1
|
Schieferstein N, Del Toro A, Evangelista R, Imbrosci B, Swaminathan A, Schmitz D, Maier N, Kempter R. Propagation of sharp wave-ripple activity in the mouse hippocampal CA3 subfield in vitro. J Physiol 2024; 602:5039-5059. [PMID: 39216085 DOI: 10.1113/jp285671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Sharp wave-ripple complexes (SPW-Rs) are spontaneous oscillatory events that characterize hippocampal activity during resting periods and slow-wave sleep. SPW-Rs are related to memory consolidation - the process during which newly acquired memories are transformed into long-lasting memory traces. To test the involvement of SPW-Rs in this process, it is crucial to understand how SPW-Rs originate and propagate throughout the hippocampus. SPW-Rs can originate in CA3, and they typically spread from CA3 to CA1, but little is known about their formation within CA3. To investigate the generation and propagation of SPW-Rs in CA3, we recorded from mouse hippocampal slices using multi-electrode arrays and patch-clamp electrodes. We characterized extracellular and intracellular correlates of SPW-Rs and quantified their propagation along the pyramidal cell layer of CA3. We found that a hippocampal slice can be described by a speed and a direction of propagation of SPW-Rs. The preferred propagation direction was from CA3c (the subfield closer to the dentate gyrus) toward CA3a (the subfield at the boundary to CA2). In patch-clamp recordings from CA3 pyramidal neurons, propagation was estimated separately for excitatory and inhibitory currents associated with SPW-Rs. We found that propagation speed and direction of excitatory and inhibitory currents were correlated. The magnitude of the speed of propagation of SPW-Rs within CA3 was consistent with the speed of propagation of action potentials in axons of CA3 principal cells. KEY POINTS: Hippocampal sharp waves are considered important for memory consolidation; therefore, it is of interest to understand the mechanisms of their generation and propagation. Here, we used two different approaches to study the propagation of sharp waves in mouse CA3 in vitro: multi-electrode arrays and multiple single-cell recordings. We find a preferred direction of propagation of sharp waves from CA3c toward CA3a - both in the local field potential and in sharp wave-associated excitatory and inhibitory synaptic activity. The speed of sharp wave propagation is consistent with the speed of action potential propagation along the axons of CA3 pyramidal neurons. These new insights into the dynamics of sharp waves in the CA3 network will inform future experiments and theoretical models of sharp-wave generation mechanisms.
Collapse
Affiliation(s)
- Natalie Schieferstein
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Ana Del Toro
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Roberta Evangelista
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Barbara Imbrosci
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Aarti Swaminathan
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
- Einstein Center for Neurosciences (ECN) Berlin, Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Richard Kempter
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences (ECN) Berlin, Berlin, Germany
| |
Collapse
|
2
|
Antolík J, Cagnol R, Rózsa T, Monier C, Frégnac Y, Davison AP. A comprehensive data-driven model of cat primary visual cortex. PLoS Comput Biol 2024; 20:e1012342. [PMID: 39167628 PMCID: PMC11371232 DOI: 10.1371/journal.pcbi.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Knowledge integration based on the relationship between structure and function of the neural substrate is one of the main targets of neuroinformatics and data-driven computational modeling. However, the multiplicity of data sources, the diversity of benchmarks, the mixing of observables of different natures, and the necessity of a long-term, systematic approach make such a task challenging. Here we present a first snapshot of a long-term integrative modeling program designed to address this issue in the domain of the visual system: a comprehensive spiking model of cat primary visual cortex. The presented model satisfies an extensive range of anatomical, statistical and functional constraints under a wide range of visual input statistics. In the presence of physiological levels of tonic stochastic bombardment by spontaneous thalamic activity, the modeled cortical reverberations self-generate a sparse asynchronous ongoing activity that quantitatively matches a range of experimentally measured statistics. When integrating feed-forward drive elicited by a high diversity of visual contexts, the simulated network produces a realistic, quantitatively accurate interplay between visually evoked excitatory and inhibitory conductances; contrast-invariant orientation-tuning width; center surround interactions; and stimulus-dependent changes in the precision of the neural code. This integrative model offers insights into how the studied properties interact, contributing to a better understanding of visual cortical dynamics. It provides a basis for future development towards a comprehensive model of low-level perception.
Collapse
Affiliation(s)
- Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- INSERM UMRI S 968; Sorbonne Université, UPMC Univ Paris 06, UMR S 968; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Rémy Cagnol
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Tibor Rózsa
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Cyril Monier
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Yves Frégnac
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Andrew P. Davison
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| |
Collapse
|
3
|
Shirani F, Choi H. On the physiological and structural contributors to the overall balance of excitation and inhibition in local cortical networks. J Comput Neurosci 2024; 52:73-107. [PMID: 37837534 PMCID: PMC11582336 DOI: 10.1007/s10827-023-00863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/25/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
Overall balance of excitation and inhibition in cortical networks is central to their functionality and normal operation. Such orchestrated co-evolution of excitation and inhibition is established through convoluted local interactions between neurons, which are organized by specific network connectivity structures and are dynamically controlled by modulating synaptic activities. Therefore, identifying how such structural and physiological factors contribute to establishment of overall balance of excitation and inhibition is crucial in understanding the homeostatic plasticity mechanisms that regulate the balance. We use biologically plausible mathematical models to extensively study the effects of multiple key factors on overall balance of a network. We characterize a network's baseline balanced state by certain functional properties, and demonstrate how variations in physiological and structural parameters of the network deviate this balance and, in particular, result in transitions in spontaneous activity of the network to high-amplitude slow oscillatory regimes. We show that deviations from the reference balanced state can be continuously quantified by measuring the ratio of mean excitatory to mean inhibitory synaptic conductances in the network. Our results suggest that the commonly observed ratio of the number of inhibitory to the number of excitatory neurons in local cortical networks is almost optimal for their stability and excitability. Moreover, the values of inhibitory synaptic decay time constants and density of inhibitory-to-inhibitory network connectivity are critical to overall balance and stability of cortical networks. However, network stability in our results is sufficiently robust against modulations of synaptic quantal conductances, as required by their role in learning and memory. Our study based on extensive bifurcation analyses thus reveal the functional optimality and criticality of structural and physiological parameters in establishing the baseline operating state of local cortical networks.
Collapse
Affiliation(s)
- Farshad Shirani
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA.
