1
|
Jillek B, Szabó P, Kopniczky J, Krafcsik O, Szabó I, Patczai B, Turzó K. Characterizing Surface Morphological and Chemical Properties of Commonly Used Orthopedic Implant Materials and Determining Their Clinical Significance. Polymers (Basel) 2024; 16:1193. [PMID: 38732662 PMCID: PMC11085225 DOI: 10.3390/polym16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The goal of the study was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology, as these determine their successful biointegration. The morphological and chemical structure of Vortex plate anodized titanium from commercially pure (CP) Grade 2 Titanium (Ti2) is generally used in the following; non-cemented total hip replacement (THR) stem and cup Ti alloy (Ti6Al4V) with titanium plasma spray (TPS) coating; cemented THR stem Stainless steel (SS); total knee replacement (TKR) femoral component CoCrMo alloy (CoCr); cemented acetabular component from highly cross-linked ultrahigh molecular weight polyethylene (HXL); and cementless acetabular liner from ultrahigh molecular weight polyethylene (UHMWPE) (Sanatmetal, Ltd., Eger, Hungary) discs, all of which were examined. Visualization and elemental analysis were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. TPS Ti presented the highest Ra value (25 ± 2 μm), followed by CoCr (535 ± 19 nm), Ti2 (227 ± 15 nm) and SS (170 ± 11 nm). The roughness measured in the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements regarding the investigated prosthesis materials. XPS results supported the EDS results and revealed a high % of Ti4+ on Ti2 and TPS surfaces. The results indicate that the surfaces of prosthesis materials have significantly different features, and a detailed characterization is needed to successfully apply them in orthopedic surgery and traumatology.
Collapse
Affiliation(s)
- Bertalan Jillek
- Department of Orthopedics, Somogy County Mór Kaposi Teaching Hospital, Tallián Gyula u. 20-32, H-7400 Kaposvár, Hungary
| | - Péter Szabó
- Szentágothai Research Center, Environmental Analytical and Geoanalytical Research Group, Ifjúság útja 20., H-7624 Pécs, Hungary;
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary;
| | - Olga Krafcsik
- Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - István Szabó
- Department of Orthopedics, Somogy County Mór Kaposi Teaching Hospital, Tallián Gyula u. 20-32, H-7400 Kaposvár, Hungary
| | - Balázs Patczai
- Department of Traumatology and Hand Surgery, University of Pécs, Ifjúság u. 13., H-7624 Pécs, Hungary;
| | - Kinga Turzó
- Dental School, Medical Faculty, University of Pécs, Tüzér u. 1, H-7623 Pécs, Hungary;
| |
Collapse
|
2
|
Psarou E, Vezoli J, Schölvinck ML, Ferracci PA, Zhang Y, Grothe I, Roese R, Fries P. Modular, cement-free, customized headpost and connector-chamber implants for macaques. J Neurosci Methods 2023:109899. [PMID: 37230259 DOI: 10.1016/j.jneumeth.2023.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Neurophysiological studies with awake macaques typically require chronic cranial implants. Headpost and connector-chamber implants are used to allow head stabilization and to house connectors of chronically implanted electrodes, respectively. NEW METHOD We present long-lasting, modular, cement-free headpost implants made of titanium that consist of two pieces: a baseplate and a top part. The baseplate is implanted first, covered by muscle and skin and allowed to heal and osseointegrate for several weeks to months. The percutaneous part is added in a second, brief surgery. Using a punch tool, a perfectly round skin cut is achieved providing a tight fit around the implant without any sutures. We describe the design, planning and production of manually bent and CNC-milled baseplates. We also developed a remote headposting technique that increases handling safety. Finally, we present a modular, footless connector chamber that is implanted in a similar two-step approach and achieves a minimized footprint on the skull. RESULTS Twelve adult male macaques were successfully implanted with a headpost and one with the connector chamber. To date, we report no implant failure, great headpost stability and implant condition, in four cases even more than 9 years post-implantation. COMPARISON WITH EXISTING METHODS The methods presented here build on several related previous methods and provide additional refinements to further increase implant longevity and handling safety. CONCLUSIONS Optimized implants can remain stable and healthy for at least 9 years and thereby exceed the typical experiment durations. This minimizes implant-related complications and corrective surgeries and thereby significantly improves animal welfare.
