1
|
Hong S, Tomar JS, Shen J. Metabolic coupling between glutamate and N-acetylaspartate in the human brain. J Cereb Blood Flow Metab 2024; 44:1608-1617. [PMID: 38483126 PMCID: PMC11418672 DOI: 10.1177/0271678x241239783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 09/06/2024]
Abstract
A metabolic coupling between glutamate and N-acetylaspartate measured by in vivo magnetic resonance spectroscopy has been recently reported in the literature with inconsistent findings. In this study, confounders originating from Pearson's spurious correlation of ratios and spectral correlation due to overlapping magnetic resonance spectroscopy signals of glutamate and N-acetylaspartate were practically eliminated to facilitate the determination of any metabolic link between glutamate and N-acetylaspartate in the human brain using in vivo magnetic resonance spectroscopy. In both occipital and medial prefrontal cortices of healthy individuals, correlations between glutamate and N-acetylaspartate were found to be insignificant. Our results do not lend support to a recent hypothesis that N-acetylaspartate serves as a significant reservoir for the rapid replenishment of glutamate during signaling or stress.
Collapse
Affiliation(s)
- Sungtak Hong
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jyoti Singh Tomar
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Pinto J, Cera N, Pignatelli D. Psychological symptoms and brain activity alterations in women with PCOS and their relation to the reduced quality of life: a narrative review. J Endocrinol Invest 2024; 47:1-22. [PMID: 38485896 PMCID: PMC11196322 DOI: 10.1007/s40618-024-02329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/03/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common feminine endocrine disorder, characterized by androgen excess, ovulatory dysfunction, and polycystic ovarian morphology. The negative impact of symptoms on the quality of life (QoL) of patients is still not clear. PURPOSE The present review aimed at studying the impact of the symptoms, the psychological symptoms, and brain alterations in women with PCOS. METHODS A systematic search was undertaken for studies that assessed the impact of PCOS symptoms on QoL, psychological symptoms, and brain alterations in PCOS patients. RESULTS Most of the information about QoL came from psychometric studies, which used culture-based questionnaires. Alterations of sleep quality, body image, and mood disorders can negatively affect the QoL of the patients. Sexual satisfaction and desire were affected by PCOS. Brain imaging studies showed functional alterations that are associated with impairments of visuospatial working memory, episodic and verbal memory, attention, and executive function. CONCLUSIONS Several factors can negatively influence the quality of life of the patients, and they are directly related to hyperandrogenism and the risk of infertility. In particular, obesity, hirsutism, acne, and the fear of infertility can have a direct impact on self-esteem and sexual function. Metabolic and psychiatric comorbidities, such as mood, anxiety, and eating disorders, can affect the well-being of the patients. Moreover, specific cognitive alterations, such as impairments in attention and memory, can limit PCOS patients in a series of aspects of daily life.
Collapse
Affiliation(s)
- J Pinto
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - N Cera
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - D Pignatelli
- Department of Endocrinology, Centro Hospitalar Universitário de São João, 4200-319, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Department of Biomedicine, Faculty of Medicine at University of Porto, Porto, Portugal.
- IPATIMUP Research Institute, Porto, Portugal.
| |
Collapse
|
3
|
Nistri R, Ianniello A, Pozzilli V, Giannì C, Pozzilli C. Advanced MRI Techniques: Diagnosis and Follow-Up of Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1120. [PMID: 38893646 PMCID: PMC11171945 DOI: 10.3390/diagnostics14111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Brain and spinal cord imaging plays a pivotal role in aiding clinicians with the diagnosis and monitoring of multiple sclerosis. Nevertheless, the significance of magnetic resonance imaging in MS extends beyond its clinical utility. Advanced imaging modalities have facilitated the in vivo detection of various components of MS pathogenesis, and, in recent years, MRI biomarkers have been utilized to assess the response of patients with relapsing-remitting MS to the available treatments. Similarly, MRI indicators of neurodegeneration demonstrate potential as primary and secondary endpoints in clinical trials targeting progressive phenotypes. This review aims to provide an overview of the latest advancements in brain and spinal cord neuroimaging in MS.
