1
|
Liang Y, Song C, Liu M, Gong P, Zhou C, Knöpfel T. Cortex-Wide Dynamics of Intrinsic Electrical Activities: Propagating Waves and Their Interactions. J Neurosci 2021; 41:3665-3678. [PMID: 33727333 PMCID: PMC8055070 DOI: 10.1523/jneurosci.0623-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Cortical circuits generate patterned activities that reflect intrinsic brain dynamics that lay the foundation for any, including stimuli-evoked, cognition and behavior. However, the spatiotemporal organization properties and principles of this intrinsic activity have only been partially elucidated because of previous poor resolution of experimental data and limited analysis methods. Here we investigated continuous wave patterns in the 0.5-4 Hz (delta band) frequency range on data from high-spatiotemporal resolution optical voltage imaging of the upper cortical layers in anesthetized mice. Waves of population activities propagate in heterogeneous directions to coordinate neuronal activities between different brain regions. The complex wave patterns show characteristics of both stereotypy and variety. The location and type of wave patterns determine the dynamical evolution when different waves interact with each other. Local wave patterns of source, sink, or saddle emerge at preferred spatial locations. Specifically, "source" patterns are predominantly found in cortical regions with low multimodal hierarchy such as the primary somatosensory cortex. Our findings reveal principles that govern the spatiotemporal dynamics of spontaneous cortical activities and associate them with the structural architecture across the cortex.SIGNIFICANCE STATEMENT Intrinsic brain activities, as opposed to external stimulus-evoked responses, have increasingly gained attention, but it remains unclear how these intrinsic activities are spatiotemporally organized at the cortex-wide scale. By taking advantage of the high spatiotemporal resolution of optical voltage imaging, we identified five wave pattern types, and revealed the organization properties of different wave patterns and the dynamical mechanisms when they interact with each other. Moreover, we found a relationship between the emergence probability of local wave patterns and the multimodal structure hierarchy across cortical areas. Our findings reveal the principles of spatiotemporal wave dynamics of spontaneous activities and associate them with the underlying hierarchical architecture across the cortex.
Collapse
Affiliation(s)
- Yuqi Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- The HKBU Institute of Research and Continuing Education, Shenzhen 518000, People's Republic of China
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney 2006, New South Wales, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney 2001, New South Wales, Australia
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- The HKBU Institute of Research and Continuing Education, Shenzhen 518000, People's Republic of China
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Townsend RG, Gong P. Detection and analysis of spatiotemporal patterns in brain activity. PLoS Comput Biol 2018; 14:e1006643. [PMID: 30507937 PMCID: PMC6292652 DOI: 10.1371/journal.pcbi.1006643] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/13/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
There is growing evidence that population-level brain activity is often organized into propagating waves that are structured in both space and time. Such spatiotemporal patterns have been linked to brain function and observed across multiple recording methodologies and scales. The ability to detect and analyze these patterns is thus essential for understanding the working mechanisms of neural circuits. Here we present a mathematical and computational framework for the identification and analysis of multiple classes of wave patterns in neural population-level recordings. By drawing a conceptual link between spatiotemporal patterns found in the brain and coherent structures such as vortices found in turbulent flows, we introduce velocity vector fields to characterize neural population activity. These vector fields are calculated for both phase and amplitude of oscillatory neural signals by adapting optical flow estimation methods from the field of computer vision. Based on these velocity vector fields, we then introduce order parameters and critical point analysis to detect and characterize a diverse range of propagating wave patterns, including planar waves, sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field decomposition method that extracts the dominant spatiotemporal structures in a recording. This enables neural data to be represented by the activity of a small number of independent spatiotemporal modes, providing an alternative to existing dimensionality reduction techniques which separate space and time components. We demonstrate the capabilities of the framework and toolbox with simulated data, local field potentials from marmoset visual cortex and optical voltage recordings from whole mouse cortex, and we show that pattern dynamics are non-random and are modulated by the presence of visual stimuli. These methods are implemented in a MATLAB toolbox, which is freely available under an open-source licensing agreement. Structured activity such as propagating wave patterns at the level of neural circuits can arise from highly variable firing activity of individual neurons. This property makes the brain, a quintessential example of a complex system, analogous to other complex physical systems such as turbulent fluids, in which structured patterns like vortices similarly emerge from molecules that behave irregularly. In this study, by uniquely adapting techniques for the identification of coherent structures in fluid turbulence, we develop new analytical and computational methods for the reliable detection of a diverse range of propagating wave patterns in large-scale neural recordings, for comprehensive analysis and visualization of these patterns, and for analysis of their dominant spatiotemporal modes. We demonstrate that these methods can be used to uncover the essential spatiotemporal properties of neural population activity recorded by different modalities, thus offering new insights into understanding the working mechanisms of neural systems.
