1
|
Song X, Wang Y, Yang W, Wang Y, Yang C, Chen Z. Abnormal Spontaneous Discharges of Primary Sensory Neurons and Pain Behavior in a Rat Model of Vascular Dementia. Int J Mol Sci 2023; 24:10198. [PMID: 37373344 DOI: 10.3390/ijms241210198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with vascular dementia experience more pain than healthy elders, potentially due to the presence of central neuropathic pain. However, the mechanisms underlying neuropathic pain in vascular dementia remain poorly understood, and there is currently a lack of effective treatment available. In this study, a rat model of vascular dementia was induced by permanently occluding the common carotid arteries bilaterally (2-VO). The cognitive impairments in the 2-VO rats were evaluated using the Morris Water Maze test, while HE and LBF staining were employed to assess brain tissue lesions in the hippocampal, cerebral cortex, and white matter regions known to be associated with severe memory and learning deficits. Furthermore, pain-related behavioral tests, including mechanical and thermal stimuli assessments, were conducted, and in vivo electrophysiological recordings of primary sensory neurons were performed. Compared to sham-operated and pre-operative rats, rats with vascular dementia exhibited mechanical allodynia and thermal hyperalgesia 30 days after surgery. Furthermore, in vivo electrophysiology revealed a significant increase in the occurrence of spontaneous activity of Aβ- and C-fiber sensory neurons in the rat model of vascular dementia. These results indicate that neuropathic pain behaviors developed in the rat model of vascular dementia, and abnormal spontaneous discharges of primary sensory neurons may play a crucial role in the development of pain after vascular dementia.
Collapse
Affiliation(s)
- Xiaodan Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuchen Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wei Yang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yingji Wang
- Department of Inorganic Chemistry and Physics Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhiyong Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Iseppon F, Linley JE, Wood JN. Calcium imaging for analgesic drug discovery. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100083. [PMID: 35079661 PMCID: PMC8777277 DOI: 10.1016/j.ynpai.2021.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
Abstract
Somatosensation and pain are complex phenomena involving a rangeofspecialised cell types forming different circuits within the peripheral and central nervous systems. In recent decades, advances in the investigation of these networks, as well as their function in sensation, resulted from the constant evolution of electrophysiology and imaging techniques to allow the observation of cellular activity at the population level both in vitro and in vivo. Genetically encoded indicators of neuronal activity, combined with recent advances in DNA engineering and modern microscopy, offer powerful tools to dissect and visualise the activity of specific neuronal subpopulations with high spatial and temporal resolution. In recent years various groups developed in vivo imaging techniques to image calcium transients in the dorsal root ganglia, the spinal cord and the brain of anesthetised and awake, behaving animals to address fundamental questions in both the physiology and pathophysiology of somatosensation and pain. This approach, besides giving unprecedented details on the circuitry of innocuous and painful sensation, can be a very powerful tool for pharmacological research, from the characterisation of new potential drugs to the discovery of new, druggable targets within specific neuronal subpopulations. Here we summarise recent developments in calcium imaging for pain research, discuss technical challenges and advances, and examine the potential positive impact of this technique in early preclinical phases of the analgesic drug discovery process.
Collapse
Affiliation(s)
- Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT London, UK
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - John E. Linley
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
3
|
Abstract
Intact and functioning brain enables quantification of neural activities directly associated with real world such as visual and auditory information. In vivo patch clamp can record different types of neuronal activity, such as spiking responses, membrane potential dynamics, and synaptic currents (e.g., EPSC, IPSC) in either anesthetized or awake or even free moving animals. Researchers can not only directly measure these neuronal activities but also quantify and unravel synaptic contribution from excitatory and inhibitory circuits. Here, we describe the requirements and standard protocols to perform in vivo patch clamp recording. The key factors of successful recording based on references and our experiences are also provided.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China.