Collapse
Affiliation(s)
- Riccardo Nistri
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Valeria Pozzilli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- MS Center Sant’Andrea Hospital, 00189 Rome, Italy
| |
Collapse
|
4
|
Ziegs T, Ruhm L, Wright A, Henning A. Mapping of glutamate metabolism using 1H FID-MRSI after oral administration of [1-13C]Glc at 9.4 T. Neuroimage 2023; 270:119940. [PMID: 36787828 PMCID: PMC10030312 DOI: 10.1016/j.neuroimage.2023.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023] Open
Abstract
Glutamate is the major excitatory transmitter in the brain and malfunction of the related metabolism is associated with various neurological diseases and disorders. The observation of labeling changes in the spectra after the administration of a 13C labelled tracer is a common tool to gain better insights into the function of the metabolic system. But so far, only a very few studies presenting the labeling effects in more than two voxels to show the spatial dependence of metabolism. In the present work, the labeling effects were measured in a transversal plane in the human brain using ultra-short TE and TR 1H FID-MRSI. The measurement set-up was most simple: The [1-13C]Glc was administered orally instead of intravenous and the spectra were measured with a pure 1H technique without the need of a 13C channel (as Boumezbeur et al. demonstrated in 2004). Thus, metabolic maps and enrichment curves could be obtained for more metabolites and in more voxels than ever before in human brain. Labeling changes could be observed in [4-13C]glutamate, [3-13C]glutamate+glutamine, [2-13C]glutamate+glutamine, [4-13C]glutamine, and [3-13C]aspartate with a high temporal (3.6 min) and spatial resolution (32 × 32 grid with nominal voxel size of 0.33 µL) in five volunteers.
Collapse
Affiliation(s)
- Theresia Ziegs
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Andrew Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
5
|
Barbotin AL, Mimouni NEH, Kuchcinski G, Lopes R, Viard R, Rasika S, Mazur D, Silva MSB, Simon V, Boursier A, Pruvo JP, Yu Q, Candlish M, Boehm U, Bello FD, Medana C, Pigny P, Dewailly D, Prevot V, Catteau-Jonard S, Giacobini P. Hypothalamic neuroglial plasticity is regulated by anti-Müllerian hormone and disrupted in polycystic ovary syndrome. EBioMedicine 2023; 90:104535. [PMID: 37001236 PMCID: PMC10070524 DOI: 10.1016/j.ebiom.2023.104535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).
Collapse
Affiliation(s)
- Anne-Laure Barbotin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille F-59000, France
| | - Nour El Houda Mimouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Grégory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Department of Neuroradiology, Lille F-59000, France
| | - Renaud Lopes
- CHU Lille, Department of Neuroradiology, Lille F-59000, France
| | - Romain Viard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille F-59000, France
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Virginie Simon
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Angèle Boursier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille F-59000, France
| | | | - Qiang Yu
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin 10125, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin 10125, Italy
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille F-59000, France
| | - Didier Dewailly
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Service de Gynécologie Médicale, Hôpital Jeanne de Flandre, Lille F-59000, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France.
| |
Collapse
|
6
|
Ziegs T, Dorst J, Ruhm L, Avdievitch N, Henning A. Measurement of glucose metabolism in the occipital lobe and frontal cortex after oral administration of [1-13C]glucose at 9.4 T. J Cereb Blood Flow Metab 2022; 42:1890-1904. [PMID: 35632989 PMCID: PMC9536126 DOI: 10.1177/0271678x221104540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022]
Abstract
For the first time, labeling effects after oral intake of [1-13C]glucose are observed in the human brain with pure 1H detection at 9.4 T. Spectral time series were acquired using a short-TE 1H MRS MC-semiLASER (Metabolite Cycling semi Localization by Adiabatic SElective Refocusing) sequence in two voxels of 5.4 mL in the frontal cortex and the occipital lobe. High-quality time-courses of [4-13C]glutamate, [4-13C]glutamine, [3-13C]glutamate + glutamine, [2-13C] glutamate+glutamine and [3-13C]aspartate for individual volunteers and additionally, group-averaged time-courses of labeled and non-labeled brain glucose could be obtained. Using a one-compartment model, mean metabolic rates were calculated for each voxel position: The mean rate of the TCA-cycle (Vtca) value was determined to be 1.36 and 0.93 μmol min-1 g-1, the mean rate of glutamine synthesis (Vgln) was calculated to be 0.23 and 0.45 μmol min-1 g-1, the mean exchange rate between cytosolic amino acids and mitochondrial Krebs cycle intermediates (Vx) rate was found to be 0.57 and 1.21 μmol min-1 g-1 for the occipital lobe and the frontal cortex, respectively. These values were in agreement with previously reported data. Altogether, it can be shown that this most simple technique combining oral administration of [1-13C]Glc with pure 1H MRS acquisition is suitable to measure metabolic rates.