Collapse
Affiliation(s)
- Eleni Psarou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Pierre-Antoine Ferracci
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Yufeng Zhang
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Iris Grothe
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Rasmus Roese
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, Netherlands.
| |
Collapse
|
3
|
Magalhães ODA, de Alcantara RJA, Gomes JAP, Caiado de Castro Neto J, Schor P. Titanium Powder 3D-Printing Technology for a Novel Keratoprosthesis in Alkali-Burned Rabbits. Transl Vis Sci Technol 2022; 11:14. [PMID: 35976657 PMCID: PMC9400124 DOI: 10.1167/tvst.11.8.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the surgical technique, clinical performance, and biocompatibility of a novel keratoprosthesis (KPro) named KPro of Brazil (KoBra) in an alkali-burned rabbit model. Methods Two-piece three-dimensional-printed titanium powder and polymethyl methacrylate KPros were implanted into 14 alkali-burned corneas of 14 rabbits using an autologous full-thickness corneal graft as the KPro carrier. Rabbits were examined weekly for 12 months to evaluate retention and postoperative complications. Anterior segment optical coherence tomography (AS-OCT) and scanning electron microscopy (SEM) were performed at the end of the experiment to evaluate the relationship between the KoBra and the carrier graft. Results All surgeries were performed without intraoperative complications, and the immediate postoperative period was uneventful. In 12 eyes (85.7%), the implanted KPros integrated into the operated eyes and maintained clear optics without extrusion or further complications over 12 months. Two eyes presented late postoperative complications that progressed to KPro extrusion: one had a presumed infectious keratitis, and the other had sterile stromal necrosis. AS-OCT demonstrated the correct relationship of the device and carrier graft in all remaining animals at the final follow-up. SEM findings indicate the integration of the porous structure of the back plate into the surrounding tissue. Conclusions Clinical evaluations, AS-OCT, and SEM findings indicate good biointegr-ation of the implanted device into the corneal carrier graft. KoBra has the advantage of using recipients’ own corneas as the prosthesis supporter, and its surgical procedure is relatively simple and safe. Translational Relevance Titanium three-dimensional-printed technology used in an animal limbal stem-cell deficiency model holds great promise for the treatment of corneal blindness in humans.
Collapse
Affiliation(s)
- Otavio de Azevedo Magalhães
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Jorge Alves de Alcantara
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - José Alvaro Pereira Gomes
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Paulo Schor
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. NANOMATERIALS 2022; 12:nano12050782. [PMID: 35269268 PMCID: PMC8911871 DOI: 10.3390/nano12050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized clinical dental practice and has shown a high rate of success. However, because a metallic implant is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings possess a synergistic combination of mechanical, tribological, and chemical properties, which makes UNCD highly biocompatible. In addition, because the UNCD coating is made of carbon (C), a component of human DNA, cells, and molecules, it is potentially a highly biocompatible coating for medical implant devices. The aim of the present research was to evaluate tissue response to UNCD-coated titanium micro-implants using a murine model designed to evaluate biocompatibility. Non-coated (n = 10) and UNCD-coated (n = 10) orthodontic Ti micro-implants were placed in the hematopoietic bone marrow of the tibia of male Wistar rats. The animals were euthanized 30 days post implantation. The tibiae were resected, and ground histologic sections were obtained and stained with toluidine blue. Histologically, both groups showed lamellar bone tissue in contact with the implants (osseointegration). No inflammatory or multinucleated giant cells were observed. Histomorphometric evaluation showed no statistically significant differences in the percentage of BIC between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%, p > 0.05). UNCD showed good biocompatibility properties. Although the percentage of BIC (osseointegration) was similar in UNCD-coated and control Ti micro-implants, the documented tribological properties of UNCD make it a superior implant coating material. Given the current surge in the use of nano-coatings, nanofilms, and nanostructured surfaces to enhance the biocompatibility of biomedical implants, the results of the present study contribute valuable data for the manufacture of UNCD coatings as a new generation of superior dental implants.