| | - He Li
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongju Xiao
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Panoutsopoulos AA. Organoids, Assembloids, and Novel Biotechnology: Steps Forward in Developmental and Disease-Related Neuroscience. Neuroscientist 2020; 27:463-472. [PMID: 32981451 DOI: 10.1177/1073858420960112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In neuroscience research, the efforts to find the model through which we can mimic the in vivo microenvironment of a developing or defective brain have been everlasting. While model organisms are used for over a hundred years, many more methods have been introduced with immortalized or primary cell lines and later induced pluripotent stem cells and organoids to be some of these. As the use of organoids becomes more and more common by many laboratories in biology and neuroscience in particular, it is crucial to deeper understand the challenges and possible pitfalls of their application in research, many of which can be surpassed with the support of state-of-the art bioengineering solutions. In this review, after a brief chronicle of the path to the discovery of organoids, we focus on the latest approaches to study neuroscience related topics with organoids, such as the use of assembloids, CRISPR technology, patch-clamp and optogenetics techniques and discuss how modern 3-dimensional biomaterials, miniaturized bioreactors and microfluidic chips can help to overcome the disadvantages of their use.
Collapse
Affiliation(s)
- Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| |
Collapse
|
5
|
Fang Y, Han S, Li X, Xie Y, Zhu B, Gao X, Ma C. Cutaneous Hypersensitivity as an Indicator of Visceral Inflammation via C-Nociceptor Axon Bifurcation. Neurosci Bull 2020; 37:45-54. [PMID: 32902804 PMCID: PMC7811974 DOI: 10.1007/s12264-020-00577-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/19/2020] [Indexed: 11/28/2022] Open
Abstract
Pain on the body surface can accompany disorders in the deep tissue or internal organs. However, the anatomical and physiological mechanisms are obscure. Here, we provided direct evidence of axon bifurcation in primary C-nociceptive neurons that innervate both the skin and a visceral organ. Double-labeled dorsal root ganglion (DRG) neurons and Evans blue extravasation were observed in 3 types of chemically-induced visceral inflammation (colitis, urocystitis, and acute gastritis) rat models. In the colitis model, mechanical hypersensitivity and spontaneous activity were recorded in vivo from double-labeled C-nociceptive neurons in S1 or L6 DRGs. These neurons showed significantly enhanced responses to both somatic stimulation and colorectal distension. Our findings suggest that the branching of C-nociceptor axons contribute to cutaneous hypersensitivity in visceral inflammation. Cutaneous hypersensitivity on certain locations of the body surface might serve as an indicator of pathological conditions in the corresponding visceral organ.
Collapse
Affiliation(s)
- Yehong Fang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Shu Han
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxue Li
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yikuan Xie
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Neubarth NL, Emanuel AJ, Liu Y, Springel MW, Handler A, Zhang Q, Lehnert BP, Guo C, Orefice LL, Abdelaziz A, DeLisle MM, Iskols M, Rhyins J, Kim SJ, Cattel SJ, Regehr W, Harvey CD, Drugowitsch J, Ginty DD. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 2020; 368:eabb2751. [PMID: 32554568 PMCID: PMC7354383 DOI: 10.1126/science.abb2751] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Meissner corpuscles are mechanosensory end organs that densely occupy mammalian glabrous skin. We generated mice that selectively lacked Meissner corpuscles and found them to be deficient in both perceiving the gentlest detectable forces acting on glabrous skin and fine sensorimotor control. We found that Meissner corpuscles are innervated by two mechanoreceptor subtypes that exhibit distinct responses to tactile stimuli. The anatomical receptive fields of these two mechanoreceptor subtypes homotypically tile glabrous skin in a manner that is offset with respect to one another. Electron microscopic analysis of the two Meissner afferents within the corpuscle supports a model in which the extent of lamellar cell wrappings of mechanoreceptor endings determines their force sensitivity thresholds and kinetic properties.
