1
|
Czarnecki P, Huber J, Szymankiewicz-Szukała A, Górecki M, Romanowski L. End-to-Side vs. Free Graft Nerve Reconstruction-Experimental Study on Rats. Int J Mol Sci 2023; 24:10428. [PMID: 37445608 DOI: 10.3390/ijms241310428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The long history of regeneration nerve research indicates many clinical problems with surgical reconstruction to be resolved. One of the promising surgical techniques in specific clinical conditions is end-to-side neurorrhaphy (ETS), described and then repeated with different efficiency in the 1990s of the twentieth century. There are no reliable data on the quality of recipient nerve regeneration, possible donor nerve damage, and epineural window technique necessary to be performed. This research attempts to evaluate the possible regeneration after end-to-side neurorrhaphy, its quality, potential donor nerve damage, and the influence of epineural windows on regeneration efficiency. Forty-five female Wistar rats were divided into three equal groups, and various surgical technics were applied: A-ETS without epineural window, B-ETS with epineural window, and C-free graft reconstruction. The right peroneal nerve was operated on, and the tibial nerve was selected as a donor. After 24 weeks, the regeneration was evaluated by (1) footprint analysis every two weeks with PFI (peroneal nerve function index), TFI (tibial nerve function index), and SFI (sciatic nerve function index) calculations; (2) the amplitude and latency measurements of motor evoked potentials parameters recorded on both sides of the peroneal and tibial nerves when electroneurography with direct sciatic nerve electrical stimulation and indirect magnetic stimulation were applied; (3) histomorphometry with digital conversion of a transverse semithin nerve section, with axon count, fibers diameter, and calculation of axon area with a semiautomated method were performed. There was no statistically significant difference between the groups investigated in all the parameters. The functional indexes stabilized after eight weeks (PFI) and six weeks (TFI and SFI) and were positively time related. The lower amplitude of tibial nerve potential in groups A and B was proven compared to the non-operated side. Neurophysiological parameters of the peroneal nerve did not differ significantly. Histomorphometry revealed significantly lower diameter and area of axons in operated peroneal nerves compared to non-operated nerves. The axon count was at a normal level in every group. Tibial nerve parameters did not differ from non-operated values. Regeneration of the peroneal nerve after ETS was ascertained to be at the same level as in the case of free graft reconstruction. Peroneal nerves after ETS and free graft reconstruction were ascertained to have a lower diameter and area than non-operated ones. The technique of an epineural window does not influence the regeneration result of the peroneal nerve. The tibial nerve motor evoked potentials were characterized by lower amplitudes in ETS groups, which could indicate axonal impairment.
Collapse
Affiliation(s)
- Piotr Czarnecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | - Juliusz Huber
- Department of Pathophysiology of Locomotor Organs, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | | | - Michał Górecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| | - Leszek Romanowski
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 61-545 Poznań, Poland
| |
Collapse
|
2
|
Fan CH, Tsai HC, Tsai YS, Wang HC, Lin YC, Chiang PH, Wu N, Chou MH, Ho YJ, Lin ZH, Yeh CK. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS NANO 2023; 17:9140-9154. [PMID: 37163347 DOI: 10.1021/acsnano.2c12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701401, Taiwan
| | - Hong-Chieh Tsai
- Division of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Sheng Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsien-Chu Wang
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Min-Hwa Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| |
Collapse
|
3
|
Szymankiewicz-Szukała A, Huber J, Czarnecki P, Wiertel-Krawczuk A, Dąbrowski M. Temporary Occlusion of Common Carotid Arteries Does Not Evoke Total Inhibition in the Activity of Corticospinal Tract Neurons in Experimental Conditions. Biomedicines 2023; 11:biomedicines11051287. [PMID: 37238958 DOI: 10.3390/biomedicines11051287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Temporary occlusion of the common cervical artery is the reason for ischemic stroke in 25% of patients. Little data is provided on its effects, especially regarding neurophysiological studies verifying the neural efferent transmission within fibers of the corticospinal tract in experimental conditions. Studies were performed on 42 male Wistar rats. In 10 rats, ischemic stroke was evoked by permanent occlusion of the right carotid artery (group A); in 11 rats, by its permanent bilateral occlusion (B); in 10 rats, by unilateral occlusion and releasing after 5 min (C); and in 11 rats, by bilateral occlusion and releasing after 5 min (D). Efferent transmission of the corticospinal tract was verified by motor evoked potential (MEP) recordings from the sciatic nerve after transcranial magnetic stimulation. MEPs amplitude and latency parameters, oral measurements of temperature, and verification of ischemic effects in brain slides stained with hematoxylin and eosin staining (H + E) were analyzed. In all groups of animals, the results showed that five minutes of uni- or bilateral occlusion of the common carotid artery led to alterations in brain blood circulation and evoked changes in MEP amplitude (by 23.2% on average) and latency parameters (by 0.7 ms on average), reflecting the partial inability of tract fibers to transmit neural impulses. These abnormalities were associated with a significant drop in the body temperature by 1.5 °C on average. Ten minutes occlusion in animals from groups A and B resulted in an MEP amplitude decrease by 41.6%, latency increase by 0.9 ms, and temperature decrease by 2.9 °C of the initial value. In animals from groups C and D, five minutes of recovery of arterial blood flow evoked stabilization of the MEP amplitude by 23.4%, latency by 0.5 ms, and temperature by 0.8 °C of the initial value. In histological studies, the results showed that ischemia was most prominent bilaterally in sensory and motor areas, mainly for the forelimb, rather than the hindlimb, innervation of the cortex, putamen and caudate nuclei, globulus pallidus, and areas adjacent to the fornix of the third ventricle. We found that the MEP amplitude parameter is more sensitive than the latency and temperature variability in monitoring the ischemia effects course following common carotid artery infarction, although all parameters are correlated with each other. Temporary five-minute lasting occlusion of common carotid arteries does not evoke total and permanent inhibition in the activity of corticospinal tract neurons in experimental conditions. The symptoms of rat brain infarction are much more optimistic than those described in patients after stroke, and require further comparison with the clinical observations.
