1
|
Rojvirat CP, Berlin JR, Nguyen TD. Evaluating spatial and network properties of NMDA-dependent neuronal connectivity in mixed cortical cultures. Brain Res 2022; 1787:147919. [PMID: 35436447 PMCID: PMC11470759 DOI: 10.1016/j.brainres.2022.147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
A technique combining fluorescence imaging with Ca2+ indicators and single-cell laser scanning photostimulation of caged glutamate (LSPS) allowed identification of functional connections between individual neurons in mixed cultures of rat neocortical cells as well as observation of synchronous spontaneous activity among neurons. LSPS performed on large numbers of neurons yielded maps of functional connections between neurons and allowed calculation of neuronal network parameters. LSPS also provided an indirect measure of excitability of neurons targeted for photostimulation. By repeating LSPS sessions with the same neurons, stability of connections and change in the number and strength of connections were also determined. Experiments were conducted in the presence of bicuculline to study in detail the properties of excitatory neurotransmission. The AMPA receptor inhibitor, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), abolished synchronous neuronal activity but had no effect on connections mapped by LSPS. In contrast, the NMDA receptor inhibitor, 2-Amino-5-phosphono-pentanoic acid (APV), dramatically decreased the number of functional connections between neurons while also affecting synchronous spontaneous activity. Functional connections were also decreased by increasing extracellular Mg2+ concentration. These data demonstrated that LSPS mapping interrogates NMDA receptor-dependent connectivity between neurons in the network. In addition, a GluN2A-specific inhibitor, NVP-AAM077, decreased the number and strength of connections between neurons as well as neuron excitability. Conversely, the GluN2A-specific positive modulator, GNE-0723, increased these same properties. These data showed that LSPS can be used to directly study perturbations in the properties of NMDA receptor-dependent connectivity in neuronal networks. This approach should be applicable in a wide variety of in vitro and in vivo experimental preparations.
Collapse
Affiliation(s)
- Catherine P Rojvirat
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07101-1709, United States; School of Graduate Studies, Rutgers Biomedical and Health Sciences Campus-Newark, Rutgers University, 185 South Orange Avenue, Newark, NJ 07101-1709, United States.
| | - Joshua R Berlin
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07101-1709, United States.
| | - Tuan D Nguyen
- Department of Physics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628, United States.
| |
Collapse
|
2
|
Creating Custom Neural Circuits on Multiple Electrode Arrays Utilizing Optical Tweezers for Precise Nerve Cell Placement. Methods Protoc 2020. [PMCID: PMC7359705 DOI: 10.3390/mps3020044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Precise creation, maintenance, and monitoring of neuronal circuits would facilitate the investigation of subjects such as neuronal development or synaptic plasticity, or assist in the development of neuronal prosthetics. Here we present a method to precisely control the placement of multiple types of neuronal retinal cells onto a commercially available multiple electrode array (MEA), using custom-built optical tweezers. We prepared the MEAs by coating a portion of the MEA with a non-adhesive substrate (Poly (2-hydroxyethyl methacrylate)), and the electrodes with an adhesive cell growth substrate. We then dissociated the retina of adult tiger salamanders, plated them onto prepared MEAs, and utilized the optical tweezers to create retinal circuitry mimicking in vivo connections. In our hands, the optical tweezers moved ~75% of photoreceptors, bipolar cells, and multipolar cells, an average of ~2000 micrometers, at a speed of ~16 micrometers/second. These retinal circuits were maintained in vitro for seven days. We confirmed electrophysiological activity by stimulating the photoreceptors with the MEA and measuring their response with calcium imaging. In conclusion, we have developed a method of utilizing optical tweezers in conjunction with MEAs that allows for the design and maintenance of custom neural circuits for functional analysis.