Collapse
Affiliation(s)
- Nicole L Neubarth
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Yin Liu
- Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - Mark W Springel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Annie Handler
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lauren L Orefice
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M DeLisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Julia Rhyins
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Soo J Kim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Stuart J Cattel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wade Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Wang S, Wang J, Liu K, Bai W, Cui X, Han S, Gao X, Zhu B. Signaling Interaction between Facial and Meningeal Inputs of the Trigeminal System Mediates Peripheral Neurostimulation Analgesia in a Rat Model of Migraine. Neuroscience 2020; 433:184-199. [PMID: 32171818 DOI: 10.1016/j.neuroscience.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
Peripheral neurostimulation within the trigeminal nerve territory has been used for pain alleviation during migraine attacks, but the mechanistic basis of this non-invasive intervention is still poorly understood. In this study, we investigated the therapeutic role of peripheral stimulation of the trigeminal nerve, which provides homosegmental innervation to intracranial structures, by assessing analgesic effects in a nitroglycerin (NTG)-induced rat model of migraine. As a result of neurogenic inflammatory responses in the trigeminal nervous system, plasma protein extravasation was induced in facial skin by applying noxious stimulation to the dura mater. Noxious chemical stimulation of the dura mater led to protein extravasation in facial cutaneous tissues and caused mechanical sensitivity. Trigeminal ganglion (TG) neurons were double-labeled via retrograde tracing to detect bifurcated axons. Extracellular recordings of wide dynamic range (WDR) neurons in the spinal trigeminal nucleus caudalis (Sp5C) demonstrated the convergence and interaction of inputs from facial tissues and the dura mater. Peripheral neurostimulation of homotopic facial tissues represented segmental pain inhibition on cephalic cutaneous allodynia in the migraine model. The results indicated that facial territories and intracranial structures were directly connected with each other through bifurcated double-labeled neurons in the TG and through second-order WDR neurons. Homotopic stimulation at the C-fiber intensity threshold resulted in much stronger inhibition of analgesia than the same intensity of heterotopic stimulation. These results provide novel evidence for the neurological bases through which peripheral neurostimulation may be effective in treating migraine in clinical practice.
Collapse
Affiliation(s)
- Shuya Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu Han
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Chen Z, Wang T, Fang Y, Luo D, Anderson M, Huang Q, He S, Song X, Cui H, Dong X, Xie Y, Guan Y, Ma C. Adjacent intact nociceptive neurons drive the acute outburst of pain following peripheral axotomy. Sci Rep 2019; 9:7651. [PMID: 31113988 PMCID: PMC6529466 DOI: 10.1038/s41598-019-44172-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/10/2019] [Indexed: 11/09/2022] Open
Abstract
Injury of peripheral nerves may quickly induce severe pain, but the mechanism remains obscure. We observed a rapid onset of spontaneous pain and evoked pain hypersensitivity after acute transection of the L5 spinal nerve (SNT) in awake rats. The outburst of pain was associated with a rapid development of spontaneous activities and hyperexcitability of nociceptive neurons in the adjacent uninjured L4 dorsal root ganglion (DRG), as revealed by both in vivo electrophysiological recording and high-throughput calcium imaging in vivo. Transection of the L4 dorsal root or intrathecal infusion of aminobutyrate aminotransferase inhibitor attenuated the spontaneous activity, suggesting that retrograde signals from the spinal cord may contribute to the sensitization of L4 DRG neurons after L5 SNT. Electrical stimulation of low-threshold afferents proximal to the axotomized L5 spinal nerve attenuated the spontaneous activities in L4 DRG and pain behavior. These findings suggest that peripheral axotomy may quickly induce hyperexcitability of uninjured nociceptors in the adjacent DRG that drives an outburst of pain.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Tao Wang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yehong Fang
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Dan Luo
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Michael Anderson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiaodan Song
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huan Cui
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yikuan Xie
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA.
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Chen Y, Huang LYM. A simple and fast method to image calcium activity of neurons from intact dorsal root ganglia using fluorescent chemical Ca 2+ indicators. Mol Pain 2017; 13:1744806917748051. [PMID: 29212403 PMCID: PMC5731619 DOI: 10.1177/1744806917748051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical calcium indicators have been commonly used to monitor calcium (Ca2+) activity in cell bodies, i.e., somata, of isolated dorsal root ganglion neurons. Recent studies have shown that dorsal root ganglion somata play an essential role in soma–glia interactions and actively participate in the transmission of nociceptive signals. It is therefore desirable to develop methods to study Ca2+ activity in neurons and glia in intact dorsal root ganglia. In our previous studies, we found that incubation of intact dorsal root ganglia with acetoxymethyl dye resulted in efficient Ca2+ dye loading into glial cells but limited dye loading into neurons. Here, we introduce a useful method to load Ca2+ dyes in intact dorsal root ganglion neurons through electroporation. We found that electroporation greatly facilitated loading of Fluo-4 acetoxymethyl, Oregon green bapta-1-488 acetoxymethyl, and Fluo-4 pentapotassium salt into dorsal root ganglion neurons. In contrast, electroporation did not further facilitate dye loading into glia. Using electroporation followed by incubation of acetoxymethyl form Ca2+ dye, we can load acetoxymethyl Ca2+ dye well in both neurons and glia. With this approach, we found that inflammation induced by complete Freund’s adjuvant significantly increased the incidence of neuron–glia interactions in dorsal root ganglia. We also confirmed the actions of capsaicin and morphine on Ca2+ responses in dorsal root ganglion neurons. Thus, by promoting the loading of Ca2+ dye in neurons and glia through electroporation and incubation, Ca2+ activities in neurons and neuron–glia interactions can be well studied in intact dorsal root ganglia.