Collapse
Affiliation(s)
- Agnieszka Szymankiewicz-Szukała
- Department Pathophysiology of Locomotor Organs, Poznań University of Medical Sciences, 28 Czerwca 1956 r. Street, No. 135/147, 61-545 Poznań, Poland
| | - Juliusz Huber
- Department Pathophysiology of Locomotor Organs, Poznań University of Medical Sciences, 28 Czerwca 1956 r. Street, No. 135/147, 61-545 Poznań, Poland
| | - Piotr Czarnecki
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Sciences, 28 Czerwca 1956 r. Street, No. 135/147, 61-545 Poznań, Poland
| | - Agnieszka Wiertel-Krawczuk
- Department Pathophysiology of Locomotor Organs, Poznań University of Medical Sciences, 28 Czerwca 1956 r. Street, No. 135/147, 61-545 Poznań, Poland
| | - Mikołaj Dąbrowski
- Adult Spine Orthopaedics Department, Poznań University of Medical Sciences, 28 Czerwca 1956 r. Street, No. 135/147, 61-545 Poznań, Poland
| |
Collapse
|
4
|
Zheng Y, Zhao D, Xue DD, Mao YR, Cao LY, Zhang Y, Zhu GY, Yang Q, Xu DS. Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electrophysiological improvements and cortical synaptic reconstruction. Neural Regen Res 2022; 17:2036-2042. [PMID: 35142694 PMCID: PMC8848603 DOI: 10.4103/1673-5374.335161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Following a spinal cord injury, there are usually a number of neural pathways that remain intact in the spinal cord. These residual nerve fibers are important, as they could be used to reconstruct the neural circuits that enable motor function. Our group previously designed a novel magnetic stimulation protocol, targeting the motor cortex and the spinal nerve roots, that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury. Here, we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury. Rats underwent surgery to clamp the spinal cord at T10; three days later, the rats were treated with repetitive magnetic stimulation (5 Hz, 25 pulses/train, 20 pulse trains) targeting the nerve roots at the L5–L6 vertebrae. The treatment was repeated five times a week over a period of three weeks. We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord. In addition, the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex. Overall, the results suggest that nerve root magnetic stimulation may be an effective, noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Ye-Ran Mao
- Department of Rehabilitation, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yun Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhang
- Department of Rehabilitation, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yue Zhu
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Yang
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; Rehabilitation Engineering Research Center for Integrated Traditional Chinese and Western Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
5
|
Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 39:683-700. [PMID: 34937419 DOI: 10.1089/neu.2021.0403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was designed to investigate the rostro-caudal effect of spinal magnetic stimulation on diaphragmatic motor-evoked potentials following cervical spinal cord injury. The diaphragm electromyogram was recorded in rats that received a laminectomy or a left mid-cervical contusion at the acute (1 day), subchronic (2 weeks), or chronic (8 weeks) injured stages. The center of a figure-eight coil was placed at 30 mm lateral to bregma on the left side, and the effect of magnetic stimulation was evaluated by stimulating the rostral, middle, and caudal cervical regions in spontaneously breathing rats. The results demonstrated that cervical magnetic stimulation induced intensity-dependent motor-evoked potentials in the bilateral diaphragm in both uninjured and contused rats; however, the left diaphragm exhibited a higher amplitude and earlier onset than the right diaphragm. Moreover, the intensity-response curve was shifted upward in the rostral-to-caudal direction of magnetic stimulation, suggesting that caudal cervical magnetic stimulation produced more robust diaphragmatic motor-evoked potentials compared to rostral cervical magnetic stimulation. Interestingly, the diaphragmatic motor-evoked potentials were similar between uninjured and contused rats during cervical magnetic stimulation despite weaker inspiratory diaphragmatic activity in contused rats. Additionally, in contused animals but not uninjured animals, diaphragmatic motor-evoked potential amplitude were greater at the chronic stage than during earlier injured stages. These results demonstrated that cervical magnetic stimulation can excite the residual phrenic motor circuit to activate the diaphragm in the presence of a significant lesion in the cervical spinal cord. These findings indicate that this non-invasive approach is effective for modulating diaphragmatic excitability following cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| | - Li-Min Liou