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA
| |
Collapse
|
4
|
Akbarian F, Rossi C, Costers L, D'hooghe MB, D'haeseleer M, Nagels G, Van Schependom J. The spectral slope as a marker of excitation/inhibition ratio and cognitive functioning in multiple sclerosis. Hum Brain Mapp 2023; 44:5784-5794. [PMID: 37672569 PMCID: PMC10619404 DOI: 10.1002/hbm.26476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by neuronal and synaptic loss, resulting in an imbalance of excitatory and inhibitory synaptic transmission and potentially cognitive impairment. Current methods for measuring the excitation/inhibition (E/I) ratio are mostly invasive, but recent research combining neurocomputational modeling with measurements of local field potentials has indicated that the slope with which the power spectrum of neuronal activity captured by electro- and/or magnetoencephalography rolls off, is a non-invasive biomarker of the E/I ratio. A steeper roll-off is associated with a stronger inhibition. This novel method can be applied to assess the E/I ratio in people with multiple sclerosis (pwMS), detect the effect of medication such as benzodiazepines, and explore its utility as a biomarker for cognition. We recruited 44 healthy control subjects and 95 pwMS who underwent resting-state magnetoencephalographic recordings. The 1/f spectral slope of the neural power spectra was calculated for each subject and for each brain region. As expected, the spectral slope was significantly steeper in pwMS treated with benzodiazepines (BZDs) compared to pwMS not receiving BZDs (p = .01). In the sub-cohort of pwMS not treated with BZDs, we observed a steeper slope in cognitively impaired pwMS compared to cognitively preserved pwMS (p = .01) and healthy subjects (p = .02). Furthermore, we observed a significant correlation between 1/f spectral slope and verbal and spatial working memory functioning in the brain regions located in the prefrontal and parietal cortex. In this study, we highlighted the value of the spectral slope in MS by quantifying the effect of benzodiazepines and by putting it forward as a potential biomarker of cognitive deficits in pwMS.
Collapse
Affiliation(s)
- Fahimeh Akbarian
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Chiara Rossi
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Lars Costers
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
- icometrixLeuvenBelgium
| | | | - Miguel D'haeseleer
- National MS Center MelsbroekMelsbroekBelgium
- Department of NeurologyUZ BrusselBrusselsBelgium
| | - Guy Nagels
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
- Department of NeurologyUZ BrusselBrusselsBelgium
- St Edmund HallUniversity of OxfordOxfordUK
| | - Jeroen Van Schependom
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
5
|
Bergoin R, Torcini A, Deco G, Quoy M, Zamora-López G. Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli. Sci Rep 2023; 13:6949. [PMID: 37117236 PMCID: PMC10147639 DOI: 10.1038/s41598-023-34165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Brain circuits display modular architecture at different scales of organization. Such neural assemblies are typically associated to functional specialization but the mechanisms leading to their emergence and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role of partially synchronized dynamics for the creation and maintenance of structural modules in neural circuits by considering a network of excitatory and inhibitory [Formula: see text]-neurons with plastic Hebbian synapses. The learning process consists of an entrainment to temporally alternating stimuli that are applied to separate regions of the network. This entrainment leads to the emergence of modular structures. Contrary to common practice in artificial neural networks-where the acquired weights are typically frozen after the learning session-we allow for synaptic adaptation even after the learning phase. We find that the presence of inhibitory neurons in the network is crucial for the emergence and the post-learning consolidation of the modular structures. Indeed networks made of purely excitatory neurons or of neurons not respecting Dale's principle are unable to form or to maintain the modular architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in the network is directly related to the maximal number of neural assemblies that can be consolidated, supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.
Collapse
Affiliation(s)
- Raphaël Bergoin
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France.
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain.
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 2 Av. Adolphe Chauvin, 95032, Cergy-Pontoise, France
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | - Mathias Quoy
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France
- IPAL, CNRS, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Gorka Zamora-López
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
| |
Collapse
|
6
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Shirani F, Choi H. On the physiological and structural contributors to the overall balance of excitation and inhibition in local cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523489. [PMID: 36711468 PMCID: PMC9882012 DOI: 10.1101/2023.01.10.523489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Overall balance of excitation and inhibition in cortical networks is central to their functionality and normal operation. Such orchestrated co-evolution of excitation and inhibition is established through convoluted local interactions between neurons, which are organized by specific network connectivity structures and are dynamically controlled by modulating synaptic activities. Therefore, identifying how such structural and physiological factors contribute to establishment of overall balance of excitation and inhibition is crucial in understanding the homeostatic plasticity mechanisms that regulate the balance. We use biologically plausible mathematical models to extensively study the effects of multiple key factors on overall balance of a network. We characterize a network's baseline balanced state by certain functional properties, and demonstrate how variations in physiological and structural parameters of the network deviate this balance and, in particular, result in transitions in spontaneous activity of the network to high-amplitude slow oscillatory regimes. We show that deviations from the reference balanced state can be continuously quantified by measuring the ratio of mean excitatory to mean inhibitory synaptic conductances in the network. Our results suggest that the commonly observed ratio of the number of inhibitory to the number of excitatory neurons in local cortical networks is almost optimal for their stability and excitability. Moreover, the values of inhibitory synaptic decay time constants and density of inhibitory-to-inhibitory network connectivity are critical to overall balance and stability of cortical networks. However, network stability in our results is sufficiently robust against modulations of synaptic quantal conductances, as required by their role in learning and memory.
Collapse
|
8
|
From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans. Transl Psychiatry 2022; 12:467. [PMID: 36344497 PMCID: PMC9640647 DOI: 10.1038/s41398-022-02218-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs' Syndrome, intellectual disability). Hypotheses related to E/I dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity-an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available, in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG) features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to understand the link between underlying E/I mechanisms and measurement techniques.
Collapse
|
9
|
Müller-Komorowska D, Parabucki A, Elyasaf G, Katz Y, Beck H, Lampl I. A novel theoretical framework for simultaneous measurement of excitatory and inhibitory conductances. PLoS Comput Biol 2021; 17:e1009725. [PMID: 34962935 PMCID: PMC8746761 DOI: 10.1371/journal.pcbi.1009725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
The firing of neurons throughout the brain is determined by the precise relations between excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric diseases. Whether or not these inputs covary over time or between repeated stimuli remains unclear due to the lack of experimental methods for measuring both inputs simultaneously. We developed a new analytical framework for instantaneous and simultaneous measurements of both the excitatory and inhibitory neuronal inputs during a single trial under current clamp recording. This can be achieved by injecting a current composed of two high frequency sinusoidal components followed by analytical extraction of the conductances. We demonstrate the ability of this method to measure both inputs in a single trial under realistic recording constraints and from morphologically realistic CA1 pyramidal model cells. Future experimental implementation of our new method will facilitate the understanding of fundamental questions about the health and disease of the nervous system. Most neurons in the brain receive synaptic inputs from both excitatory and inhibitory neurons. Together, these inputs determine neuronal activity: excitatory synapses shift the electrical potential across the membrane towards the threshold for generation of action potentials, whereas inhibitory synapses lower this potential away from the threshold. Action potentials are the rapid electrochemical signals that transmit information to other neurons and they are critical for the information processing abilities of the brain. Although there are many ways to measure either excitatory or inhibitory inputs, these methods have been unable to measure both at the same time. Measuring both inputs together is essential towards understanding how neurons integrate information. We developed a new analytical method to measure excitatory and inhibitory inputs at the same time from the voltage response to injection of an alternating current into a neuron. We describe the foundation of this new method and find that it works in biologically realistic simulations of neurons. By using this technique in real neurons, scientists could investigate basic principles of information processing in the healthy and diseased brain.