Collapse
Affiliation(s)
- Yong Chen
- 1 Department of Neuroscience, Cell Biology and Anatomy, 12338 University of Texas Medical Branch, Galveston , TX, USA
| | - Li-Yen M Huang
- 1 Department of Neuroscience, Cell Biology and Anatomy, 12338 University of Texas Medical Branch, Galveston , TX, USA
| |
Collapse
|
11
|
Schneider ER, Anderson EO, Mastrotto M, Matson JD, Schulz VP, Gallagher PG, LaMotte RH, Gracheva EO, Bagriantsev SN. Molecular basis of tactile specialization in the duck bill. Proc Natl Acad Sci U S A 2017; 114:13036-13041. [PMID: 29109250 PMCID: PMC5724259 DOI: 10.1073/pnas.1708793114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Evan O Anderson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Marco Mastrotto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Jon D Matson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Robert H LaMotte
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
12
|
Jiang H, Shen X, Chen Z, Liu F, Wang T, Xie Y, Ma C. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat. Brain Behav Immun 2017; 62:351-361. [PMID: 28263785 DOI: 10.1016/j.bbi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Antigen-specific immune diseases such as rheumatoid arthritis are often accompanied by pain and hyperalgesia. Our previous studies have demonstrated that Fc-gamma-receptor type I (FcγRI) is expressed in a subpopulation of rat dorsal root ganglion (DRG) neurons and can be directly activated by IgG immune complex (IgG-IC). In this study we investigated whether neuronal FcγRI contributes to antigen-specific pain in the naïve and rheumatoid arthritis model rats. In vitro calcium imaging and whole-cell patch clamp recordings in dissociated DRG neurons revealed that only the small-, but not medium- or large-sized DRG neurons responded to IgG-IC. Accordingly, in vivo electrophysiological recordings showed that intradermal injection of IgG-IC into the peripheral receptive field could sensitize only the C- (but not A-) type sensory neurons and evoke action potential discharges. Pain-related behavioral tests showed that intradermal injection of IgG-IC dose-dependently produced mechanical and thermal hyperalgesia in the hindpaw of rats. These behavioral effects could be alleviated by localized administration of non-specific IgG or an FcγRI antibody, but not by mast cell stabilizer or histamine antagonist. In a rat model of antigen-induced arthritis (AIA) produced by methylated bovine serum albumin, FcγRI were found upregulated exclusively in the small-sized DRG neurons. In vitro calcium imaging revealed that significantly more small-sized DRG neurons responded to IgG-IC in the AIA rats, although there was no significant difference between the AIA and control rats in the magnitude of calcium changes in the DRG neurons. Moreover, in vivo electrophysiological recordings showed that C-nociceptive neurons in the AIA rats exhibited a greater incidence of action potential discharges and stronger responses to mechanical stimuli after IgG-IC was injected to the receptive fields. These results suggest that FcγRI expressed in the peripheral nociceptors might be directly activated by IgG-IC and contribute to antigen-specific pain in pathological conditions.