- Kaohsiung Medical University Hospital, 89234, Neurology, Kaohsiung, Taiwan;
| | - Stéphane Vinit
- Université Paris-Saclay, 27048, UFR des Sciences de la Santé Simone Veil, Saint-Aubin, Île-de-France, France;
| | - Ming-Yue Ren
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| |
Collapse
|
6
|
Cermak S, Meng Q, Peng K, Baldwin S, Mejías-Aponte CA, Yang Y, Lu H. Focal transcranial magnetic stimulation in awake rats: Enhanced glucose uptake in deep cortical layers. J Neurosci Methods 2020; 339:108709. [PMID: 32259609 PMCID: PMC8917821 DOI: 10.1016/j.jneumeth.2020.108709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an emerging neuromodulation tool. However, preclinical models of TMS are limited. OBJECTIVE To develop a method for performing TMS in awake rats and to characterize neuronal response to TMS by mapping glucose uptake following TMS administration. METHODS A headpost was implanted into rat skull serving as a refence to guide TMS target. Motor threshold measurement was used as the metric to assess the consistency in TMS delivery across animals and across sessions. Using a fluorescent glucose analogue (2-NBDG) as a marker of neuronal activity, we mapped glucose uptake in response to TMS of the rat motor cortex. RESULTS The average motor threshold (n = 41) was 34.6 ± 6.3 % of maximum stimulator output (MSO). The variability of motor threshold across animals was similar to what has been reported in human studies. Furthermore, there was no significant difference in motor threshold measured across 3 separate days. Enhancement in fluorescent signals were TMS dose (power)-dependent, which centered around the motor cortex, covering an area medial-laterally 2 mm, rostral-caudally 4 mm at 55 % MSO, and 3 mm at 35 % MSO. The count of total cells with significant fluorescent signal was: 107 ± 23 (55 % MSO), 73 ± 11 (35 % MSO) and 42 ± 11 (sham, 5% MSO). CONCLUSIONS Our method allows for consistent motor threshold assessment for longitudinal studies. Notably, cells with fluorescent signal enhancement were consistently aggregated in deep cortical layers, with minimal enhancement in superficial layers COMPARISONS WITH EXISTING METHOD(S): To our knowledge, this is the first study of focal TMS in awake rodents.
Collapse
Affiliation(s)
- Samantha Cermak
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Qinglei Meng
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Kevin Peng
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Simone Baldwin
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Carlos A Mejías-Aponte
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| | - Hanbing Lu
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
8
|
Effect of Paired Associative Stimulation on Motor Cortex Excitability in Rats. Curr Med Sci 2018; 38:903-909. [PMID: 30341527 DOI: 10.1007/s11596-018-1960-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Indexed: 10/28/2022]
Abstract
Paired associative stimulation (PAS), combining transcranial magnetic stimulation (TMS) with electrical peripheral nerve stimulation (PNS) in pairs with an optimal interstimulus interval (ISI) in between, has been shown to influence the excitability of the motor cortex (MC) in humans. However, the underlying mechanisms remain unclear. This study was designed to explore an optimal protocol of PAS, which can modulate the excitability of MC in rats, and to investigate the underlying mechanisms. The resting motor thresholds (RMTs) of TMS-elicited motor evoked potentials (MEPs) recorded from the gastrocnemius muscle and the latency of P1 component of somatosensory evoked potentials (SEPs) induced by electrical tibial nerve stimulation were determined in male Sprague-Dawley rats (n=10). Sixty rats were then randomly divided into 3 groups: a PAS group (further divided into 10 subgroups at various ISIs calculated by using the latency of P1, n=5, respectively), a TMS (only) group (n=5) and a PNS (only) group (n=5). Ninety repetitions of PAS, TMS and PNS were administered to the rats in the 3 groups, respectively, at the frequency of 0.05 Hz and the intensity of TMS at 120% RMT and that of PNS at 6 mA. RMTs and motor evoked potentials' amplitude (MEPamp) were recorded before and immediately after the interventions. It was found that the MEPamp significantly decreased after PAS at ISI of 5 ms (P<0.05), while the MEPamp significantly increased after PAS at ISI of 15 ms, as compared with those before the intervention (P<0.05). However, the RMT did not change significantly after PAS at ISI of 5 ms or 15 ms (P>0.05). PAS at other ISIs as well as the sole use of TMS and PNS induced no remarkable changes in MEPamp and RMT. In conclusion, PAS can influence motor cortex excitability in rats. Neither TMS alone nor PNS alone shows significant effect.