Collapse
|
3
|
Aebersold MJ, Dermutz H, Demkó L, Cogollo JFS, Lin SC, Burchert C, Schneider M, Ling D, Forró C, Han H, Zambelli T, Vörös J. Local Chemical Stimulation of Neurons with the Fluidic Force Microscope (FluidFM). Chemphyschem 2017; 19:1234-1244. [DOI: 10.1002/cphc.201700780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/06/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Mathias J. Aebersold
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Harald Dermutz
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - José F. Saenz Cogollo
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Shiang-Chi Lin
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Conrad Burchert
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Moritz Schneider
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Doris Ling
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics; Institute for Biomedical Engineering, University and ETH Zurich; Gloriastrasse 35 8092 Zurich Switzerland
| |
Collapse
|
4
|
Tian J, Tu C, Liang Y, Zhou J, Ye X. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy. J Neurosci Methods 2015; 253:151-60. [PMID: 26149288 DOI: 10.1016/j.jneumeth.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting.
Collapse
Affiliation(s)
- Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
5
|
Abstract
Hippocampal neurons consist mainly of pyramidal neuron and granule cell, and dissociated hippocampal neurons are a good tool to investigate the molecular and cellular mechanism of neuronal development and neuronal degenerative disease in the central neuronal system (CNS). Here, we describe a general procedure of dissociated hippocampal neuron culture.
Collapse
Affiliation(s)
- Yun Peng
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | | | | |
Collapse
|
6
|
Casellato C, Pedrocchi A, Zorzi G, Vernisse L, Ferrigno G, Nardocci N. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia. IEEE Trans Neural Syst Rehabil Eng 2012; 21:474-80. [PMID: 23060345 DOI: 10.1109/tnsre.2012.2222445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.
Collapse
Affiliation(s)
- Claudia Casellato
- Bioengineering Department, Politecnico di Milano, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Bec JM, Albert ES, Marc I, Desmadryl G, Travo C, Muller A, Chabbert C, Bardin F, Dumas M. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers Surg Med 2012; 44:736-45. [PMID: 23018648 DOI: 10.1002/lsm.22078] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The optical stimulation of neurons from pulsed infrared lasers has appeared over the last years as an alternative to classical electric stimulations based on conventional electrodes. Laser stimulation could provide a better spatial selectivity allowing single-cell stimulation without prerequisite contact. In this work we present relevant physical characteristics of a non-lethal stimulation of cultured mouse vestibular and retinal ganglion neurons by single infrared laser pulses. STUDY DESIGN/MATERIALS AND METHODS Vestibular and retinal ganglion neurons were stimulated by a 100-400 mW pulsed laser diode beam (wavelengths at 1,470, 1,535, 1,875 nm) launched into a multimode optical fiber positioned at a few hundred micrometers away from the neurons. Ionic exchange measurements at the neuron membrane were achieved by whole-cell patch-clamp recordings. Stimulation and damage thresholds, duration and repetition rate of stimulation and temperature were investigated. RESULTS All three lasers induced safe and reproducible action potentials (APs) on both types of neurons. The radiant exposure thresholds required to elicit APs range from 15 ± 5 to 100 ± 5 J cm(-2) depending on the laser power and on the pulse duration. The damage thresholds, observed by a vital dye, were significantly greater than the stimulation thresholds. In the pulse duration range of our study (2-30 milliseconds), similar effects were observed for the three lasers. Measurements of the local temperature of the neuron area show that radiant exposures required for reliable stimulations at various pulse durations or laser powers correspond to a temperature increase from 22 °C (room temperature) to 55-60 °C. Stimulations by laser pulses at repetition rate of 1, 2, and 10 Hz during 10 minutes confirmed that the neurons were not damaged and were able to survive such temperatures. CONCLUSION These results show that infrared laser radiations provide a possible way to safely stimulate retinal and vestibular ganglion neurons. A similar temperature threshold is required to trigger neurons independently of variable energy thresholds, suggesting that an absolute temperature is required.