Collapse
Affiliation(s)
- Daniel Müller-Komorowska
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, Bonn, Germany.,International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Ana Parabucki
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Elyasaf
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yonatan Katz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Zhang Y, Yao L, Li X, Meng M, Shang Z, Wang Q, Xiao J, Gu X, Xu Z, Zhang X. Schizophrenia risk-gene Crmp2 deficiency causes precocious critical period plasticity and deteriorated binocular vision. Sci Bull (Beijing) 2021; 66:2225-2237. [PMID: 36654114 DOI: 10.1016/j.scib.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
Abstract
Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2 (CRMP2) in the mouse recapitulates many schizophrenia-like behaviors of human patients, possibly resulting from associated developmental deficits in neuronal differentiation, path-finding, and synapse formation. However, it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity. By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex (V1), we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period (CP) for experience-dependent circuit plasticity of sensory cortex. In the developing V1, the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity - coincident binocular inputs right after eye-opening. Mechanistically, the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development. Moreover, the precocious CP plasticity results in deteriorated binocular depth perception in adulthood. Thus, these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Meizhen Meng
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaying Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Gu
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
To MS, Honnuraiah S, Stuart GJ. Voltage Clamp Errors During Estimation of Concurrent Excitatory and Inhibitory Synaptic Input to Neurons with Dendrites. Neuroscience 2021; 489:98-110. [PMID: 34480986 DOI: 10.1016/j.neuroscience.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
The whole-cell voltage clamp technique is commonly used to estimate synaptic conductances. While previous work has shown how these estimates are affected by series resistance and space clamp errors during isolated synaptic events, how voltage clamp errors impact on synaptic conductance estimates during concurrent excitation and inhibition is less clear. This issue is particularly relevant given that many studies now use the whole-cell voltage clamp technique to estimate synaptic conductances in vivo, where both excitation and inhibition are intact. Using both simplistic and morphologically realistic models, we investigate how imperfect voltage clamp conditions distort estimates of excitatory and inhibitory synaptic conductance estimated using the Borg-Graham method during concurrent synaptic input onto dendrites. These simulations demonstrate that dendritically located conductances are underestimated even when dynamic clamp reinjection faithfully reproduces the voltage response at the soma to the actual conductances. Inhibitory conductances are underestimated more than excitatory conductances, leading to errors in the excitatory to inhibitory conductance ratio and negative inhibitory conductance estimates during distal inhibition. Interactions between unclamped dendritic excitatory and inhibitory conductances also introduce correlations when the actual conductances are uncorrelated, as well as distortions in the time course of estimated excitatory and inhibitory conductances. Finally, we show that space clamp errors are exacerbated by the inclusion of dendritic voltage-activated conductances. In summary, we highlight issues with the interpretation of synaptic conductance estimates obtained using somatic whole-cell voltage clamp during concurrent excitatory and inhibitory input to neurons with dendrites.
Collapse
Affiliation(s)
- Minh-Son To
- Eccles Institute of Neuroscience and Australian Research Council Centre of Excellence for Integrative Brain Function, John Curtin School of Medical Research, Australian National University, Canberra, Australia; Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Suraj Honnuraiah
- Eccles Institute of Neuroscience and Australian Research Council Centre of Excellence for Integrative Brain Function, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience and Australian Research Council Centre of Excellence for Integrative Brain Function, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
12
|
Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, Samama K, Moreau M, Bemelmans AP, Sabatet V, Dingli F, Loew D, Milleret C, Billuart P, Dallérac G, Rouach N. Astrocytes close the mouse critical period for visual plasticity. Science 2021; 373:77-81. [PMID: 34210880 DOI: 10.1126/science.abf5273] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix-degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA-guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.
Collapse
Affiliation(s)
- Jérôme Ribot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Rachel Breton
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°568, Paris Saclay University, PSL Research University, Le Kremlin Bicetre, France.,Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°158, Sorbonne University, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Kevin Samama
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Matthieu Moreau
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic and Development of Cerebral Cortex Laboratory, GHU Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, Paris, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Valentin Sabatet
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Pierre Billuart
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic and Development of Cerebral Cortex Laboratory, GHU Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, Paris, France
| | - Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
13
|
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R. Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 2021; 11:10783. [PMID: 34031442 PMCID: PMC8144184 DOI: 10.1038/s41598-021-88960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Collapse
Affiliation(s)
- Jan Antolik
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00, Prague 1, Czechia.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Quentin Sabatier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Charlie Galle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), NeuroPSI, Gif-sur-Yvette, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
- University of Pittsburgh, McGowan Institute, 3025 E Carson St, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Chizhov A, Merkulyeva N. Refractory density model of cortical direction selectivity: Lagged-nonlagged, transient-sustained, and On-Off thalamic neuron-based mechanisms and intracortical amplification. PLoS Comput Biol 2020; 16:e1008333. [PMID: 33052899 PMCID: PMC7605712 DOI: 10.1371/journal.pcbi.1008333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/02/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
A biophysically detailed description of the mechanisms of the primary vision is still being developed. We have incorporated a simplified, filter-based description of retino-thalamic visual signal processing into the detailed, conductance-based refractory density description of the neuronal population activity of the primary visual cortex. We compared four mechanisms of the direction selectivity (DS), three of them being based on asymmetrical projections of different types of thalamic neurons to the cortex, distinguishing between (i) lagged and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mechanism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions between orientation columns. The simulations of the cortical response to moving gratings have verified that first three mechanisms provide DS to an extent compared with experimental data and that the biophysical model realistically reproduces characteristics of the visual cortex activity, such as membrane potential, firing rate, and synaptic conductances. The proposed model reveals the difference between the mechanisms of both the intact and the silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but significant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives from the nonlinear interactions within the orientation map. Results of simulations can help to identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive biophysical modeling of the primary visual system in the frameworks of the population rate coding concept. A major mechanism that underlies tuning of cortical neurons to the direction of a moving stimulus is still debated. Considering the visual cortex structured with orientation-selective columns, we have realized and compared in our biophysically detailed mathematical model four hypothetical mechanisms of the direction selectivity (DS) known from experiments. The present model accomplishes our previous model that was tuned to experimental data on excitability in slices and reproduces orientation tuning effects in vivo. In simulations, we have found that the convergence of inputs from so-called transient and sustained (or lagged and nonlagged) thalamic neurons in the cortex provides an initial bias for DS, whereas cortical interactions amplify the tuning. In the absence of any bias, DS emerges as an epiphenomenon of the orientation map. In the case of a biased convergence of On- and Off- thalamic inputs, DS emerges with the help of the intracortical interactions on the orientation map, also. Thus, we have proposed a comprehensive description of the primary vision and revealed characteristic features of different mechanisms of DS in the visual cortex with columnar structure.