Collapse
|
9
|
Walker CL, Zhang YP, Liu Y, Li Y, Walker MJ, Liu NK, Shields CB, Xu XM. Anatomical and functional effects of lateral cervical hemicontusion in adult rats. Restor Neurol Neurosci 2018; 34:389-400. [PMID: 27163248 DOI: 10.3233/rnn-150597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Cervical injuries are the most common form of spinal cord injury (SCI), and are often complicated by pathological secondary damage. Therefore, cervical SCI is of great clinical importance for understanding pathology and potential therapies. Here we utilize a weight drop cervical hemi-contusion injury model using a NYU/MASCIS impactor that produced graded anatomical and functional deficits. METHODS Three groups of rats were established: 1) Sham (laminectomy only) (n = 6), 12.5 mm weight drop (n = 10), and 25 mm weight drop (n = 10) SCI groups. Forelimb functional assessments of grooming ability, cereal manipulation, and forepaw adhesive removal were performed weekly after injury. Using transcranial magnetic motor evoked potentials (tcMMEPs), supraspinal motor stimulations were recorded in both forelimbs and hindlimbs at 5 and 28d post-injury. Lesion volume and myelinated tissue area were assessed through histological analysis. RESULTS A 12.5 mm weight drop height produced considerable tissue damage compared to Sham animals, while a 25 mm drop induced even greater damage than the 12.5 mm drop (p < 0.05). Forelimb functional assessments showed that increased injury severity and tissue damage was correlated to the degree of forelimb functional deficits. Interestingly, the hindlimbs showed little to no motor function loss. Upon tcMMEP stimulation, surprisingly little motor signal was recorded in the hindlimbs despite outward evidence of hindlimb motor recovery. CONCLUSIONS Our findings highlight a correlation between anatomical damage and functional outcome in a graded cervical hemi-contusion model, and support a loss of descending motor control from supraspinal inputs and intraspinal plasticity that promote spontaneous hindlimb functional recovery in this model.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yucheng Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yiping Li
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa J Walker
- Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Wu W, Xiong W, Zhang P, Chen L, Fang J, Shields C, Xu XM, Jin X. Increased threshold of short-latency motor evoked potentials in transgenic mice expressing Channelrhodopsin-2. PLoS One 2017; 12:e0178803. [PMID: 28562670 PMCID: PMC5451077 DOI: 10.1371/journal.pone.0178803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023] Open
Abstract
Transgenic mice that express channelrhodopsin-2 or its variants provide a powerful tool for optogenetic study of the nervous system. Previous studies have established that introducing such exogenous genes usually does not alter anatomical, electrophysiological, and behavioral properties of neurons in these mice. However, in a line of Thy1-ChR2-YFP transgenic mice (line 9, Jackson lab), we found that short-latency motor evoked potentials (MEPs) induced by transcranial magnetic stimulation had a longer latency and much lower amplitude than that of wild type mice. MEPs evoked by transcranial electrical stimulation also had a much higher threshold in ChR2 mice, although similar amplitudes could be evoked in both wild and ChR2 mice at maximal stimulation. In contrast, long-latency MEPs evoked by electrically stimulating the motor cortex were similar in amplitude and latency between wild type and ChR2 mice. Whole-cell patch clamp recordings from layer V pyramidal neurons of the motor cortex in ChR2 mice revealed no significant differences in intrinsic membrane properties and action potential firing in response to current injection. These data suggest that corticospinal tract is not accountable for the observed abnormality. Motor behavioral assessments including BMS score, rotarod, and grid-walking test showed no significant differences between the two groups. Because short-latency MEPs are known to involve brainstem reticulospinal tract, while long-latency MEPs mainly involve primary motor cortex and dorsal corticospinal tract, we conclude that this line of ChR2 transgenic mice has normal function of motor cortex and dorsal corticospinal tract, but reduced excitability and responsiveness of reticulospinal tracts. This abnormality needs to be taken into account when using these mice for related optogenetic study.
Collapse
Affiliation(s)
- Wei Wu
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wenhui Xiong
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky, United States of America
| | - Lifang Chen
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Zhejiang Chinese Medical University, Hangzhou, China
| | - Christopher Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky, United States of America
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoming Jin
- Department of Neurological Surgery, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.,Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
11
|
Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury. Spinal Cord 2016; 54:942-946. [PMID: 27067652 PMCID: PMC5399155 DOI: 10.1038/sc.2016.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/16/2023]
Abstract
Study design: This is a randomized controlled prospective trial with two parallel groups. Objectives: The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. Setting: This study was conducted in SCS Research Center in Colorado, USA. Methods: A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long–Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Results: Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. Conclusion: TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.