Collapse
Affiliation(s)
- Jean-Michel Bec
- Institut d'Electronique du Sud, CNRS UMR5214, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biffi E, Piraino F, Pedrocchi A, Fiore GB, Ferrigno G, Redaelli A, Menegon A, Rasponi M. A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. BIOMICROFLUIDICS 2012; 6:24106-2410610. [PMID: 22655017 PMCID: PMC3360721 DOI: 10.1063/1.3699975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/16/2012] [Indexed: 05/04/2023]
Abstract
Spatially and temporally resolved delivery of soluble factors is a key feature for pharmacological applications. In this framework, microfluidics coupled to multisite electrophysiology offers great advantages in neuropharmacology and toxicology. In this work, a microfluidic device for biochemical stimulation of neuronal networks was developed. A micro-chamber for cell culturing, previously developed and tested for long term neuronal growth by our group, was provided with a thin wall, which partially divided the cell culture region in two sub-compartments. The device was reversibly coupled to a flat micro electrode array and used to culture primary neurons in the same microenvironment. We demonstrated that the two fluidically connected compartments were able to originate two parallel neuronal networks with similar electrophysiological activity but functionally independent. Furthermore, the device allowed to connect the outlet port to a syringe pump and to transform the static culture chamber in a perfused one. At 14 days invitro, sub-networks were independently stimulated with a test molecule, tetrodotoxin, a neurotoxin known to block action potentials, by means of continuous delivery. Electrical activity recordings proved the ability of the device configuration to selectively stimulate each neuronal network individually. The proposed microfluidic approach represents an innovative methodology to perform biological, pharmacological, and electrophysiological experiments on neuronal networks. Indeed, it allows for controlled delivery of substances to cells, and it overcomes the limitations due to standard drug stimulation techniques. Finally, the twin network configuration reduces biological variability, which has important outcomes on pharmacological and drug screening.
Collapse
|
9
|
Hagiwara A, Pal SK, Sato TF, Wienisch M, Murthy VN. Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits 2012; 6:18. [PMID: 22529781 PMCID: PMC3329886 DOI: 10.3389/fncir.2012.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 02/04/2023] Open
Abstract
Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.
Collapse
Affiliation(s)
- Akari Hagiwara
- Akari Hagiwara, Faculty of Medicine, Department of Biochemistry, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan. e-mail:
| | | | | | | | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, CambridgeMA, USA
| |
Collapse
|
10
|
Jerome J, Heck DH. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity. Front Syst Neurosci 2012; 5:95. [PMID: 22275886 PMCID: PMC3257845 DOI: 10.3389/fnsys.2011.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/01/2011] [Indexed: 11/13/2022] Open
Abstract
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Collapse
Affiliation(s)
- Jason Jerome
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
11
|
A high aspect ratio microelectrode array for mapping neural activity in vitro. J Neurosci Methods 2011; 204:296-305. [PMID: 22179041 DOI: 10.1016/j.jneumeth.2011.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/07/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
Abstract
A novel high-aspect-ratio penetrating microelectrode array was designed and fabricated for the purpose of recording neural activity. The array allows two dimensional recording of 64 sites in vitro with high aspect ratio penetrating electrodes. Traditional surface electrode arrays, although easy to fabricate, do not penetrate to the viable tissue such as central hippocampus slices and thus have a lower signal/noise ratio and lower selectivity than a penetrating array. In the unfolded hippocampus preparation, the CA1-CA3 pyramidal cell layer in the whole unfolded rodent hippocampus preparation is encased by the alveus on one side and the Schaffer tract on the other and requires penetrating electrodes for high signal to noise ratio recording. An array of 64 electrode spikes, each with a target height of 200μm and diameter of 20μm, was fabricated in silicon on a transparent glass substrate. The impedance of the individual electrodes was measured to be approximately 1.5MΩ±497kΩ. The signal to noise ratio was measured and found to be 19.4±3dB compared to 3.9±0.8dB S/N for signals obtained with voltage sensitive dye RH414. A mouse unfolded hippocampus preparation was bathed in solution containing 50 micro-molar 4-amino pyridine and a complex two dimensional wave of activity was recorded using the array. These results indicate that this novel penetrating electrode array is able to obtain data superior to that of voltage sensitive dye techniques for broad field two-dimensional neuronal activity recording. When used with the unfolded hippocampus preparation, the combination forms a uniquely capable tool for imaging hippocampal network activity in the entire hippocampus.