Collapse
|
5
|
Álvarez-López A, Colchero L, Elices M, Guinea GV, Pérez-Rigueiro J, González-Nieto D. Improved cell adhesion to activated vapor silanization-biofunctionalized Ti-6Al-4V surfaces with ECM-derived oligopeptides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112614. [PMID: 35527152 DOI: 10.1016/j.msec.2021.112614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023]
Abstract
Titanium implants are widely used in traumatology and various orthopedic fields. Titanium and other metallic-based implants have limited structural and functional integration into the body, which translates into progressive prosthesis instability and the need for new surgical interventions that have enormous social and economic impacts. To enhance the biocompatibility of titanium implants, numerous biofunctionalization strategies have been developed. However, the problem persists, as more than 70% of implant failures are due to aseptic loosening. In this study we addressed the problem of improving the physiological engraftability and acceptability of titanium-based implants by applying a robust and versatile functionalization method based on the covalent immobilization of extracellular matrix (ECM)-derived oligopeptides on Ti-6Al-4V surfaces treated by activated vapor silanization (AVS). The feasibility of this technique was evaluated with two oligopeptides of different structures and compositions. These oligopeptides were immobilized on Ti-6Al-4V substrates by a combination of AVS and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The immobilization was shown to be stable and resistant to chemical denaturing upon sodium dodecyl sulfate treatment. On Ti-6Al-4V surfaces both peptides increased the attachment, spreading, rearrangement and directional growth of mesenchymal stem and progenitor cells (MSC) with chondro- and osteo-regenerative capacities. We also found that this biofunctionalization method (AVS-EDC/NHS) increased the attachment capacity of an immortalized cell line of neural origin with poor adhesive properties, highlighting the versatility and robustness of this method in terms of potential oligopeptides that may be used, and cell lineages whose anchorage to the biomaterial may be enhanced. Collectively, this novel functionalization strategy can accelerate the development of advanced peptide-functionalized metallic surfaces, which, in combination with host or exogenously implanted stem cells, have the potential to positively affect the osteoregenerative and osteointegrative abilities of metallic-based prostheses.
Collapse
Affiliation(s)
- Aroa Álvarez-López
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Colchero
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Elices
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain.
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
6
|
Lewallen EA, Trousdale WH, Thaler R, Yao JJ, Xu W, Denbeigh JM, Nair A, Kocher JP, Dudakovic A, Berry DJ, Cohen RC, Abdel MP, Lewallen DG, van Wijnen AJ. Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells. Tissue Eng Part A 2021; 27:1503-1516. [PMID: 33975459 PMCID: PMC8742309 DOI: 10.1089/ten.tea.2020.0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Metal orthopedic implants are largely biocompatible and generally achieve long-term structural fixation. However, some orthopedic implants may loosen over time even in the absence of infection. In vivo fixation failure is multifactorial, but the fundamental biological defect is cellular dysfunction at the host-implant interface. Strategies to reduce the risk of short- and long-term loosening include surface modifications, implant metal alloy type, and adjuvant substances such as polymethylmethacrylate cement. Surface modifications (e.g., increased surface rugosity) can increase osseointegration and biological ingrowth of orthopedic implants. However, the localized responses of cells to implant surface modifications need to be better characterized. As an in vitro model for investigating cellular responses to metallic orthopedic implants, we cultured mesenchymal stromal/stem cells on clinical-grade titanium disks (Ti6Al4V) that differed in surface roughness as high (porous structured), medium (grit blasted), and low (bead blasted). Topological characterization of clinically relevant titanium (Ti) materials combined with differential mRNA expression analyses (RNA-seq and real-time quantitative polymerase chain reaction) revealed alterations to the biological phenotype of cells cultured on titanium structures that favor early extracellular matrix production and observable responses to oxidative stress and heavy metal stress. These results provide a descriptive model for the interpretation of cellular responses at the interface between native host tissues and three-dimensionally printed modular orthopedic implants, and will guide future studies aimed at increasing the long-term retention of such materials after total joint arthroplasty. Impact statement Using an in vitro model of implant-to-cell interactions by culturing mesenchymal stromal cells (MSCs) on clinically relevant titanium materials of varying topological roughness, we identified mRNA expression patterns consistent with early extracellular matrix (ECM) production and responses to oxidative/heavy metal stress. Implants with high surface roughness may delay the differentiation and ECM formation of MSCs and alter the expression of genes sensitive to reactive oxygen species and protein kinases. In combination with ongoing animal studies, these results will guide future studies aimed at increasing the long-term retention of widely used titanium materials after total joint arthroplasty.