Collapse
|
12
|
Ma Z, Zhang YP, Liu W, Yan G, Li Y, Shields LBE, Walker M, Chen K, Huang W, Kong M, Lu Y, Brommer B, Chen X, Xu XM, Shields CB. A controlled spinal cord contusion for the rhesus macaque monkey. Exp Neurol 2016; 279:261-273. [PMID: 26875994 DOI: 10.1016/j.expneurol.2016.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/23/2023]
Abstract
Most in vivo spinal cord injury (SCI) experimental models use rodents. Due to the anatomical and functional differences between rodents and humans, reliable large animal models, such as non-human primates, of SCI are critically needed to facilitate translation of laboratory discoveries to clinical applications. Here we report the establishment of a controlled spinal contusion model that produces severity-dependent functional and histological deficits in non-human primates. Six adult male rhesus macaque monkeys underwent mild to moderate contusive SCI using 1.0 and 1.5mm tissue displacement injuries at T9 or sham laminectomy (n=2/group). Multiple assessments including motor-evoked potential (MEP), somatosensory-evoked potential (SSEP), MR imaging, and monkey hindlimb score (MHS) were performed. Monkeys were sacrificed at 6 months post-injury, and the lesion area was examined for cavitation, axons, myelin, and astrocytic responses. The MHS demonstrated that both the 1.0 and 1.5mm displacement injuries created discriminative neurological deficits which were severity-dependent. The MEP response rate was depressed after a 1.0mm injury and was abolished after a 1.5mm injury. The SSEP response rate was slightly decreased following both the 1.0 and 1.5mm SCI. MRI imaging demonstrated an increase in T2 signal at the lesion site at 3 and 6months, and diffusion tensor imaging (DTI) tractography showed interrupted fiber tracts at the lesion site at 4h and at 6 months post-SCI. Histologically, severity-dependent spinal cord atrophy, axonal degeneration, and myelin loss were found after both injury severities. Notably, strong astrocytic gliosis was not observed at the lesion penumbra in the monkey. In summary, we describe the development of a clinically-relevant contusive SCI model that produces severity-dependent anatomical and functional deficits in non-human primates. Such a model may advance the translation of novel SCI repair strategies to the clinic.
Collapse
Affiliation(s)
- Zhengwen Ma
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Wei Liu
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Guofeng Yan
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yao Li
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kemin Chen
- Department of Radiology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei Huang
- Department of Radiology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yi Lu
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - Benedikt Brommer
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Xiao-Ming Xu
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
13
|
Zhang Y, Zhang YP, Pepinsky B, Huang G, Shields LBE, Shields CB, Mi S. Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol 2015; 266:68-73. [PMID: 25681574 DOI: 10.1016/j.expneurol.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
Abstract
Blocking LINGO-1 has been shown to enhance remyelination in the rat lysolecithin-induced focal spinal cord demyelination model. We used transcranial magnetic motor-evoked potentials (tcMMEPs) to assess the effect of blocking LINGO-1 on recovery of axonal function in a mouse lysolecithin model at 1, 2 and 4weeks after injury. The role of LINGO-1 was assessed using LINGO-1 knockout (KO) mice and in wild-type mice after intraperitoneal administration of anti-LINGO-1 antagonist monoclonal antibody (mAb3B5). Response rates (at 2 and 4weeks) and amplitudes (at 4weeks) were significantly increased in LINGO-1 KO and mAb3B5-treated mice compared with matched controls. The latency of potentials at 4weeks was significantly shorter in mAb3B5-treated mice compared with controls. Lesion areas in LINGO-1 KO and mAb3B5-treated mice were reduced significantly compared with matched controls. The number of remyelinated axons within the lesions was increased and the G-ratios of the axons were decreased in both LINGO-1 KO and mAb3B5-treated mice compared with matched controls. These data provide morphometric and functional evidence of enhancement of remyelination associated with antagonism of LINGO-1.
Collapse
Affiliation(s)
- Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China.
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 E. Gray Street, Suite 1102, Louisville, KY 40202, USA.
| | - Blake Pepinsky
- Department of Discovery Biology, Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | - Guanrong Huang
- Department of Discovery Biology, Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 E. Gray Street, Suite 1102, Louisville, KY 40202, USA.
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 E. Gray Street, Suite 1102, Louisville, KY 40202, USA.
| | - Sha Mi
- Department of Discovery Biology, Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Rotem A, Neef A, Neef NE, Agudelo-Toro A, Rakhmilevitch D, Paulus W, Moses E. Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields. PLoS One 2014; 9:e86794. [PMID: 24505266 PMCID: PMC3914799 DOI: 10.1371/journal.pone.0086794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist.