Collapse
Affiliation(s)
- Anton Chizhov
- Ioffe Institute, St.-Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, St.-Petersburg, Russia
- * E-mail:
| | | |
Collapse
|
15
|
Kostka JK, Gretenkord S, Spehr M, Hanganu-Opatz IL. Bursting mitral cells time the oscillatory coupling between olfactory bulb and entorhinal networks in neonatal mice. J Physiol 2020; 598:5753-5769. [PMID: 32926437 DOI: 10.1113/jp280131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During early postnatal development, mitral cells show either irregular bursting or non-bursting firing patterns Bursting mitral cells preferentially fire during theta bursts in the neonatal olfactory bulb, being locked to the theta phase Bursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phase Bursting mitral cells act as a cellular substrate of the olfactory drive that promotes the oscillatory entrainment of entorhinal networks ABSTRACT: Shortly after birth, the olfactory system provides not only the main source of environmental inputs to blind, deaf, non-whisking and motorically-limited rodents, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here, we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to early patterns of network activity in both the neonatal olfactory bulb (OB) and the lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in the OB. However, the temporal spike-theta phase coupling is stronger for bursting than non-bursting MCs. In line with the direct OB-to-LEC projections, both bursting and non-bursting discharge augments during co-ordinated patterns of entorhinal activity, albeit with higher magnitude for bursting MCs. For these neurons, temporal coupling to the discontinuous theta events in the LEC is stronger. Thus, bursting MCs might drive the entrainment of the OB-LEC network during neonatal development.
Collapse
Affiliation(s)
- Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Gretenkord
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Li B, Routh BN, Johnston D, Seidemann E, Priebe NJ. Voltage-Gated Intrinsic Conductances Shape the Input-Output Relationship of Cortical Neurons in Behaving Primate V1. Neuron 2020; 107:185-196.e4. [PMID: 32348717 DOI: 10.1016/j.neuron.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022]
Abstract
Neurons are input-output (I/O) devices-they receive synaptic inputs from other neurons, integrate those inputs with their intrinsic properties, and generate action potentials as outputs. To understand this fundamental process, we studied the interaction between synaptic inputs and intrinsic properties using whole-cell recordings from V1 neurons of awake, fixating macaque monkeys. Our measurements during spontaneous activity and visual stimulation reveal an intrinsic voltage-gated conductance that profoundly alters the integrative properties and visual responses of cortical neurons. This voltage-gated conductance increases neuronal gain and selectivity with subthreshold depolarization and linearizes the relationship between synaptic input and neural output. This intrinsic conductance is found in layer 2/3 V1 neurons of awake macaques, anesthetized mice, and acute brain slices. These results demonstrate that intrinsic conductances play an essential role in shaping the I/O relationship of cortical neurons and must be taken into account in future models of cortical computations.
Collapse
Affiliation(s)
- Baowang Li
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Brandy N Routh
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Eyal Seidemann
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Nicholas J Priebe
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, Bian T, Yuan T, Niu L, Guo Y, Zheng H. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 2020; 10:5514-5526. [PMID: 32373225 PMCID: PMC7196311 DOI: 10.7150/thno.40520] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity pulsed ultrasound has been employed for direct neuro-modulation. However, its range and effectiveness for different neurological disorders have not been fully elucidated. Methods: We used multiple approaches of electrophysiology, immunohistochemistry, and behavioral tests as potential epilepsy treatments in non-human primate model of epilepsy and human epileptic tissues. Low-intensity pulsed ultrasound with a frequency of 750 kHz and acoustic pressure of 0.35 MPa (the spatial peak pulse average intensity, ISPPA = 2.02 W/cm2) were delivered to the epileptogenic foci in five penicillin-induced epileptic monkey models. An ultrasound neuro-modulation system with a frequency of 28 MHz and acoustic pressure of 0.13 MPa (ISPPA = 465 mW/cm2) compatible with patch-clamp systems was used to stimulate the brain slices prepared from fifteen patients with epilepsy. Results: After 30 min of low-intensity pulsed ultrasound treatment, total seizure count for 16 hours (sham group: 107.7 ± 1.2, ultrasound group: 66.0 ± 7.9, P < 0.01) and seizure frequency per hour (sham group: 15.6 ± 1.2, ultrasound group: 9.6 ± 1.5, P < 0.05) were significantly reduced. The therapeutic efficacy and underlying potential mechanism of low-intensity pulsed ultrasound treatment were studied in biopsy specimens from epileptic patients in vitro. Ultrasound stimulation could inhibit epileptiform activities with an efficiency exceeding 65%, potentially due to adjusting the balance of excitatory-inhibitory (E/I) synaptic inputs by the increased activity of local inhibitory neurons. Conclusion: Herein, we demonstrated for the first time that low-intensity pulsed ultrasound improves electrophysiological activities and behavioral outcomes in a non-human primate model of epilepsy and suppresses epileptiform activities of neurons from human epileptic slices. The study provides evidence for the potential clinical use of non-invasive low-intensity pulsed ultrasound stimulation for epilepsy treatment.
Collapse
|
18
|
Guet-McCreight A, Skinner FK. Computationally going where experiments cannot: a dynamical assessment of dendritic ion channel currents during in vivo-like states. F1000Res 2020; 9:180. [PMID: 32595950 PMCID: PMC7309567 DOI: 10.12688/f1000research.22584.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Despite technological advances, how specific cell types are involved in brain function remains shrouded in mystery. Further, little is known about the contribution of different ion channel currents to cell excitability across different neuronal subtypes and their dendritic compartments
in vivo. The picture that we do have is largely based on somatic recordings performed
in vitro. Uncovering
dendritic ion channel current contributions in neuron subtypes that represent a minority of the neuronal population is not currently a feasible task using purely experimental means. Methods: We employ two morphologically-detailed multi-compartment models of a specific type of inhibitory interneuron, the oriens lacunosum moleculare (OLM) cell. The OLM cell is a well-studied cell type in CA1 hippocampus that is important in gating sensory and contextual information. We create
in vivo-like states for these cellular models by including levels of synaptic bombardment that would occur
in vivo. Using visualization tools and analyses we assess the ion channel current contribution profile across the different somatic and dendritic compartments of the models. Results: We identify changes in dendritic excitability, ion channel current contributions and co-activation patterns between
in vitro and
in vivo-like states. Primarily, we find that the relative timing between ion channel currents are mostly invariant between states, but exhibit changes in magnitudes and decreased propagation across dendritic compartments. We also find enhanced dendritic hyperpolarization-activated cyclic nucleotide-gated channel (h-channel) activation during
in vivo-like states, which suggests that dendritically located h-channels are functionally important in altering signal propagation in the behaving animal. Conclusions: Overall, we have demonstrated, using computational modelling, the dynamical changes that can occur to ion channel mechanisms governing neuronal spiking. Simultaneous access to dendritic compartments during simulated
in vivo states shows that the magnitudes of some ion channel current contributions are differentially altered during
in vivo-like states relative to
in vitro.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Frances K Skinner
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wu J, Aton SJ, Booth V, Zochowski M. Network and cellular mechanisms underlying heterogeneous excitatory/inhibitory balanced states. Eur J Neurosci 2020; 51:1624-1641. [PMID: 31903627 DOI: 10.1111/ejn.14669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
Recent work has explored spatiotemporal relationships between excitatory (E) and inhibitory (I) signaling within neural networks, and the effect of these relationships on network activity patterns. Data from these studies have indicated that excitation and inhibition are maintained at a similar level across long time periods and that excitatory and inhibitory currents may be tightly synchronized. Disruption of this balance-leading to an aberrant E/I ratio-is implicated in various brain pathologies. However, a thorough characterization of the relationship between E and I currents in experimental settings is largely impossible, due to their tight regulation at multiple cellular and network levels. Here, we use biophysical neural network models to investigate the emergence and properties of balanced states by heterogeneous mechanisms. Our results show that a network can homeostatically regulate the E/I ratio through interactions among multiple cellular and network factors, including average firing rates, synaptic weights and average neural depolarization levels in excitatory/inhibitory populations. Complex and competing interactions between firing rates and depolarization levels allow these factors to alternately dominate network dynamics in different synaptic weight regimes. This leads to the emergence of distinct mechanisms responsible for determining a balanced state and its dynamical correlate. Our analysis provides a comprehensive picture of how E/I ratio changes when manipulating specific network properties, and identifies the mechanisms regulating E/I balance. These results provide a framework to explain the diverse, and in some cases, contradictory experimental observations on the E/I state in different brain states and conditions.