Collapse
Affiliation(s)
- Eric A. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biological Sciences, Hampton University, Hampton, Virginia, USA
| | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie J. Yao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Wei Xu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet M. Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C. Cohen
- Digital, Robotics, and Enabling Technologies, Stryker Orthopedics, Mahwah, New Jersey, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David G. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
7
|
Abar B, Kelly C, Pham A, Allen N, Barber H, Kelly A, Mirando AJ, Hilton MJ, Gall K, Adams SB. Effect of surface topography on in vitro osteoblast function and mechanical performance of 3D printed titanium. J Biomed Mater Res A 2021; 109:1792-1802. [PMID: 33754494 PMCID: PMC8373644 DOI: 10.1002/jbm.a.37172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Critical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.
Collapse
Affiliation(s)
- Bijan Abar
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Cambre Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Anh Pham
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Alexander Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Ken Gall
- Duke University Department of Mechanical Engineering and Material Sciences
| | | |
Collapse
|
8
|
Sajjady SA, Lotfi M, Amini S, Toutounchi H, Bami AB. Improving the surface energy of titanium implants by the creation of hierarchical textures on the surface via three-dimensional elliptical vibration turning for enhanced osseointegration. Proc Inst Mech Eng H 2019; 233:1226-1236. [PMID: 31599210 DOI: 10.1177/0954411919878306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An increase in bone-implant contact and an increase in surface hydrophilicity are the two important factors involved in improving osseointegration. Therefore, three-dimensional elliptical vibration turning method is applied to increase the hydrophilicity of titanium surface by the generation of hierarchical nano- and micro-textures. That being the case, face turning process at different cutting conditions is carried out in this research. Surface roughness and the contact angle of water drops with machined surfaces were selected to be measured for the analysis of surface hydrophilicity. The results show that an additional surface area can be achieved by the generation of micro- or nano-textures, resulting in a lower contact angle. Furthermore, intermittent movement of cutting tool in vibration cutting causes the process to be more stable, achieving the desired range of surface roughness.
Collapse
Affiliation(s)
- Sayed Ali Sajjady
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Mohammad Lotfi
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Saeid Amini
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Hamidreza Toutounchi
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Alireza Bagheri Bami
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
9
|
Patil A, Zaky SH, Chong R, Verdelis K, Beniash E. In vivo study of self-assembled alkylsilane coated degradable magnesium devices. J Biomed Mater Res B Appl Biomater 2019; 107:342-351. [PMID: 29638047 PMCID: PMC6371401 DOI: 10.1002/jbm.b.34126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) and its alloys are candidate materials for resorbable implantable devices, such as orthopedic devices or cardiovascular stents. Mg has a number advantages, including mechanical properties, light weight, its osteogenic effects and the fact that its degradation products are nontoxic and naturally present in the body. However, production of H2 gas during the corrosion reaction can cause formation of gas pockets at the implantation site, posing a barrier to clinical applications of Mg. It is therefore desirable to develop methods to control corrosion rate and gas pocket formation around the implants. Here we evaluate the potential of self-assembled multilayer alkylsilane (AS) coatings to control Mg device corrosion and formation of gas pockets in vivo and to assess effects of the AS coatings on the surrounding tissues in a subcutaneous mouse model over a 6 weeks' period. The coating significantly slowed down corrosion and gas pocket formation as evidenced by smaller gas pockets around the AS coated implants (ANOVA; p = 0.013) and decrease in the weight loss values (t test; p = 0.07). Importantly, the microCT and profilometry analyses demonstrated that the coating inhibited the pitting corrosion. Specifically, the roughness of the coated samples was ∼30% lower than uncoated specimen (p = 0.02). Histological assessment of the tissues under the implant revealed no inflammation or foreign body reaction. Overall, our results demonstrate the feasibility of use of the seld assembled AS coatings for reduction of gas pocket formation around the resorbable Mg devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 342-351, 2019.