Collapse
Affiliation(s)
- Assaf Rotem
- Department of Physics and SEAS, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andreas Neef
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| | - Nicole E. Neef
- Department of Clinical Neurophysiology, University Medicine Goettingen, Goettingen, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andres Agudelo-Toro
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University Medicine Goettingen, Goettingen, Germany
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
15
|
Iglesias-Bregna D, Hanak S, Ji Z, Petty M, Liu L, Zhang D, McMonagle-Strucko K. Effects of prophylactic and therapeutic teriflunomide in transcranial magnetic stimulation-induced motor-evoked potentials in the dark agouti rat model of experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther 2013; 347:203-11. [PMID: 23892570 DOI: 10.1124/jpet.113.205146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Teriflunomide is a once-daily oral immunomodulatory agent recently approved in the United States for the treatment of relapsing multiple sclerosis (RMS). This study investigated neurophysiological deficits in descending spinal cord motor tracts during experimental autoimmune encephalomyelitis (EAE; a model of multiple sclerosis) and the functional effectiveness of prophylactic or therapeutic teriflunomide treatment in preventing the debilitating paralysis observed in this model. Relapsing-remitting EAE was induced in Dark Agouti rats using rat spinal cord homogenate. Animals were treated with oral teriflunomide (10 mg/kg daily) prophylactically, therapeutically, or with vehicle (control). Transcranial magnetic motor-evoked potentials were measured throughout the disease to provide quantitative assessment of the neurophysiological status of descending motor tracts. Axonal damage was quantified histologically by silver staining. Both prophylactic and therapeutic teriflunomide treatment significantly reduced maximum EAE disease scores (P < 0.0001 and P = 0.0001, respectively) compared with vehicle-treated rats. Electrophysiological recordings demonstrated that both teriflunomide treatment regimens prevented a delay in wave-form latency and a decrease in wave-form amplitude compared with that observed in vehicle-treated animals. A significant reduction in axonal loss was observed with both teriflunomide treatment regimens compared with vehicle (P < 0.0001 and P = 0.0014, respectively). The results of this study suggest that therapeutic teriflunomide can prevent the deficits observed in this animal model in descending spinal cord motor tracts. The mechanism behind reduced axonal loss and improved motor function may be primarily the reduced inflammation and consequent demyelination observed in these animals through the known effects of teriflunomide on impairing proliferation of stimulated T cells. These findings may have significant implications for patients with RMS.
Collapse
|
16
|
Cai J, Zhang YP, Shields LBE, Zhang ZZ, Liu N, Xu XM, Feng SQ, Shields CB. Correlation between electrophysiological properties, morphological maturation, and olig gene changes during postnatal motor tract development. Dev Neurobiol 2013; 73:713-22. [PMID: 23696057 DOI: 10.1002/dneu.22094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/05/2022]
Abstract
This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor-evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin-relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte-lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts.
Collapse
Affiliation(s)
- Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gu Z, Li F, Zhang YP, Shields LBE, Hu X, Zheng Y, Yu P, Zhang Y, Cai J, Vitek MP, Shields CB. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice. ACTA ACUST UNITED AC 2013; 2014:10. [PMID: 25642353 PMCID: PMC4309015 DOI: 10.4172/2155-9562.s12-010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. Methods A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. Results The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. Conclusion The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, China ; Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Fengqiao Li
- Cognosci, Inc. Research Triangle Park, NC 27709, USA ; Department of Neurology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Xiaoling Hu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yiyan Zheng
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Panpan Yu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yongjie Zhang
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Michael P Vitek
- Cognosci, Inc. Research Triangle Park, NC 27709, USA ; Department of Neurology, Duke University Medical Center, Durham, 27708, NC, USA
| | | |
Collapse
|
18
|
Hemisection spinal cord injury in rat: the value of intraoperative somatosensory evoked potential monitoring. J Neurosci Methods 2012; 211:179-84. [PMID: 22960163 DOI: 10.1016/j.jneumeth.2012.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 01/14/2023]
Abstract
Techniques used to produce partial spinal cord injuries in animal models have the potential for creating variability in lesions. The amount of tissue affected may influence the functional outcomes assessed in the animals. The recording of somatosensory evoked potentials (SSEPs) may be a valuable tool for assessing the extent of lesion applied in animal models of traumatic spinal cord injury (SCI). Intraoperative tibial SSEP recordings were assessed during surgically induced lateral thoracic hemisection SCI in Sprague-Dawley rats. The transmission of SSEPs, or lack thereof, was determined and compared against the integrity of the dorsal funiculi on each side of the spinal cord upon histological sectioning. An association was found between the presence of an SSEP signal and presence of intact dorsal funiculus tissue. The relative risk is 4.50 (95% confidence interval: 1.83-11.08) for having an intact dorsal funiculus when the ipsilateral SSEP was present compared to when it was absent. Additionally, the amount of spared spinal cord tissue correlates with final functional assessments at nine weeks post injury: BBB (linear regression, R²=0.618, p<0.001) and treadmill test (linear regression, R²=0.369, p=0.016). Therefore, we propose intraoperative SSEP monitoring as a valuable tool to assess extent of lesion and reduce variability between animals in experimental studies of SCI.