Collapse
Affiliation(s)
- Haowu Jiang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinhua Shen
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhiyong Chen
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fan Liu
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Wang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yikuan Xie
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
13
|
Gong K, Ohara PT, Jasmin L. Patch Clamp Recordings on Intact Dorsal Root Ganglia from Adult Rats. J Vis Exp 2016. [PMID: 27768031 DOI: 10.3791/54287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Patch clamp studies from dorsal root ganglia (DRGs) neurons have increased our understanding of the peripheral nervous system. Currently, the majority of recordings are conducted on dissociated DRG neurons, which is a standard preparation for most laboratories. Neuronal properties, however, can be altered by axonal injury resulting from enzyme digestion used in acquiring dissociated neurons. Further, dissociated neuron preparations cannot fully represent the microenvironment of the DRG since loss of contact with satellite glial cells that surround the primary sensory neurons is an unavoidable consequence of this method. To overcome the limitations in using conventional dissociated DRG neurons for patch clamp recordings, in this report we describe a method to prepare intact DRGs and conduct patch clamp recordings on individual primary sensory neurons ex vivo. This approach permits the fast and straightforward preparation of intact DRGs, mimicking in vivo conditions by keeping DRG neurons associated with their surrounding satellite glial cells and basement membrane. Furthermore, the method avoids axonal injury from manipulation and enzyme digestion such as when dissociating DRGs. This ex vivo preparation can additionally be used to study the interaction between primary sensory neurons and satellite glial cells.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco;
| | - Peter T Ohara
- Department of Anatomy, University of California, San Francisco
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco;
| |
Collapse
|
14
|
Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain. Neuron 2016; 91:1085-1096. [PMID: 27568517 DOI: 10.1016/j.neuron.2016.07.044] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022]
Abstract
Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions.
Collapse
|
15
|
Dhindsa RS, Goldstein DB. Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 2016; 15:70. [PMID: 26319171 DOI: 10.1007/s11910-015-0587-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epilepsy is a serious neurological disease with substantial genetic contribution. We have recently made major advances in understanding the genetics and etiology of the epilepsies. However, current antiepileptic drugs are ineffective in nearly one third of patients. Most of these drugs were developed without knowledge of the underlying causes of the epilepsy to be treated; thus, it seems reasonable to assume that further improvements require a deeper understanding of epilepsy pathophysiology. Although once the rate-limiting step, gene discovery is now occurring at an unprecedented rapid rate, especially in the epileptic encephalopathies. However, to place these genetic findings in a biological context and discover treatment options for patients, we must focus on developing an efficient framework for functional evaluation of the mutations that cause epilepsy. In this review, we discuss guidelines for gene discovery, emerging functional assays and models, and novel therapeutics to highlight the developing framework of precision medicine in the epilepsies.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University, Hammer Building, 701 West 168th Street, Box 149, New York, NY, 10032, USA,
| | | |
Collapse
|
16
|
Wang T, Hurwitz O, Shimada SG, Qu L, Fu K, Zhang P, Ma C, LaMotte RH. Chronic Compression of the Dorsal Root Ganglion Enhances Mechanically Evoked Pain Behavior and the Activity of Cutaneous Nociceptors in Mice. PLoS One 2015; 10:e0137512. [PMID: 26356638 PMCID: PMC4565551 DOI: 10.1371/journal.pone.0137512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022] Open
Abstract
Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG). Previous studies discovered that a chronic compression of the DRG (CCD) induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers) to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN) was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD). After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA), while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN). We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Neuroscience Center, Department of Anatomy, Histology and Embryology, Beijing, China
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Olivia Hurwitz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Steven G. Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, Maryland
| | - Kai Fu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pu Zhang
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chao Ma
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Neuroscience Center, Department of Anatomy, Histology and Embryology, Beijing, China
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tao C, Zhang G, Xiong Y, Zhou Y. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits 2015; 9:23. [PMID: 26052270 PMCID: PMC4440909 DOI: 10.3389/fncir.2015.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| |
Collapse
|
18
|
Qu L, Fan N, Ma C, Wang T, Han L, Fu K, Wang Y, Shimada SG, Dong X, LaMotte RH. Enhanced excitability of MRGPRA3- and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. Brain 2014; 137:1039-50. [PMID: 24549959 PMCID: PMC3959553 DOI: 10.1093/brain/awu007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/11/2013] [Accepted: 12/01/2013] [Indexed: 11/13/2022] Open
Abstract