Collapse
Affiliation(s)
- Theresia Ziegs
- High‐Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Johanna Dorst
- High‐Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Loreen Ruhm
- High‐Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Nikolai Avdievitch
- High‐Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High‐Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Dehghani M, Zhang S, Kumaragamage C, Rosa‐Neto P, Near J. Dynamic
1
H‐MRS for detection of
13
C‐labeled glucose metabolism in the human brain at 3T. Magn Reson Med 2020; 84:1140-1151. [DOI: 10.1002/mrm.28188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Masoumeh Dehghani
- Centre d’Imagerie Cérébrale Douglas Mental Health University Institute Verdun Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| | - Steven Zhang
- Department of Neuroscience McGill University Montreal Quebec Canada
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging Yale University New Haven Connecticut
| | - Pedro Rosa‐Neto
- Translational Neuroimaging Laboratory The McGill University Research Center for Studies in AgiNGAlzheimer’s Diseases Research UnitDouglas Research InstituteMcGill university Montreal Quebec Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics McGill University Montreal Quebec Canada
| | - Jamie Near
- Centre d’Imagerie Cérébrale Douglas Mental Health University Institute Verdun Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| |
Collapse
|
8
|
Ibrahim RSM, El Fattah MSA, Metwally ZM, Eldin LAS. Value of magnetic resonance spectroscopy in assessment of adnexal lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The purpose of this study is to investigate the role of proton MR spectroscopy (1H-MRS) in the characterization and diagnosis of ovarian lesions.
Results
From October 2015 to October 2017, a total of 57 female patients (65 adnexal lesions; 8 cases were bilateral) were included. The examined lesions were classified according to their histopathological findings, (37 (57%) benign lesions, 4 (6%) borderline lesions, and 24 (37%) malignant lesions). The mean choline/creatinine (CHO/Cr) ratio was 1.29 ± 0.98 SD for malignant lesions, while the mean value in borderline lesions was 0.63 ± 0.15 SD, and the mean value for the benign lesions was 0.65 ± 0.34. Therefore, the mean CHO/Cr ratio was much higher in malignant than in benign lesions, which was statistically significant (P ≤ 0.001) as well as between the borderline and invasive lesions (P = 0.05), but not between the benign and borderline lesions. The diagnostic performance of conventional MRI in diagnosing adnexal lesions was 100%, specificity was 76%, and accuracy was 86%. However, MRS individual diagnostic performances are the following: sensitivity 89%, specificity, and 100% with an accuracy of 95%.
Conclusion
MRS proved to be an accurate and efficient method for the analysis of adnexal lesions and in differentiation between benign and malignant tumors.
Collapse
|
9
|
Interplay between NAD + and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2060-2067. [PMID: 30261291 DOI: 10.1016/j.bbadis.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl‑CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl‑CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP‑ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl‑CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.
Collapse
|
10
|
An L, Li S, Murdoch JB, Araneta MF, Johnson C, Shen J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 tesla. Magn Reson Med 2014; 73:451-8. [DOI: 10.1002/mrm.25150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Shizhe Li
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - James B. Murdoch
- Toshiba Medical Research Institute USA; Mayfield Village Ohio USA
| | - Maria Ferraris Araneta
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Christopher Johnson
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| |
Collapse
|
11
|
Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. FRONTIERS IN NEUROENERGETICS 2013; 5:11. [PMID: 24421768 PMCID: PMC3872778 DOI: 10.3389/fnene.2013.00011] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury.