Collapse
|
19
|
Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A. Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation 2012; 15:296-305. [PMID: 22780329 PMCID: PMC5764706 DOI: 10.1111/j.1525-1403.2012.00482.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular. A significant increase in the number of rat TMS publications has necessitated analysis of their relevance to human work. We therefore review the essential principles for the approximation of human TMS protocols in rats as well as specific methods that addressed these issues in published studies. MATERIALS AND METHODS We performed an English language literature search combined with our own experience and data. We address issues that we see as important in the translation of human TMS methods to rat models and provide a summary of key accomplishments in these areas. RESULTS An extensive literature review illustrated the growth of rodent TMS studies in recent years. Current advances in the translation of single, paired-pulse, and repetitive stimulation paradigms to rodent models are presented. The importance of TMS in the generation of data for preclinical trials is also highlighted. CONCLUSIONS Rat TMS has several limitations when considering parallels between animal and human stimulation. However, it has proven to be a useful tool in the field of translational brain stimulation and will likely continue to aid in the design and implementation of stimulation protocols for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Andrew M. Vahabzadeh-Hagh
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul A. Muller
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Roman Gersner
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Abraham Zangen
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Rotenberg
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Zhang SX, Huang F, Gates M, Holmberg EG. Somatosensory evoked potentials can be recorded on the midline of the skull with subdermal electrodes in non-sedated rats elicited by magnetic stimulation of the tibial nerve. J Neurosci Methods 2012; 208:114-8. [PMID: 22579876 DOI: 10.1016/j.jneumeth.2012.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 11/20/2022]
Abstract
Somatosensory evoked potentials (SSEPs) are a sensitive quantitative measure of conduction in somatosensory pathways of the central nervous system and are increasingly used in both clinical trials and animal experiments. SSEPs can be recorded in non-sedated rodents by magnetic stimulation (MS) of peripheral nerves. To overcome some disadvantages caused by using anesthesia and implanted recording electrodes, we used subdermal needle electrodes located on the midline of the skull to successfully record SSEPs in non-sedated rats, elicited by stimulating the tibial nerve with a magnetic stimulator. The wave form contains a typical P1 peak and N1 peak. Although there is a variation of P1 latency, N1 latency, and P1-N1 amplitude between right side and left side, it was not statistically significant. In addition, there is a significantly positive relationship between P1-N1 amplitude and MS strength, suggesting that the increase in magnetic stimulating strength resulted in the increase in P1-N1 amplitude. Results in the present study demonstrate that our modified method is a reliable and feasible paradigm for recording SSEPs in non-sedated rats.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Spinal Cord Society Research Center, Fort Collins, CO 80526, USA.
| | | | | | | |
Collapse
|
21
|
Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 2011; 226:495-508. [PMID: 21953180 DOI: 10.1002/path.2980] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/24/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.
Collapse
Affiliation(s)
- Jun Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 2010; 105:615-24. [PMID: 21160011 DOI: 10.1152/jn.00660.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paired-pulse transcranial magnetic stimulation (ppTMS) is a noninvasive method to measure cortical inhibition in vivo. Long interpulse interval (50-500 ms) ppTMS (LI-ppTMS) provokes intracortical inhibitory circuits and can reveal pathologically impaired cortical inhibition in disorders such as epilepsy. Adaptation of ppTMS protocols to rodent disease models is highly desirable to facilitate basic and translational research. We previously adapted single-pulse TMS (spTMS) methods to rats, but ppTMS has yet to be applied. Specifically, whether ppTMS elicits an inhibitory response in rodents is unknown. ppTMS in rats also requires anesthesia, a setting under which the preservation of these measures is undetermined. We therefore tested, in anesthetized rats, whether anesthetic choice affects spTMS-motor-evoked potentials (MEPs), LI-ppTMS in rats, as in humans, elicits intracortical inhibition of the MEP, and rat LI-ppTMS inhibition is acutely impaired in a seizure model. Rats were anesthetized with pentobarbital (PB) or ketamine-atropine-xylazine (KAX) and stimulated unilaterally over the motor cortex while recording bilateral brachioradialis MEPs. LI-ppTMS was applied analogous to human long interval intracortical inhibition (LICI) protocols, and acute changes in inhibition were evaluated following injection of the convulsant pentylenetetrazole (PTZ). We find that spTMS-evoked MEPs were reliably present under either anesthetic, and that LI-ppTMS elicits inhibition of the conditioned MEP in rats, similar to human LICI, by as much as 58 ± 12 and 71 ± 11% under PB and KAX anesthesia, respectively. LI-ppTMS inhibition was reduced to as much as 53% of saline controls following PTZ injection, while spTMS-derived measures of corticospinal excitability were unchanged. Our data show that regional inhibition, similar to human LICI, is present in rats, can be elicited under PB or KAX anesthesia, and is reduced following convulsant administration. These results suggest a potential for LI-ppTMS as a biomarker of impaired cortical inhibition in murine disease models.
Collapse
|
24
|
Hill RL, Zhang YP, Burke DA, Devries WH, Zhang Y, Magnuson DSK, Whittemore SR, Shields CB. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. J Neurotrauma 2009; 26:1-15. [PMID: 19196178 DOI: 10.1089/neu.2008.0543] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To study the pathophysiology of spinal cord injury (SCI), we used the LISA-Vibraknife to generate a precise and reproducible dorsal laceration SCI in the mouse. The surgical procedure involved a T9 laminectomy, dural resection, and a spinal cord laceration to a precisely controlled depth. Four dorsal hemisection injuries with lesion depths of 0.5, 0.8, 1.1, and 1.4 mm, as well as normal, sham (laminectomy and dural removal only), and transection controls were examined. Assessments including the Basso Mouse Scale (BMS), footprint analysis, beam walk, toe spread reflex, Hargreaves' test, and transcranial magnetic motor-evoked potential (tcMMEP) analysis were performed to assess motor, sensorimotor, and sensory function. These outcome measures demonstrated significant increases in functional deficits as the depth of the lesion increased, and significant behavioral recovery was observed in the groups over time. Quantitative histological examination showed significant differences between the injury groups and insignificant lesion depth variance within each of the groups. Statistically significant differences were additionally found in the amount of ventral spared tissue at the lesion site between the injury groups. This novel, graded, reproducible laceration SCI model can be used in future studies to look more closely at underlying mechanisms that lead to functional deficits following SCI, as well as to determine the efficacy of therapeutic intervention strategies in the injury and recovery processes following SCI.