Itch is a common symptom of diseases of the skin but can also accompany diseases of other tissues including the nervous system. Acute itch from chemicals experimentally applied to the skin is initiated and maintained by action potential activity in a subset of nociceptive neurons. But whether these pruriceptive neurons are active or might become intrinsically more excitable under the pathological conditions that produce persistent itch and nociceptive sensations in humans is largely unexplored. Recently, two distinct types of cutaneous nociceptive dorsal root ganglion neurons were identified as responding to pruritic chemicals and playing a role in itch sensation. One expressed the mas-related G-coupled protein receptor MRGPRA3 and the other MRGPRD (MRGPRA3+ and MRGPRD+ neurons, respectively). Here we tested whether these two distinct pruriceptive nociceptors exhibited an enhanced excitability after the development of contact hypersensitivity, an animal model of allergic contact dermatitis, a common pruritic disorder in humans. The characteristics of increased excitability of pruriceptive neurons during this disorder may also pertain to the same types of neurons active in other pruritic diseases or pathologies that affect the nervous system and other tissues or organs. We found that challenging the skin of the calf of the hind paw or the cheek of previously sensitized mice with the hapten, squaric acid dibutyl ester, produced symptoms of contact hypersensitivity including an increase in skin thickness and site-directed spontaneous pain-like (licking or wiping) and itch-like (biting or scratching) behaviours. Ablation of MRGPRA3+ neurons led to a significant reduction in spontaneous scratching of the hapten-challenged nape of the neck of previously sensitized mice. In vivo, electrophysiological recordings revealed that MRGPRA3+ and MRGPRD+ neurons innervating the hapten-challenged skin exhibited a greater incidence of spontaneous activity and/or abnormal after-discharges in response to mechanical and heat stimuli applied to their receptive fields compared with neurons from the vehicle-treated control animals. Whole-cell recordings in vitro showed that both MRGPRA3+ and MRGPRD+ neurons from hapten-challenged mice displayed a significantly more depolarized resting membrane potential, decreased rheobase, and greater number of action potentials at twice rheobase compared with neurons from vehicle controls. These signs of neuronal hyperexcitability were associated with a significant increase in the peak amplitude of tetrodotoxin-sensitive and resistant sodium currents. Thus, the hyperexcitability of MRGPRA3+ and MRGPRD+ neurons, brought about in part by enhanced sodium currents, may contribute to the spontaneous itch- and pain-related behaviours accompanying contact hypersensitivity and/or other inflammatory diseases in humans.
Collapse
Affiliation(s)
- Lintao Qu
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ni Fan
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 2 Guangzhou Brain Hospital, the Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China 510370
| | - Chao Ma
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 3 Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Tao Wang
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 3 Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Liang Han
- 4 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kai Fu
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yingdi Wang
- 5 Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Steven G. Shimada
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinzhong Dong
- 4 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert H. LaMotte
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
19
|
Han L, Ma C, Liu Q, Weng HJ, Cui Y, Tang Z, Kim Y, Nie H, Qu L, Patel KN, Li Z, McNeil B, He S, Guan Y, Xiao B, LaMotte R, Dong X. A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 2013; 16:174-82. [PMID: 23263443 PMCID: PMC3557753 DOI: 10.1038/nn.3289] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023]
Abstract
Itch-specific neurons have been sought for decades. The existence of such neurons has been doubted recently as a result of the observation that itch-mediating neurons also respond to painful stimuli. We genetically labeled and manipulated MrgprA3(+) neurons in the dorsal root ganglion (DRG) and found that they exclusively innervated the epidermis of the skin and responded to multiple pruritogens. Ablation of MrgprA3(+) neurons led to substantial reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions, whereas pain sensitivity remained intact. Notably, mice in which TRPV1 was exclusively expressed in MrgprA3(+) neurons exhibited itch, but not pain, behavior in response to capsaicin. Although MrgprA3(+) neurons were sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China, 100005
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Qin Liu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao-Jui Weng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yiyuan Cui
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zongxiang Tang
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yushin Kim
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Hong Nie
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kush N Patel
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Benjamin McNeil
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Shaoqiu He
- Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205
| | - Yun Guan
- Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205
| | - Bo Xiao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Robert LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
20
|
Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci U S A 2012; 110:594-9. [PMID: 23267071 DOI: 10.1073/pnas.1217322109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3' biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers. Unlike existing methods, these protocols produce relatively uniformly distributed sequences covering the full length of almost all transcripts independent of their sizes, from 1,000 to 10 cells, and even with single cells. Both protocols produced satisfactory detection/coverage of the abundant mRNAs from a single K562 erythroleukemic cell or a single dorsal root ganglion neuron. The phi29-based method produces long products with less noise, uses an isothermal reaction, and is simple to practice. The semirandom primed PCR procedure is more sensitive and reproducible at low transcript levels or with low quantities of cells. These methods provide tools for mRNA sequencing or RNA sequencing when only low quantities of cells, a single cell, or even degraded RNA are available for profiling.