Collapse
Affiliation(s)
- John R. Moffett
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | | | | | | |
Collapse
|
12
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
13
|
Kızılgöz V, Aydın H, Tatar İG, Hekimoğlu B, Ardıç S, Fırat H, Dönmez C. Proton magnetic resonance spectroscopy of periventricular white matter and hippocampus in obstructive sleep apnea patients. Pol J Radiol 2013; 78:7-14. [PMID: 24505219 PMCID: PMC3908511 DOI: 10.12659/pjr.889923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The purpose of this study was to diagnose the hypoxic impairment by Magnetic resonance spectroscopy (MRS), an advanced MR imaging technique, which could not be visualised by routine imaging methods in patients with obstructive sleep apnea (OSA). MATERIAL/METHODS 20 OSA patients and 5 controls were included in this prospective research. MRS was performed on these 25 subjects to examine cerebral hypoxemia in specific regions (periventricular white matter and both hippocampi). Polysomnography was assumed as the gold standard. Statistical analysis was assessed by Mann-Whitney U test and Receiver operating characteristics (ROC) curve for NAA/Cho, NAA/Cr and Cho/Cr ratios. RESULTS In the periventricular white matter, NAA/Cho ratio in OSA patients was significantly lower than in the control group (p<0.05). There were no statistical differences between the OSA and the control group for NAA/Cho, NAA/Cr and Cho/Cr ratios for both hippocampal regions. Additionally, Cho/Cr ratio in the periventricular white matter region of OSA group was higher than in the control group (p<0.05). CONCLUSIONS Hypoxic impairment induced by repeated episodes of apnea leads to significant neuronal damage in OSA patients. MRS provides valuable information in the assessment of hypoxic ischemic impairment by revealing important metabolite ratios for the specific areas of the brain.
Collapse
Affiliation(s)
- Volkan Kızılgöz
- Department of Radiology, Afyonkarahisar State Hospital, Afyonkarahisar, Turkey
| | - Hasan Aydın
- Department of Radiology, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - İdil Güneş Tatar
- Department of Radiology, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Baki Hekimoğlu
- Department of Radiology, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Sadık Ardıç
- Department of Chest Diseases, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Hikmet Fırat
- Department of Chest Diseases, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Cem Dönmez
- Department of Neurology, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
14
|
El sorogy L, El gaber NA, Omran E, Elshamy M, Youssef H. Role of diffusion MRI and proton magnetic resonance spectroscopy in characterization of ovarian neoplasms. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2012. [DOI: 10.1016/j.ejrnm.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
15
|
Xiang Y, Shen J. Windowed stochastic proton decoupling for in vivo (13)C magnetic resonance spectroscopy with reduced RF power deposition. J Magn Reson Imaging 2011; 34:968-72. [PMID: 21769967 DOI: 10.1002/jmri.22667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/05/2011] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To propose a strategy for reducing radiofrequency (RF) power deposition by stochastic proton decoupling based on Rayleigh's theorem. MATERIALS AND METHODS Rayleigh's theorem was used to remove frequency components of stochastic decoupling over the 3.90-6.83 ppm range. [2-(13)C] or [2,5-(13) C(2) ]glucose was infused intravenously to anesthetized rats. (13)C labeling of brain metabolites was detected in the carboxylic/amide spectral region at 11.7 T using either the original stochastic decoupling method developed by Ernst or the proposed windowed stochastic decoupling method. RESULTS By restricting frequency components of stochastic decoupling to 1.91-3.90 ppm and 6.83-7.60 ppm spectral regions decoupling power deposition was reduced by ≈50%. The proposed windowed stochastic decoupling scheme is experimentally demonstrated for in vivo (13)C MRS of rat brain at 11.7 T. CONCLUSION The large reduction in decoupling power deposition makes it feasible to perform stochastic proton decoupling at very high magnetic fields for human brain (13)C MRS studies.