Collapse
Affiliation(s)
- Avinash Patil
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| | - Samer H Zaky
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Restorative Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| | - Rong Chong
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219
| | - Elia Beniash
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
- Department of Restorative Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
10
|
Li L, Jiang H, Wang LQ, Huang YF. Experimental study on the biocompatibility of keratoprosthesis with improved titanium implant. Int J Ophthalmol 2018; 11:1741-1745. [PMID: 30450302 DOI: 10.18240/ijo.2018.11.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/27/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) implant biointegration, ultimately to decrease the risk of implant-associated complications. METHODS The modified titanium implant was designed and prepared for artificial cornea. The titanium implant was treated with sandblasting and hydroxyapatite coating by acid-base two-step method. Surface was analyzed by scanning electron microscopy (SEM), KPro implants coated with HAp and KPro implant sandblasted were implanted in rabbits. Tissue adhesion to the implant was assessed and compared to an unmodified implant by histopathology (HE), transmission electron microscopy (TEM) and SEM. RESULTS SEM demonstrated successful deposition of HAp on titanium implant sandblasted (HA/SB-Ti). The hydroxyapatite coatings caused enhancement of keratocyte proliferation compared with unmodified implant surfaces. HAp coating significantly increased adhesion forces. HAp coating of implants reduced the inflammatory response around the KPro implants in vivo. CONCLUSION HAp-coated surfaces for use in titanium KPro implant greatly enhanced adherence of the titanium KPro implant in the rabbit cornea.
Collapse
Affiliation(s)
- Li Li
- Department of Ophthalmology, the 88th Hospital of Chinese People's Liberation Army, Taian 271000, Shandong Province, China
| | - Hua Jiang
- Department of Ophthalmology, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Li-Qiang Wang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Fei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Ingrassia D, Sladkova M, Palmer M, Xia W, Engqvist H, de Peppo GM. Stem cell-mediated functionalization of titanium implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:133. [PMID: 28744615 DOI: 10.1007/s10856-017-5944-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Prosthetic implants are used daily to treat edentulous people and to restore mobility in patients affected by skeletal defects. Titanium (Ti) is the material of choice in prosthetics, because it can form a stable bond with the surrounding bone following implantation-a process known as osseointegration. Yet, full integration of prosthetic implants takes time, and fails in clinical situations characterized by limited bone quantity and/or compromised regenerative capacity, and in at-risk patients. Intense research efforts are thus made to develop new implants that are cost-effective, safe, and suited to every patient in each clinical situation. In this study, we tested the possibility to functionalize Ti implants using stem cells. Human induced pluripotent stem cell-derived mesenchymal progenitor (iPSC-MP) cells were cultured on Ti model disks for 2 weeks in osteogenic conditions. Samples were then treated using four different decellularization methods to wash off the cells and expose the matrix. The functionalized disks were finally sterilized and seeded with fresh human iPSC-MP cells to study the effect of stem cell-mediated surface functionalization on cell behavior. The results show that different decellularization methods produce diverse surface modifications, and that these modifications promote proliferation of human iPSC-MP cells, affect the expression of genes involved in development and differentiation, and stimulate the release of alkaline phosphatase. Cell-mediated functionalization represents an attractive strategy to modify the surface of prosthetic implants with cues of biological relevance, and opens unprecedented possibilities for development of new devices with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Deanna Ingrassia
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY, 10019, USA
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY, 10019, USA
| | - Michael Palmer
- Division of Applied Material Sciences, Uppsala University, Uppsala, SE, Sweden
| | - Wei Xia
- Division of Applied Material Sciences, Uppsala University, Uppsala, SE, Sweden
| | - Håkan Engqvist
- Division of Applied Material Sciences, Uppsala University, Uppsala, SE, Sweden
| | - Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY, 10019, USA.