Collapse
Affiliation(s)
- Jiaxing Wu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michal Zochowski
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Physics, University of Michigan, Ann Arbor, MI, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Abstract
Modeling single-neuron dynamics is the first step to quantitatively understand brain computation. Yet, the existing point neuron models fail to capture dendritic effects, which are crucial for neuronal information processing. We derive an effective point neuron model, which incorporates an additional synaptic integration current arising from the nonlinear interaction between synaptic currents across spatial dendrites. Our model captures the somatic voltage response of a neuron with complex dendrites and is capable of performing rich dendritic computations. Besides its computational efficiency in simulations, our model suggests reexamination of previous studies involving the decomposition of excitatory and inhibitory synaptic inputs based on the existing point neuron framework, e.g., the inhibition is often underestimated in experiment. Complex dendrites in general present formidable challenges to understanding neuronal information processing. To circumvent the difficulty, a prevalent viewpoint simplifies the neuronal morphology as a point representing the soma, and the excitatory and inhibitory synaptic currents originated from the dendrites are treated as linearly summed at the soma. Despite its extensive applications, the validity of the synaptic current description remains unclear, and the existing point neuron framework fails to characterize the spatiotemporal aspects of dendritic integration supporting specific computations. Using electrophysiological experiments, realistic neuronal simulations, and theoretical analyses, we demonstrate that the traditional assumption of linear summation of synaptic currents is oversimplified and underestimates the inhibition effect. We then derive a form of synaptic integration current within the point neuron framework to capture dendritic effects. In the derived form, the interaction between each pair of synaptic inputs on the dendrites can be reliably parameterized by a single coefficient, suggesting the inherent low-dimensional structure of dendritic integration. We further generalize the form of synaptic integration current to capture the spatiotemporal interactions among multiple synaptic inputs and show that a point neuron model with the synaptic integration current incorporated possesses the computational ability of a spatial neuron with dendrites, including direction selectivity, coincidence detection, logical operation, and a bilinear dendritic integration rule discovered in experiment. Our work amends the modeling of synaptic inputs and improves the computational power of a modeling neuron within the point neuron framework.
Collapse
|
21
|
Li S, Liu N, Yao L, Zhang X, Zhou D, Cai D. Determination of effective synaptic conductances using somatic voltage clamp. PLoS Comput Biol 2019; 15:e1006871. [PMID: 30835719 PMCID: PMC6420044 DOI: 10.1371/journal.pcbi.1006871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/15/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
The interplay between excitatory and inhibitory neurons imparts rich functions of the brain. To understand the synaptic mechanisms underlying neuronal computations, a fundamental approach is to study the dynamics of excitatory and inhibitory synaptic inputs of each neuron. The traditional method of determining input conductance, which has been applied for decades, employs the synaptic current-voltage (I-V) relation obtained via voltage clamp. Due to the space clamp effect, the measured conductance is different from the local conductance on the dendrites. Therefore, the interpretation of the measured conductance remains to be clarified. Using theoretical analysis, electrophysiological experiments, and realistic neuron simulations, here we demonstrate that there does not exist a transform between the local conductance and the conductance measured by the traditional method, due to the neglect of a nonlinear interaction between the clamp current and the synaptic current in the traditional method. Consequently, the conductance determined by the traditional method may not correlate with the local conductance on the dendrites, and its value could be unphysically negative as observed in experiment. To circumvent the challenge of the space clamp effect and elucidate synaptic impact on neuronal information processing, we propose the concept of effective conductance which is proportional to the local conductance on the dendrite and reflects directly the functional influence of synaptic inputs on somatic membrane potential dynamics, and we further develop a framework to determine the effective conductance accurately. Our work suggests re-examination of previous studies involving conductance measurement and provides a reliable approach to assess synaptic influence on neuronal computation. To understand synaptic mechanisms underlying neuronal computations, a fundamental approach is to use voltage clamp to measure the dynamics of excitatory and inhibitory input conductances. Due to the space clamp effect, the measured conductance in general deviates from the local input conductance on the dendrites, hence its biological interpretation is questionable, as we demonstrate in this work. We further propose the concept of effective conductance that is proportional to the local input conductance on the dendrites and reflects directly the synaptic impact on spike generation, and develop a framework to determine the effective conductance reliably. Our work provides a biologically plausible metric for elucidating synaptic influence on neuronal computation under the constraint of the space clamp effect.
Collapse
Affiliation(s)
- Songting Li
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (XZ); (DZ)
| | - Douglas Zhou
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (XZ); (DZ)
| | - David Cai
- School of Mathematical Sciences, MOE-LSC, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, New York, United States of America
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Habtegiorgis SW, Jarvers C, Rifai K, Neumann H, Wahl S. The Role of Bottom-Up and Top-Down Cortical Interactions in Adaptation to Natural Scene Statistics. Front Neural Circuits 2019; 13:9. [PMID: 30814934 PMCID: PMC6381060 DOI: 10.3389/fncir.2019.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Adaptation is a mechanism by which cortical neurons adjust their responses according to recently viewed stimuli. Visual information is processed in a circuit formed by feedforward (FF) and feedback (FB) synaptic connections of neurons in different cortical layers. Here, the functional role of FF-FB streams and their synaptic dynamics in adaptation to natural stimuli is assessed in psychophysics and neural model. We propose a cortical model which predicts psychophysically observed motion adaptation aftereffects (MAE) after exposure to geometrically distorted natural image sequences. The model comprises direction selective neurons in V1 and MT connected by recurrent FF and FB dynamic synapses. Psychophysically plausible model MAEs were obtained from synaptic changes within neurons tuned to salient direction signals of the broadband natural input. It is conceived that, motion disambiguation by FF-FB interactions is critical to encode this salient information. Moreover, only FF-FB dynamic synapses operating at distinct rates predicted psychophysical MAEs at different adaptation time-scales which could not be accounted for by single rate dynamic synapses in either of the streams. Recurrent FF-FB pathways thereby play a role during adaptation in a natural environment, specifically in inducing multilevel cortical plasticity to salient information and in mediating adaptation at different time-scales.