Collapse
Affiliation(s)
- Yun Xiang
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892-1527, USA
| | | |
Collapse
|
16
|
Park B, Lizak MJ, Xiang Y, Shen J. Slice with angulated non-parallel boundaries. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:98-106. [PMID: 21396862 PMCID: PMC3081426 DOI: 10.1016/j.jmr.2011.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
Adiabatic pulses are widely used for spatial localization in magnetic resonance spectroscopy because of their high immunity to RF inhomogeneity and excellent slice profiles. Since non-rectangular volume is often preferred in localized spectroscopy, we propose a scheme for selecting a trapezoidal slice using adiabatic π pulses. In this scheme, a time-varying gradient orthogonal to a stationary slice selection gradient is used to change the boundaries of the slice profile from parallel to non-parallel. Numerical simulation results for the transverse and longitudinal magnetization using different RF and gradient waveforms are presented for non-parallel slice selection. Phantom imaging and in vivo(1)H MRS of rat brain using non-parallel slices are demonstrated.
Collapse
Affiliation(s)
- Busik Park
- Molecular Imaging Branch, National Institute of Mental Health, Intramural Research Program, NIH, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
17
|
Detection of reduced GABA synthesis following inhibition of GABA transaminase using in vivo magnetic resonance signal of [13C]GABA C1. J Neurosci Methods 2009; 182:236-43. [PMID: 19540876 DOI: 10.1016/j.jneumeth.2009.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/22/2022]
Abstract
Previous in vivo magnetic resonance spectroscopy (MRS) studies of gamma-aminobutyric acid (GABA) synthesis have relied on (13)C label incorporation into GABA C2 from [1-(13)C] or [1,6-(13)C(2)]glucose. In this study, the [(13)C]GABA C1 signal at 182.3 ppm in the carboxylic/amide spectral region of localized in vivo (13)C spectra was detected. GABA-transaminase of rat brain was inhibited by administration of gabaculine after pre-labeling of GABA C1 and its metabolic precursors with exogenous [2,5-(13)C(2)]glucose. A subsequent isotope chase experiment was performed by infusing unlabeled glucose, which revealed a markedly slow change in the labeling of GABA C1 accompanying the blockade of the GABA shunt. This slow labeling of GABA at elevated GABA concentration was attributed to the relatively small intercompartmental GABA-glutamine cycling flux that constitutes the main route of (13)C label loss during the isotope chase. Because this study showed that using low RF power broadband stochastic proton decoupling is feasible at very high field strength, it has important implications for the development of carboxylic/amide (13)C MRS methods to study brain metabolism and neurotransmission in human subjects at high magnetic fields.
Collapse
|
18
|
Fast isotopic exchange between mitochondria and cytosol in brain revealed by relayed 13C magnetization transfer spectroscopy. J Cereb Blood Flow Metab 2009; 29:661-9. [PMID: 19156161 PMCID: PMC2845910 DOI: 10.1038/jcbfm.2008.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vivo 13C magnetic resonance spectroscopy has been applied to studying brain metabolic processes by measuring 13C label incorporation into cytosolic pools such as glutamate and aspartate. However, the rate of exchange between mitochondrial alpha-ketoglutarate/oxaloacetate and cytosolic glutamate/aspartate (Vx) extracted from metabolic modeling has been controversial. Because brain fumarase is exclusively located in the mitochondria, and mitochondrial fumarate is connected to cytosolic aspartate through a chain of fast exchange reactions, it is possible to directly measure Vx from the four-carbon side of the tricarboxylic acid cycle by magnetization transfer. In isoflurane-anesthetized adult rat brain, a relayed 13C magnetization transfer effect on cytosolic aspartate C2 at 53.2 ppm was detected after extensive signal averaging with fumarate C2 at 136.1 ppm irradiated using selective radiofrequency pulses. Quantitative analysis using Bloch-McConnell equations and a four-site exchange model found that Vx approximately 13-19 micromol per g per min (>>VTCA, the tricarboxylic acid cycle rate) when the longitudinal relaxation time of malate C2 was assumed to be within +/-33% of that of aspartate C2. If Vx approximately VTCA, the isotopic exchange between mitochondria and cytosol would be too slow on the time scale of 13C longitudinal relaxation to cause a detectable magnetization transfer effect.
Collapse
|