Collapse
Affiliation(s)
- Rory G. Townsend
- School of Physics, The University of Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, The University of Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, The University of Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, The University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
3
|
Bermudez-Contreras E, Chekhov S, Sun J, Tarnowsky J, McNaughton BL, Mohajerani MH. High-performance, inexpensive setup for simultaneous multisite recording of electrophysiological signals and mesoscale voltage imaging in the mouse cortex. NEUROPHOTONICS 2018; 5:025005. [PMID: 29651448 PMCID: PMC5874445 DOI: 10.1117/1.nph.5.2.025005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/05/2018] [Indexed: 05/17/2023]
Abstract
Simultaneous recording of optical and electrophysiological signals from multiple cortical areas may provide crucial information to expand our understanding of cortical function. However, the insertion of multiple electrodes into the brain may compromise optical imaging by both restricting the field of view and interfering with the approaches used to stabilize the specimen. Existing methods that combine electrophysiological recording and optical imaging in vivo implement either multiple surface electrodes, silicon probes, or a single electrode for deeper recordings. To address such limitation, we built a microelectrode array (hyperdrive, patent US5928143 A) compatible with wide-field imaging that allows insertion of up to 12 probes into a large brain area (8 mm diameter). The hyperdrive is comprised of a circle of individual microdrives where probes are positioned at an angle leaving a large brain area unobstructed for wide-field imaging. Multiple tetrodes and voltage-sensitive dye imaging were used for acute simultaneous registration of spontaneous and evoked cortical activity in anesthetized mice. The electrophysiological signals were used to extract local field potential (LFP) traces, multiunit, and single-unit spiking activity. To demonstrate our approach, we compared LFP and VSD signals over multiple regions of the cortex and analyzed the relationship between single-unit and global cortical population activities. The study of the interactions between cortical activity at local and global scales, such as the one presented in this work, can help to expand our knowledge of brain function.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Sergey Chekhov
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jianjun Sun
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jennifer Tarnowsky
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Bruce L. McNaughton
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- University of California at Irvine, Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Irvine, California, United States
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| | - Majid H. Mohajerani
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| |
Collapse
|
4
|
Jancke D. Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. NEUROPHOTONICS 2017; 4:031206. [PMID: 28217713 PMCID: PMC5301132 DOI: 10.1117/1.nph.4.3.031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.
Collapse
Affiliation(s)
- Dirk Jancke
- Ruhr University Bochum, Optical Imaging Group, Institut für Neuroinformatik, Bochum, Germany
| |
Collapse
|
5
|
Chemla S, Muller L, Reynaud A, Takerkart S, Destexhe A, Chavane F. Improving voltage-sensitive dye imaging: with a little help from computational approaches. NEUROPHOTONICS 2017; 4:031215. [PMID: 28573154 PMCID: PMC5438098 DOI: 10.1117/1.nph.4.3.031215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 05/29/2023]
Abstract
Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community. However, this unprecedented technique remains largely under-utilized, and many future possibilities await for VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recurrent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger development of interdisciplinary approaches can bridge micro- to macroscales.
Collapse
Affiliation(s)
- Sandrine Chemla
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Lyle Muller
- Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California, United States
| | - Alexandre Reynaud
- McGill University, McGill Vision Research, Department of Ophthalmology, Montreal, Quebec, Canada
| | - Sylvain Takerkart
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Alain Destexhe
- Unit for Neurosciences, Information and Complexity (UNIC), Centre National de la Recherche Scientifique (CNRS), UPR-3293, Gif-sur-Yvette, France
- The European Institute for Theoretical Neuroscience (EITN), Paris, France
| | - Frédéric Chavane
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
6
|
Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint. Neural Netw 2017; 88:9-21. [DOI: 10.1016/j.neunet.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022]
|
7
|
Afrashteh N, Inayat S, Mohsenvand M, Mohajerani MH. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity. Neuroimage 2017; 153:58-74. [PMID: 28351691 DOI: 10.1016/j.neuroimage.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Wide-field optical imaging techniques constitute powerful tools to investigate mesoscale neuronal activity. The sampled data constitutes a sequence of image frames in which one can investigate the flow of brain activity starting and terminating at source and sink locations respectively. Approaches to the analyses of information flow include qualitative assessment to identify sources and sinks of activity as well as their trajectories, and quantitative measurements based on computing the temporal variation of the intensity of pixels. Furthermore, in a few studies estimates of wave motion have been reported using optical-flow techniques from computer vision. However, a comprehensive toolbox for the quantitative analyses of mesoscale brain activity data is still lacking. We present a graphical-user-interface toolbox based in Matlab® for investigating the spatiotemporal dynamics of mesoscale brain activity using optical-flow analyses. The toolbox includes the implementation of three optical-flow methods namely Horn-Schunck, Combined Local-Global, and Temporospatial algorithms for estimating velocity vector fields of flow of mesoscale brain activity. From the velocity vector fields we determined the locations of sources and sinks as well as the trajectories and temporal velocities of flow of activity. Using simulated data as well as experimentally derived sensory-evoked voltage and calcium imaging data from mice, we compared the efficacy of the three optical-flow methods for determining spatiotemporal dynamics. Our results indicate that the combined local-global method we employed, yields the best results for estimating wave motion. The automated approach permits rapid and effective quantification of mesoscale brain dynamics and may facilitate the study of brain function in response to new experiences or pathology.