Collapse
Affiliation(s)
| | - Christian Jarvers
- Faculty of Engineering, Computer Sciences and Psychology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Katharina Rifai
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Heiko Neumann
- Faculty of Engineering, Computer Sciences and Psychology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Faculty of Engineering, Computer Sciences and Psychology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Using computational models to predict in vivo synaptic inputs to interneuron specific 3 (IS3) cells of CA1 hippocampus that also allow their recruitment during rhythmic states. PLoS One 2019; 14:e0209429. [PMID: 30620732 PMCID: PMC6324795 DOI: 10.1371/journal.pone.0209429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
Collapse
|
24
|
Williams LE, Holtmaat A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition. Neuron 2019; 101:91-102.e4. [DOI: 10.1016/j.neuron.2018.10.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
|
25
|
Frégnac Y. Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science 2018; 358:470-477. [PMID: 29074766 DOI: 10.1126/science.aan8866] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain.
Collapse
Affiliation(s)
- Yves Frégnac
- Unité de Neuroscience, Information et Complexité (UNIC-CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Zhou S, Yu Y. Synaptic E-I Balance Underlies Efficient Neural Coding. Front Neurosci 2018; 12:46. [PMID: 29456491 PMCID: PMC5801300 DOI: 10.3389/fnins.2018.00046] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.
Collapse
Affiliation(s)
- Shanglin Zhou
- State Key Laboratory of Medical Neurobiology, School of Life Science and the Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and the Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Berg RW. Commentary: Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. Front Neural Circuits 2018; 12:1. [PMID: 29403360 PMCID: PMC5778114 DOI: 10.3389/fncir.2018.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/04/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Rune W Berg
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Method of experimental synaptic conductance estimation: Limitations of the basic approach and extension to voltage-dependent conductances. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased. J Neurosci 2017; 38:595-612. [PMID: 29196320 DOI: 10.1523/jneurosci.2099-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Inhibition in thalamorecipient layer 4 simple cells of primary visual cortex is believed to play important roles in establishing visual response properties and integrating visual inputs across their receptive fields (RFs). Simple cell RFs are characterized by nonoverlapping, spatially restricted subregions in which visual stimuli can either increase or decrease the firing rate of the cell, depending on contrast. Inhibition is believed to be triggered exclusively from visual stimulation of individual RF subregions. However, this view is at odds with the known anatomy of layer 4 interneurons in visual cortex and differs from recent findings in mouse visual cortex. Here we show with in vivo intracellular recordings in cats that while excitation is restricted to RF subregions, inhibition spans the width of simple cell RFs. Consequently, excitatory stimuli within a subregion concomitantly drive excitation and inhibition. Furthermore, we found that the distribution of inhibition across the RF is stronger toward OFF subregions. This inhibitory OFF-subregion bias has a functional consequence on spatial integration of inputs across the RF. A model based on the known anatomy of layer 4 demonstrates that the known proportion and connectivity of inhibitory neurons in layer 4 of primary visual cortex is sufficient to explain broad inhibition with an OFF-subregion bias while generating a variety of phase relations, including antiphase, between excitation and inhibition in response to drifting gratings.SIGNIFICANCE STATEMENT The wiring of excitatory and inhibitory neurons in cortical circuits is key to determining the response properties in sensory cortex. In the visual cortex, the first cells that receive visual input are simple cells in layer 4. The underlying circuitry responsible for the response properties of simple cells is not yet known. In this study, we challenge a long-held view concerning the pattern of inhibitory input and provide results that agree with current known anatomy. We show here that inhibition is evoked broadly across the receptive fields of simple cells, and we identify a surprising bias in inhibition within the receptive field. Our findings represent a step toward a unified view of inhibition across different species and sensory systems.
Collapse
|
30
|
Freed MA. Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs. J Physiol 2017; 595:6979-6991. [PMID: 28913831 PMCID: PMC5685833 DOI: 10.1113/jp274736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ABSTRACT ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on the SNR of the spike output.
Collapse
Affiliation(s)
- Michael A. Freed
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
31
|
Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 2017; 158:70-78. [DOI: 10.1016/j.neuroimage.2017.06.078] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023] Open
|
32
|
Amakhin DV, Malkin SL, Ergina JL, Kryukov KA, Veniaminova EA, Zubareva OE, Zaitsev AV. Alterations in Properties of Glutamatergic Transmission in the Temporal Cortex and Hippocampus Following Pilocarpine-Induced Acute Seizures in Wistar Rats. Front Cell Neurosci 2017; 11:264. [PMID: 28912687 PMCID: PMC5584016 DOI: 10.3389/fncel.2017.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Kirill A Kryukov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia.,Federal Almazov North-West Medical Research Centre, Institute of Experimental MedicineSaint Petersburg, Russia
| |
Collapse
|
33
|
Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. J Neurosci 2017; 37:9239-9248. [PMID: 28842417 DOI: 10.1523/jneurosci.0800-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022] Open
Abstract
Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas continuous low-level concurrent inhibition and excitation may contribute to irregular firing.SIGNIFICANCE STATEMENT Neurons embedded in active neural networks can enter a high-conductance state. High-conductance states were observed in spinal motoneurons during rhythmic motor behavior. Assuming no change in intrinsic conductance, it was suggested that the high-conductance state in motoneurons originated from balanced inhibition and excitation. In this study, we demonstrate that intrinsic outward rectification significantly contributes to the high-conductance state. Outward rectification balances synaptic excitation and maintains membrane potential near spike threshold. In addition, direct synaptic current recordings show out-of-phase excitation and inhibition in motoneurons during rhythmic network activity.
Collapse
|
34
|
Kobayashi R, Nishimaru H, Nishijo H, Lansky P. A single spike deteriorates synaptic conductance estimation. Biosystems 2017; 161:41-45. [PMID: 28756162 DOI: 10.1016/j.biosystems.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
We investigated the estimation accuracy of synaptic conductances by analyzing simulated voltage traces generated by a Hodgkin-Huxley type model. We show that even a single spike substantially deteriorates the estimation. We also demonstrate that two approaches, namely, negative current injection and spike removal, can ameliorate this deterioration.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan; Department of Informatics, Graduate University for Advanced Studies (Sokendai), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Petr Lansky
- Institute of Physiology, The Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| |
Collapse
|
35
|
Vich C, Berg RW, Guillamon A, Ditlevsen S. Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Front Comput Neurosci 2017; 11:69. [PMID: 28790909 PMCID: PMC5524927 DOI: 10.3389/fncom.2017.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures for the models tested here.