Collapse
Affiliation(s)
- Rachel L Hill
- Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou H, Huang C, Yang M, Landel CP, Xia PY, Liu YJ, Xia XG. Developing tTA transgenic rats for inducible and reversible gene expression. Int J Biol Sci 2009; 5:171-81. [PMID: 19214245 PMCID: PMC2640494 DOI: 10.7150/ijbs.5.171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 11/30/2022] Open
Abstract
To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases.
Collapse
Affiliation(s)
- Hongxia Zhou
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang YP, Burke DA, Shields LBE, Chekmenev SY, Dincman T, Zhang Y, Zheng Y, Smith RR, Benton RL, DeVries WH, Hu X, Magnuson DSK, Whittemore SR, Shields CB. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J Neurotrauma 2009; 25:1227-40. [PMID: 18986224 DOI: 10.1089/neu.2007.0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contusive spinal cord injury (SCI) is the most common type of spinal injury seen clinically. Several rat contusion SCI models have been described, and all have strengths and weaknesses with respect to sensitivity, reproducibility, and clinical relevance. We developed the Louisville Injury System Apparatus (LISA), which contains a novel spine-stabilizing device that enables precise and stable spine fixation, and is based on tissue displacement to determine the severity of injury. Injuries graded from mild to moderately severe were produced using 0.2-, 0.4-, 0.6-, 0.8-, 1.0-, and 1.2-mm spinal cord displacement in rats. Basso, Beattie, and Bresnahan (BBB) and Louisville Swim Score (LSS) could not significantly distinguish between 0.2-mm lesion severities, except those of 0.6- and 0.8-mm BBB scores, but could between 0.4-mm injury differences or if the data were grouped (0.2-0.4, 0.6-0.8, and 1.0-1.2). Transcranial magnetic motor evoked potential (tcMMEP) response amplitudes were decreased 10-fold at 0.2-mm displacement, barely detected at 0.4-mm displacement, and absent with greater displacement injuries. In contrast, somatosensory evoked potentials (SSEPs) were recorded at 0.2- and 0.4-mm displacements with normal amplitudes and latencies but were detected at lower amplitudes at 0.6-mm displacement and absent with more severe injuries. Analyzing combined BBB, tcMMEP, and SSEP results enabled statistically significant discrimination between 0.2-, 0.4-, 0.6-, and 0.8-mm displacement injuries but not the more severe injuries. Present data document that the LISA produces reliable and reproducible SCI whose parameters of injury can be adjusted to more accurately reflect clinical SCI. Moreover, multiple outcome measures are necessary to accurately detect small differences in functional deficits and/or recovery. This is of crucial importance when trying to detect functional improvement after therapeutic intervention to treat SCI.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci 2008; 28:7293-303. [PMID: 18632933 DOI: 10.1523/jneurosci.1826-08.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury causes progressive secondary tissue degeneration, leaving many injured people with neurological disabilities. There are no satisfactory neuroprotective treatments. Protein tyrosine phosphatases inactivate neurotrophic factor receptors and downstream intracellular signaling molecules. Thus, we tested whether the peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV(phen)], a stable, potent and selective protein tyrosine phosphatase inhibitor, would be neuroprotective after a thoracic spinal cord contusion in adult rats. Intrathecal bpV(phen) infusions through a lumbar puncture rescued dorsal column sensory axons innervating the nucleus gracilis and white matter at the injury epicenter. At the most effective dose, essentially all of these axons and most of the white matter at the epicenter were spared (vs approximately 60% with control infusions). bpV(phen) treatments started 4 h after contusion were fully effective. This treatment greatly improved and normalized sensorimotor function in a grid-walking test and provided complete axonal protection over 6 weeks. The treatment rescued sensory-evoked potentials that disappeared after dorsal column transection. bpV(phen) affected early degenerative mechanisms, because the main effects were seen at 7 d and lasted beyond the treatment period. The neuroprotection appeared to be mediated by rescue of blood vessels. bpV(phen) reduced apoptosis of cultured endothelial cells. These results show that a small molecule, used in a clinically relevant manner, reduces loss of long-projecting axons, myelin, blood vessels, and function in a model relevant to the most common type of spinal cord injury in humans. They reveal a novel mechanism of spinal cord degeneration involving protein tyrosine phosphatases that can be targeted with therapeutic drugs.
Collapse
|