Collapse
Affiliation(s)
- Navvab Afrashteh
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Samsoon Inayat
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Mostafa Mohsenvand
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Majid H Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4.
| |
Collapse
|
8
|
Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 2014; 5:3675. [PMID: 24770473 PMCID: PMC4015334 DOI: 10.1038/ncomms4675] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/17/2014] [Indexed: 11/23/2022] Open
Abstract
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. Propagating waves of cortical neuronal activity are implicated in various cognitive processes and have been observed in anaesthetised animals. Here, the authors demonstrate the existence of propagating waves in awake monkeys during visual stimulation, and show that they are mediated by horizontal fibres in the cortex.
Collapse
Affiliation(s)
- Lyle Muller
- 1] Unité des Neurosciences, Information et Complexité (UNIC), UPR-3293, CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France [2]
| | - Alexandre Reynaud
- 1] Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, UMR 7289, Campus Santé Timone, 27 boulevard Jean Moulin, Marseille 13005, France [2]
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, UMR 7289, Campus Santé Timone, 27 boulevard Jean Moulin, Marseille 13005, France
| | - Alain Destexhe
- Unité des Neurosciences, Information et Complexité (UNIC), UPR-3293, CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
9
|
Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 2013; 16:1426-35. [PMID: 23974708 DOI: 10.1038/nn.3499] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.
Collapse
Affiliation(s)
- Majid H Mohajerani
- 1] Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada. [2] Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. [3] [4]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wanger T, Takagaki K, Lippert MT, Goldschmidt J, Ohl FW. Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci 2013; 14:78. [PMID: 23902414 PMCID: PMC3733618 DOI: 10.1186/1471-2202-14-78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Propagating waves of excitation have been observed extensively in the neocortex, during both spontaneous and sensory-evoked activity, and they play a critical role in spatially organizing information processing. However, the state-dependence of these spatiotemporal propagation patterns is largely unexplored. In this report, we use voltage-sensitive dye imaging in the rat visual cortex to study the propagation of spontaneous population activity in two discrete cortical states induced by urethane anesthesia. RESULTS While laminar current source density patterns of spontaneous population events in these two states indicate a considerable degree of similarity in laminar networks, lateral propagation in the more active desynchronized state is approximately 20% faster than in the slower synchronized state. Furthermore, trajectories of wave propagation exhibit a strong anisotropy, but the preferred direction is different depending on cortical state. CONCLUSIONS Our results show that horizontal wave propagation of spontaneous neural activity is largely dependent on the global activity states of local cortical circuits.
Collapse
Affiliation(s)
- Tim Wanger
- Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Zheng L, Yao H. Stimulus-entrained oscillatory activity propagates as waves from area 18 to 17 in cat visual cortex. PLoS One 2012; 7:e41960. [PMID: 22848673 PMCID: PMC3405032 DOI: 10.1371/journal.pone.0041960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/27/2012] [Indexed: 11/21/2022] Open
Abstract
Previous studies in cat visual cortex reported that area 18 can actively drive neurons in area 17 through cortico-cortical projections. However, the dynamics of such cortico-cortical interaction remains unclear. Here we used multielectrode arrays to examine the spatiotemporal pattern of neuronal activity in cat visual cortex across the 17/18 border. We found that full-field contrast reversal gratings evoked oscillatory wave activity propagating from area 18 to 17. The wave direction was independent of the grating orientation, and could not be accounted for by the spatial distribution of receptive field latencies, suggesting that the waves are largely mediated by intrinsic connections in the cortex. Different from the evoked waves, spontaneous waves propagated along both directions across the 17/18 border. Together, our results suggest that visual stimulation may enhance the flow of information from area 18 to 17.
Collapse
Affiliation(s)
- Lian Zheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 2011; 203:136-40. [PMID: 21939688 DOI: 10.1016/j.jneumeth.2011.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/15/2022]
Abstract
Accurately locating epileptic foci has great importance in advancing the treatment of epilepsy. In this study, epileptic seizures were first induced by intracortical injection of 4-aminopyridine in rats. A fluorescent deoxyglucose substitute, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), was then continuously injected via the tail vein. Brain glucose metabolism was subsequently monitored by fluorescence imaging of 2-NBDG. The initial uptake rate of 2-NBDG at the injection site of 4-aminopyridine significantly exceeded that of the control injection site, which indicated local hypermetabolism induced by seizures. Our results show that 2-NBDG can be used for localizing epileptic foci.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|