Collapse
Affiliation(s)
- Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes BalearsPalma, Spain
| | - Rune W Berg
- Center for Neuroscience, University of CopenhagenCopenhagen, Denmark
| | - Antoni Guillamon
- Departament de Matemàtiques, Universitat Politècnica de CatalunyaBarcelona, Spain
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
36
|
Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming. J Neurosci 2017; 36:5799-807. [PMID: 27225769 DOI: 10.1523/jneurosci.0320-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature of spinal motor network activity. SIGNIFICANCE STATEMENT Neurons embedded in active neural networks can enter high-conductance states with irregular firing. This was previously shown for spinal motoneurons during scratching. Because scratching is highly specialized rhythmic behavior, it is not known whether high-conductance states and irregular firing are a peculiarity for motoneurons during scratching. Here, using intracellular recordings from motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles, we demonstrate that irregular firing and high-conductance states are present not only during scratching but also during swimming. Our findings suggest that irregular firing and high-conductance states could be a general feature for motor behaviors.
Collapse
|
37
|
Roland PE, Bonde LH, Forsberg LE, Harvey MA. Breaking the Excitation-Inhibition Balance Makes the Cortical Network's Space-Time Dynamics Distinguish Simple Visual Scenes. Front Syst Neurosci 2017; 11:14. [PMID: 28377701 PMCID: PMC5360108 DOI: 10.3389/fnsys.2017.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions over the whole network to a flow on a low-(3)-dimensional manifold within 80 ms. In contrast to the pure temporal dynamics, the low dimensional flow evolved to distinguish the simple visual scenes.
Collapse
Affiliation(s)
- Per E Roland
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars H Bonde
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars E Forsberg
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Michael A Harvey
- Department of Physiology, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
38
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
39
|
A Mammalian Retinal Ganglion Cell Implements a Neuronal Computation That Maximizes the SNR of Its Postsynaptic Currents. J Neurosci 2016; 37:1468-1478. [PMID: 28039376 DOI: 10.1523/jneurosci.2814-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
Neurons perform computations by integrating excitatory and inhibitory synaptic inputs. Yet, it is rarely understood what computation is being performed, or how much excitation or inhibition this computation requires. Here we present evidence for a neuronal computation that maximizes the signal-to-noise power ratio (SNR). We recorded from OFF delta retinal ganglion cells in the guinea pig retina and monitored synaptic currents that were evoked by visual stimulation (flashing dark spots). These synaptic currents were mediated by a decrease in an outward current from inhibitory synapses (disinhibition) combined with an increase in an inward current from excitatory synapses. We found that the SNR of combined excitatory and disinhibitory currents was voltage sensitive, peaking at membrane potentials near resting potential. At the membrane potential for maximal SNR, the amplitude of each current, either excitatory or disinhibitory, was proportional to its SNR. Such proportionate scaling is the theoretically best strategy for combining excitatory and disinhibitory currents to maximize the SNR of their combined current. Moreover, as spot size or contrast changed, the amplitudes of excitatory and disinhibitory currents also changed but remained in proportion to their SNRs, indicating a dynamic rebalancing of excitatory and inhibitory currents to maximize SNR.SIGNIFICANCE STATEMENT We present evidence that the balance of excitatory and disinhibitory inputs to a type of retinal ganglion cell maximizes the signal-to-noise ratio power ratio (SNR) of its postsynaptic currents. This is significant because chemical synapses on a retinal ganglion cell require the probabilistic release of transmitter. Consequently, when the same visual stimulus is presented repeatedly, postsynaptic currents vary in amplitude. Thus, maximizing SNR may be a strategy for producing the most reliable signal possible given the inherent unreliability of synaptic transmission.
Collapse
|
40
|
Amakhin DV, Ergina JL, Chizhov AV, Zaitsev AV. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex. Front Cell Neurosci 2016; 10:233. [PMID: 27790093 PMCID: PMC5061778 DOI: 10.3389/fncel.2016.00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia; Computational Physics Laboratory, Division of Plasma Physics, Atomic Physics and Astrophysics, Ioffe InstituteSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| |
Collapse
|
41
|
Jacob V, Mitani A, Toyoizumi T, Fox K. Whisker row deprivation affects the flow of sensory information through rat barrel cortex. J Neurophysiol 2016; 117:4-17. [PMID: 27707809 PMCID: PMC5209544 DOI: 10.1152/jn.00289.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/01/2016] [Indexed: 11/24/2022] Open
Abstract
Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity. Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the “sensory information” contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance. NEW & NOTEWORTHY Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity.
Collapse
Affiliation(s)
- Vincent Jacob
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Akinori Mitani
- RIKEN Brain Science Institute, Wako, Saitama, Japan; and.,Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| |
Collapse
|
42
|
Kardamakis AA, Pérez-Fernández J, Grillner S. Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum. eLife 2016; 5. [PMID: 27635636 PMCID: PMC5026466 DOI: 10.7554/elife.16472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/14/2016] [Indexed: 11/23/2022] Open
Abstract
Animals integrate the different senses to facilitate event-detection for navigation in their environment. In vertebrates, the optic tectum (superior colliculus) commands gaze shifts by synaptic integration of different sensory modalities. Recent works suggest that tectum can elaborate gaze reorientation commands on its own, rather than merely acting as a relay from upstream/forebrain circuits to downstream premotor centers. We show that tectal circuits can perform multisensory computations independently and, hence, configure final motor commands. Single tectal neurons receive converging visual and electrosensory inputs, as investigated in the lamprey - a phylogenetically conserved vertebrate. When these two sensory inputs overlap in space and time, response enhancement of output neurons occurs locally in the tectum, whereas surrounding areas and temporally misaligned inputs are inhibited. Retinal and electrosensory afferents elicit local monosynaptic excitation, quickly followed by inhibition via recruitment of GABAergic interneurons. Multisensory inputs can thus regulate event-detection within tectum through local inhibition without forebrain control. DOI:http://dx.doi.org/10.7554/eLife.16472.001 Many events occur around us simultaneously, which we detect through our senses. A critical task is to decide which of these events is the most important to look at in a given moment of time. This problem is solved by an ancient area of the brain called the optic tectum (known as the superior colliculus in mammals). The different senses are represented as superimposed maps in the optic tectum. Events that occur in different locations activate different areas of the map. Neurons in the optic tectum combine the responses from different senses to direct the animal’s attention and increase how reliably important events are detected. If an event is simultaneously registered by two senses, then certain neurons in the optic tectum will enhance their activity. By contrast, if two senses provide conflicting information about how different events progress, then these same neurons will be silenced. While this phenomenon of ‘multisensory integration’ is well described, little is known about how the optic tectum performs this integration. Kardamakis, Pérez-Fernández and Grillner have now studied multisensory integration in fish called lampreys, which belong to the oldest group of backboned animals. These fish can navigate using electroreception – the ability to detect electrical signals from the environment. Experiments that examined the connections between neurons in the optic tectum and monitored their activity revealed a neural circuit that consists of two types of neurons: inhibitory interneurons, and projecting neurons that connect the optic tectum to different motor centers in the brainstem. The circuit contains neurons that can receive inputs from both vision and electroreception when these senses are both activated from the same point in space. Incoming signals from the two senses activate the areas on the sensory maps that correspond to the location where the event occurred. This triggers the activity of the interneurons, which immediately send ‘stop’ signals. Thus, while an area of the sensory map and its output neurons are activated, the surrounding areas of the tectum are inhibited. Overall, the findings presented by Kardamakis, Pérez-Fernández and Grillner suggest that the optic tectum can direct attention to a particular event without requiring input from other brain areas. This ability has most likely been preserved throughout evolution. Future studies will aim to determine how the commands generated by the optic tectum circuit are translated into movements. DOI:http://dx.doi.org/10.7554/eLife.16472.002
Collapse
Affiliation(s)
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Kobayashi R, Nishimaru H, Nishijo H. Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity. Neuroscience 2016; 335:72-81. [PMID: 27561702 DOI: 10.1016/j.neuroscience.2016.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 11/28/2022]
Abstract
The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. However, it is often difficult to obtain sufficient data to estimate synaptic conductances due to technical difficulties in electrophysiological experiments using in vivo or in vitro preparations. To address this problem, we estimated the average variations in excitatory and inhibitory synaptic conductance during a locomotion cycle from a single voltage trace without measuring the leak parameters. We found that the conductance variations can be accurately reconstructed from a voltage trace of 10 cycles by analyzing synthetic data generated from a computational model. Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-0003, Japan; Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
44
|
Denève S, Machens CK. Efficient codes and balanced networks. Nat Neurosci 2016; 19:375-82. [PMID: 26906504 DOI: 10.1038/nn.4243] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Recent years have seen a growing interest in inhibitory interneurons and their circuits. A striking property of cortical inhibition is how tightly it balances excitation. Inhibitory currents not only match excitatory currents on average, but track them on a millisecond time scale, whether they are caused by external stimuli or spontaneous fluctuations. We review, together with experimental evidence, recent theoretical approaches that investigate the advantages of such tight balance for coding and computation. These studies suggest a possible revision of the dominant view that neurons represent information with firing rates corrupted by Poisson noise. Instead, tight excitatory/inhibitory balance may be a signature of a highly cooperative code, orders of magnitude more precise than a Poisson rate code. Moreover, tight balance may provide a template that allows cortical neurons to construct high-dimensional population codes and learn complex functions of their inputs.