Collapse
|
21
|
Liu Q, Sikand P, Ma C, Tang Z, Han L, Li Z, Sun S, LaMotte RH, Dong X. Mechanisms of itch evoked by β-alanine. J Neurosci 2012; 32:14532-7. [PMID: 23077038 PMCID: PMC3491570 DOI: 10.1523/jneurosci.3509-12.2012] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022] Open
Abstract
β-Alanine, a popular supplement for muscle building, induces itch and tingling after consumption, but the underlying molecular and neural mechanisms are obscure. Here we show that, in mice, β-alanine elicited itch-associated behavior that requires MrgprD, a G-protein-coupled receptor expressed by a subpopulation of primary sensory neurons. These neurons exclusively innervate the skin, respond to β-alanine, heat, and mechanical noxious stimuli but do not respond to histamine. In humans, intradermally injected β-alanine induced itch but neither wheal nor flare, suggesting that the itch was not mediated by histamine. Thus, the primary sensory neurons responsive to β-alanine are likely part of a histamine-independent itch neural circuit and a target for treating clinical itch that is unrelieved by anti-histamines.
Collapse
Affiliation(s)
- Qin Liu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Parul Sikand
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Zongxiang Tang
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
| | - Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| |
Collapse
|
22
|
Geffeney SL, Goodman MB. How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 2012; 74:609-19. [PMID: 22632719 DOI: 10.1016/j.neuron.2012.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Every moment of every day, our skin and its embedded sensory neurons are bombarded with mechanical cues that we experience as pleasant or painful. Knowing the difference between innocuous and noxious mechanical stimuli is critical for survival and relies on the function of mechanoreceptor neurons that vary in their size, shape, and sensitivity. Their function is poorly understood at the molecular level. This review emphasizes the importance of integrating analysis at the molecular and cellular levels and focuses on the discovery of ion channel proteins coexpressed in the mechanoreceptors of worms, flies, and mice.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
23
|
Bautista DM, Lumpkin EA. Perspectives on: information and coding in mammalian sensory physiology: probing mammalian touch transduction. ACTA ACUST UNITED AC 2012; 138:291-301. [PMID: 21875978 PMCID: PMC3171080 DOI: 10.1085/jgp.201110637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
24
|
Ma C, Nie H, Gu Q, Sikand P, Lamotte RH. In vivo responses of cutaneous C-mechanosensitive neurons in mouse to punctate chemical stimuli that elicit itch and nociceptive sensations in humans. J Neurophysiol 2011; 107:357-63. [PMID: 21994268 DOI: 10.1152/jn.00801.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Native cowhage spicules, and heat-inactivated spicules containing histamine or capsaicin, evoke similar sensations of itch and nociceptive sensations in humans. In ongoing studies of the peripheral neural mechanisms of chemical itch and pain in the mouse, extracellular electrophysiological recordings were obtained, in vivo, from the cell bodies of mechanosensitive nociceptive neurons in response to spicule stimuli delivered to their cutaneous receptive fields (RFs) on the distal hindlimb. A total of 43 mechanosensitive, cutaneous, nociceptive neurons with axonal conduction velocities in the C-fiber range (C-nociceptors) were classified as CM if responsive to noxious mechanical stimuli, such as pinch, or CMH if responsive to noxious mechanical and heat stimuli (51°C, 5 s). The tips of native cowhage spicules, or heat-inactivated spicules containing histamine or capsaicin, were applied to the RF. Heat-inactivated spicules containing no chemical produced only a transient response occurring during insertion. Of the 43 mechanosensitive nociceptors recorded, 20 of the 25 CMHs responded to capsaicin, and of these, 13 also responded to cowhage and/or histamine. In contrast, none of the 18 CMs responded to any of the chemical stimuli. The time course of the mean discharge rate of CMHs was similar in response to each type of spicule and generally similar, although reaching a peak earlier, to the temporal profiles of itch and nociceptive sensations evoked by the same stimuli in humans. These findings are consistent with the hypothesis that the itch and nociceptive sensations evoked by these punctuate chemical stimuli are mediated at least in part by the activity of mechanoheat-sensitive C-nociceptors. In contrast, activity in mechanosensitive C-nociceptors that do not respond to heat or to pruritic chemicals is hypothesized as contributing to pain but not to itch.
