exposure induces chronic anxiety related changes in blast-exposed rats that are still present 45 days later. These observations suggest that in addition to independently inducing PTSD-related traits, blast exposure sensitizes the brain to react abnormally to a subsequent psychological stressor. These studies have implications for conceptualizing the relationship between blast-related mTBI and PTSD and suggest that blast-related mTBI in humans may predispose to the later development of PTSD in reaction to subsequent psychological stressors.
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret Lashof-Sullivan
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - Eric Maudlin-Jeronimo
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Haghighi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine, Naval Medical Research Center , Silver Spring, MD , USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
44
|
Intracranial venous injury, thrombosis and repair as hallmarks of mild blast traumatic brain injury in rats: Lessons from histological and immunohistochemical studies of decalcified sectioned heads and correlative microarray analysis. J Neurosci Methods 2016; 272:56-68. [DOI: 10.1016/j.jneumeth.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
|
45
|
Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci Rep 2016; 6:26992. [PMID: 27270403 PMCID: PMC4895217 DOI: 10.1038/srep26992] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.
Collapse
Affiliation(s)
- Vikas Mishra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Heather Schuetz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - Abi Heller
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - James Haorah
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| |
Collapse
|
46
|
Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D'Surney L, Ferrell J, Deng B, Hines-Beard J, Bu W, Ren H, Elberger AJ, Marchetta JG, Rex TS, Honig MG, Reiner A. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice. J Neurotrauma 2016; 33:403-22. [PMID: 26414413 PMCID: PMC4761824 DOI: 10.1089/neu.2015.3886] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits.
Collapse
Affiliation(s)
- Natalie H. Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joshua T. Rogers
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rafiqul M. Islam
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Lauren D'Surney
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Ferrell
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bowei Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Hines-Beard
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Wei Bu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Huiling Ren
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrea J. Elberger
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Tonia S. Rex
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
47
|
Szczupak M, Hoffer ME, Murphy S, Balaban CD. Posttraumatic dizziness and vertigo. HANDBOOK OF CLINICAL NEUROLOGY 2016; 137:295-300. [PMID: 27638079 DOI: 10.1016/b978-0-444-63437-5.00021-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury is an increasingly common public health issue, with the mild variant most clinically relevant for this chapter. Common causes of mild traumatic brain injury (mTBI) include motor vehicle accidents, athletics, and military training/deployment. Despite a range of clinically available testing platforms, diagnosis of mTBI remains challenging. Symptoms are primarily neurosensory, and include dizziness, hearing problems, headaches, cognitive, and sleep disturbances. Dizziness is nearly universally present in all mTBI patients, and is the easiest symptom to objectify for diagnosis. Aside from a thorough history and physical exam, in the near future specialized vestibular function tests will be key to mTBI diagnosis. A battery of oculomotor (antisaccade, predictive saccade) and vestibular tasks (head impulse test) has been demonstrated to sensitively and specifically identify individuals with acute mTBI. Vestibular therapy and rehabilitation have shown improvements for mTBI patients in cognitive function, ability to return to activities of daily living, and ability to return to work. Dizziness, as a contributor to short- and long-term disability following mTBI, is ultimately crucial not only for diagnosis but also for treatment.
Collapse
Affiliation(s)
- M Szczupak
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA; University of Medicine Sports Medicine and Performance Institute, Miami, FL, USA
| | - M E Hoffer
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA; University of Medicine Sports Medicine and Performance Institute, Miami, FL, USA; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - S Murphy
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Sliozberg Y, Chantawansri T. Damage in spherical cellular membrane generated by the shock waves: coarse-grained molecular dynamics simulation of lipid vesicle. J Chem Phys 2015; 141:184904. [PMID: 25399159 DOI: 10.1063/1.4901130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic Brain Injury is a major health issue that is hard to diagnose since it often occurs without signs of external injuries. While it is well known that exposure of biological cells to shock waves causes damage to the cell membrane, it is currently unknown by which mechanisms damage is caused, and how it depends on physical parameters such as shock wave velocity, shock pulse duration, or shock pulse shape. In this computational study, we use a coarse-grained model of the lipid vesicle as a generic model of a cell membrane to elucidate the general principles of the cellular damage induced by the shock wave direct passage through the cranium. Results indicate that the extent of the liposome compression does not strongly depend on the pressure pulse and that liposome extension is very sensitive to the change in the negative pressure phase. The structural integrity of the vesicle is altered as pores form in the lipid membrane at overall pressure impulses generated by supersonic shock waves, which are greater than 5 Pa·s at single or repetitive exposure. Consequently, these permeability changes may lead to changes in the influx of sodium, potassium, and calcium ions.
Collapse
Affiliation(s)
- Yelena Sliozberg
- TKC Global at U.S. Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, Maryland 21005-5069, USA
| | - Tanya Chantawansri
- U.S. Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, Maryland 21005-5069, USA
| |
Collapse
|
49
|
Courtney A, Courtney M. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms. Front Neurol 2015; 6:221. [PMID: 26539158 PMCID: PMC4609847 DOI: 10.3389/fneur.2015.00221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism.
Collapse
Affiliation(s)
- Amy Courtney
- Exponent Engineering and Scientific Consulting, Philadelphia, PA, USA
| | | |
Collapse
|
50
|
Zhu F, Kalra A, Saif T, Yang Z, Yang KH, King AI. Parametric analysis of the biomechanical response of head subjected to the primary blast loading – a data mining approach. Comput Methods Biomech Biomed Engin 2015; 19:1053-9. [DOI: 10.1080/10255842.2015.1091887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|