Collapse
|
12
|
Prehn R, Abad L, Sánchez-Molas D, Duch M, Sabaté N, del Campo FJ, Muñoz FX, Compton RG. Microfabrication and characterization of cylinder micropillar array electrodes. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Petit M, Bort G, Doan BT, Sicard C, Ogden D, Scherman D, Ferroud C, Dalko PI. X-ray Photolysis To Release Ligands from Caged Reagents by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2011; 50:9708-11. [DOI: 10.1002/anie.201102948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/05/2022]
|
14
|
Petit M, Bort G, Doan BT, Sicard C, Ogden D, Scherman D, Ferroud C, Dalko PI. X-ray Photolysis To Release Ligands from Caged Reagents by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Hofmann B, Maybeck V, Eick S, Meffert S, Ingebrandt S, Wood P, Bamberg E, Offenhäusser A. Light induced stimulation and delay of cardiac activity. LAB ON A CHIP 2010; 10:2588-2596. [PMID: 20689860 DOI: 10.1039/c003091k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article shows the combination of light activatable ion channels and microelectrode array (MEA) technology for bidirectionally interfacing cells. HL-1 cultures, a mouse derived cardiomyocyte-like cell line, transfected with channelrhodopsin were stimulated with a microscope coupled 473 nm laser and recorded with custom built 64 electrode MEAs. Channelrhodopsin induced depolarization of the cell can evoke action potentials (APs) in single cells. Spreading of the AP over the cell layer can then be measured with good spatiotemporal resolution using MEA recordings. The possibility for light induced pacemaker switching in cultures was shown. Furthermore, the suppression of APs can also be achieved with the laser. Possible applications include cell analysis, e.g. pacemaker interference or induced pacemaker switching, and medical applications such as a combined cardiac pacemaker and defibrillator triggered by light. Since current prosthesis research focuses on bidirectionality, this system may be applied to any electrogenic cell, including neurons or muscles, to advance this field.
Collapse
Affiliation(s)
- Boris Hofmann
- Institute of Bio- and Nanosystems-Bioelectronics (IBN-2) and Jara-FIT, Forschungszentrum Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Recent Progress in Controlling Neural Activity With Light*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang J, Hasan MT, Seung HS. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing channelrhodopsin-2 delivered by adeno-associated virus. J Neurosci Methods 2009; 183:165-75. [PMID: 19560489 PMCID: PMC2762116 DOI: 10.1016/j.jneumeth.2009.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
Abstract
We present a method for studying synaptic transmission in mass cultures of dissociated hippocampal neurons based on patch clamp recording combined with laser stimulation of neurons expressing channelrhodopsin-2 (ChR2). Our goal was to use the high spatial resolution of laser illumination to come as close as possible to the ideal of identifying monosynaptically coupled pairs of neurons, which is conventionally done using microisland rather than mass cultures. Using recombinant adeno-associated virus (rAAV) to deliver the ChR2 gene, we focused on the time period between 14 and 20 days in vitro, during which expression levels are high, and spontaneous bursting activity has not yet started. Stimulation by wide-field illumination is sufficient to make the majority of ChR2-expressing neurons spike. Stimulation with a laser spot at least 10 microm in diameter also produces action potentials, but in a reduced fraction of neurons. We studied synaptic transmission by voltage-clamping a neuron with low expression of ChR2 and scanning a 40 microm laser spot at surrounding locations. Responses were observed to stimulation at a subset of locations in the culture, indicating spatial localization of stimulation. Pharmacological means were used to identify responses that were synaptic. Many responses were of smaller amplitude than those typically found in microisland cultures. We were unable to find an entirely reliable criterion for distinguishing between monosynaptic and polysynaptic responses. However, we propose that postsynaptic currents with small amplitudes, simple shapes, and latencies not much greater than 8 ms are reasonable candidates for monosynaptic interactions.
Collapse
Affiliation(s)
- Jennifer Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue 46-5065, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|