Collapse
Affiliation(s)
- C Ma
- Dept. of Anesthesiology, Yale Univ. School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
25
|
Fan N, Sikand P, Donnelly DF, Ma C, Lamotte RH. Increased Na+ and K+ currents in small mouse dorsal root ganglion neurons after ganglion compression. J Neurophysiol 2011; 106:211-8. [PMID: 21525373 DOI: 10.1152/jn.00065.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We investigated the effects of chronic compression (CCD) of the L3 and L4 dorsal root ganglion (DRG) on pain behavior in the mouse and on the electrophysiological properties of the small-diameter neuronal cell bodies in the intact ganglion. CCD is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. On days 1, 3, 5, and 7 after the onset of compression, there was a significant decrease from preoperative values in the threshold mechanical force required to elicit a withdrawal of the foot ipsilateral to the CCD (tactile allodynia). Whole cell patch-clamp recordings were obtained, in vitro, from small-sized somata and, for the first time, in the intact DRG. Under current clamp, CCD neurons exhibited a significantly lower rheobase compared with controls. A few CCD but no control neurons exhibited spontaneous action potentials. CCD neurons showed an increase in the density of TTX-resistant and TTX-sensitive Na(+) current. CCD neurons also exhibited an enhanced density of voltage-dependent K(+) current, due to an increase in delayed rectifier K(+) current, without a change in the transient or "A" current. We conclude that CCD in the mouse produces a model of radicular pain, as we have previously demonstrated in the rat. While the role of enhanced K(+) current remains to be elucidated, we speculate that it represents a compensatory neuronal response to reduce ectopic or aberrant levels of neuronal activity produced by the injury.
Collapse
Affiliation(s)
- Ni Fan
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.
Collapse
|
27
|
Ma C, Rosenzweig J, Zhang P, Johns DC, LaMotte RH. Expression of inwardly rectifying potassium channels by an inducible adenoviral vector reduced the neuronal hyperexcitability and hyperalgesia produced by chronic compression of the spinal ganglion. Mol Pain 2010; 6:65. [PMID: 20923570 PMCID: PMC2959023 DOI: 10.1186/1744-8069-6-65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022] Open
Abstract
Background A chronic compressed dorsal root ganglion (CCD) in rat produces pain behavior and an enhanced excitability of neurons within the compressed ganglion. Kir2.1 is an inwardly rectifying potassium channel that acts to stabilize the resting potential of certain cell types. We hypothesized that an inducible expression of Kir2.1 channels in CCD neurons might suppress neuronal excitability in the dorsal root ganglion (DRG) and reduce the associated pain behavior. Results We delivered, by microinjection into the fourth lumbar (L4) DRG, an adenoviral vector containing a reporter gene encoding the enhanced green fluorescent protein (GFP) and a Kir2.1 channel (AdKir). At the same time the ganglion was compressed by implantation of a rod through the intervertebral foramen (CCD). The in vivo expression of the transferred gene was controlled by an ecdysone analog via an ecdysone-inducible promoter in the viral vector. In comparison with the effects of vehicle or a control vector containing only the GFP gene, AdKir significantly reduced the neuronal hyperexcitability after CCD. Electrophysiological recordings, in vivo, from nociceptive and non-nociceptive DRG neurons expressing the virally produced Kir2.1 channels revealed a hyperpolarized resting membrane potential, an increased rheobase, and lack of spontaneous activity. Inducing the Kir2.1 gene at the beginning of CCD surgery partially prevented the development of mechanical hyperalgesia. However, a delayed induction of the Kir2.1 gene (3 days after CCD surgery) produced no significant effect on the pain behavior. Conclusions We found that an inducible expression of Kir2.1 channels in chronically compressed DRG neurons can effectively suppress the neuronal excitability and, if induced at the beginning of CCD injury, prevent the development of hyperalgesia. We hypothesize that a higher level of neuronal hyperexcitability in the DRG is required to initiate than to maintain the hyperalgesia and that the hyperexcitability contributing to neuropathic pain is best inhibited as soon as possible after injury.
Collapse
Affiliation(s)
- Chao Ma
- Dept, Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|