Collapse
Affiliation(s)
- Sophie Denève
- Laboratoire de Neurosciences Cognitives, École Normale Supérieure, Paris, France
| | | |
Collapse
|
45
|
Leibold C, Monsalve-Mercado MM. Asymmetry of Neuronal Combinatorial Codes Arises from Minimizing Synaptic Weight Change. Neural Comput 2016; 28:1527-52. [PMID: 27348595 DOI: 10.1162/neco_a_00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic change is a costly resource, particularly for brain structures that have a high demand of synaptic plasticity. For example, building memories of object positions requires efficient use of plasticity resources since objects can easily change their location in space and yet we can memorize object locations. But how should a neural circuit ideally be set up to integrate two input streams (object location and identity) in case the overall synaptic changes should be minimized during ongoing learning? This letter provides a theoretical framework on how the two input pathways should ideally be specified. Generally the model predicts that the information-rich pathway should be plastic and encoded sparsely, whereas the pathway conveying less information should be encoded densely and undergo learning only if a neuronal representation of a novel object has to be established. As an example, we consider hippocampal area CA1, which combines place and object information. The model thereby provides a normative account of hippocampal rate remapping, that is, modulations of place field activity by changes of local cues. It may as well be applicable to other brain areas (such as neocortical layer V) that learn combinatorial codes from multiple input streams.
Collapse
Affiliation(s)
- Christian Leibold
- Department Biology II, Ludwig-Maximilians-Universität München, and Bernstein Center for Computational Neuroscience Munich, 82152 Martisreid, Germany
| | | |
Collapse
|
46
|
Treviño M. Inhibition Controls Asynchronous States of Neuronal Networks. Front Synaptic Neurosci 2016; 8:11. [PMID: 27274721 PMCID: PMC4886282 DOI: 10.3389/fnsyn.2016.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023] Open
Abstract
Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks.
Collapse
Affiliation(s)
- Mario Treviño
- Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|
47
|
Kremkow J, Perrinet LU, Monier C, Alonso JM, Aertsen A, Frégnac Y, Masson GS. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Front Neural Circuits 2016; 10:37. [PMID: 27242445 PMCID: PMC4862982 DOI: 10.3389/fncir.2016.00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.
Collapse
Affiliation(s)
- Jens Kremkow
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille UniversitéMarseille, France; Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany; Department of Biological Sciences, State University of New York (SUNY-Optometry)New York, NY, USA
| | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| | - Cyril Monier
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Jose-Manuel Alonso
- Department of Biological Sciences, State University of New York (SUNY-Optometry) New York, NY, USA
| | - Ad Aertsen
- Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| |
Collapse
|
48
|
Meunier CNJ, Dallérac G, Le Roux N, Sacchi S, Levasseur G, Amar M, Pollegioni L, Mothet JP, Fossier P. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period. PLoS One 2016; 11:e0151233. [PMID: 27003418 PMCID: PMC4803205 DOI: 10.1371/journal.pone.0151233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.
Collapse
Affiliation(s)
- Claire N. J. Meunier
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Glenn Dallérac
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
| | - Nicolas Le Roux
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J.H. Dunant 3, Varese, Italy
- “The Protein Factory”, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR, Milano, Italy
- Università degli Studi dell’Insubria, via Mancinelli 7, Milano, Italy
| | - Grégoire Levasseur
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
| | - Muriel Amar
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J.H. Dunant 3, Varese, Italy
- “The Protein Factory”, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR, Milano, Italy
- Università degli Studi dell’Insubria, via Mancinelli 7, Milano, Italy
| | - Jean-Pierre Mothet
- Aix-Marseille University, CRN2M UMR7286 CNRS, 51 Bd Pierre Dramard, 13344, Marseille, France
- * E-mail: (PF); (JPM)
| | - Philippe Fossier
- Institut de Neuroscience Paris-Saclay (NeuroPSI), UMR 9197 CNRS-Université Paris-Sud, Bât 446, F-91405, Orsay cedex, France
- * E-mail: (PF); (JPM)
| |
Collapse
|
49
|
Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex. Sci Rep 2016; 6:23176. [PMID: 26980663 PMCID: PMC4793223 DOI: 10.1038/srep23176] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/25/2016] [Indexed: 01/20/2023] Open
Abstract
Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.
Collapse
|
50
|
Abstract
Low-level perception results from neural-based computations, which build a multimodal skeleton of unconscious or self-generated inferences on our environment. This review identifies bottleneck issues concerning the role of early primary sensory cortical areas, mostly in rodent and higher mammals (cats and non-human primates), where perception substrates can be searched at multiple scales of neural integration. We discuss the limitation of purely bottom-up approaches for providing realistic models of early sensory processing and the need for identification of fast adaptive processes, operating within the time of a percept. Future progresses will depend on the careful use of comparative neuroscience (guiding the choices of experimental models and species adapted to the questions under study), on the definition of agreed-upon benchmarks for sensory stimulation, on the simultaneous acquisition of neural data at multiple spatio-temporal scales, and on the in vivo identification of key generic integration and plasticity algorithms validated experimentally and in simulations.
Collapse
|