| |
Collapse
|
12
|
Overton JA, Cooke DF, Goldring AB, Lucero SA, Weatherford C, Recanzone GH. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research. J Neurophysiol 2017; 118:3252-3270. [PMID: 28855286 DOI: 10.1152/jn.00191.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, head fixation devices and recording cylinders have been implanted in nonhuman primates (NHP) using dental acrylic despite several shortcomings associated with acrylic. The use of more biocompatible materials such as titanium and PEEK is becoming more prevalent in NHP research. We describe a cost-effective set of procedures that maximizes the integration of headposts and recording cylinders with the animal's tissues while reducing surgery time. Nine rhesus monkeys were implanted with titanium headposts, and one of these was also implanted with a recording chamber. In each case, a three-dimensional printed replica of the skull was created based on computerized tomography scans. The titanium feet of the headposts were shaped, and the skull thickness was measured preoperatively, reducing surgery time by up to 70%. The recording cylinder was manufactured to conform tightly to the skull, which was fastened to the skull with four screws and remained watertight for 8.5 mo. We quantified the amount of regression of the skin edge at the headpost. We found a large degree of variability in the timing and extent of skin regression that could not be explained by any single recorded factor. However, there was not a single case of bone exposure; although skin retracted from the titanium, skin also remained adhered to the skull adjacent to those regions. The headposts remained fully functional and free of complications for the experimental life of each animal, several of which are still participating in experiments more than 4 yr after implant.NEW & NOTEWORTHY Cranial implants are often necessary for performing neurophysiology research with nonhuman primates. We present methods for using three-dimensional printed monkey skulls to form and fabricate acrylic-free implants preoperatively to decrease surgery times and the risk of complications and increase the functional life of the implant. We focused on reducing costs, creating a feasible timeline, and ensuring compatibility with existing laboratory systems. We discuss the importance of using more biocompatible materials and enhancing osseointegration.
Collapse
Affiliation(s)
| | - Dylan F Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adam B Goldring
- Center for Neuroscience, University of California, Davis, California
| | - Steven A Lucero
- Department of Biomedical Engineering, University of California, Davis, California; and
| | - Conor Weatherford
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
13
|
Chen X, Possel JK, Wacongne C, van Ham AF, Klink PC, Roelfsema PR. 3D printing and modelling of customized implants and surgical guides for non-human primates. J Neurosci Methods 2017; 286:38-55. [PMID: 28512008 PMCID: PMC5482398 DOI: 10.1016/j.jneumeth.2017.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Primate neurobiologists use chronically implanted devices such as pedestals for head stabilization and chambers to gain access to the brain and study its activity. Such implants are skull-mounted, and made from a hard, durable material, such as titanium. NEW METHOD Here, we present a low-cost method of creating customized 3D-printed cranial implants that are tailored to the anatomy of individual animals. We performed pre-surgical computed tomography (CT) and magnetic resonance (MR) scans to generate three-dimensional (3D) models of the skull and brain. We then used 3D modelling software to design implantable head posts, chambers, and a pedestal anchorage base, as well as craniotomy guides to aid us during surgery. Prototypes were made from plastic or resin, while implants were 3D-printed in titanium. The implants underwent post-processing and received a coating of osteocompatible material to promote bone integration. RESULTS Their tailored fit greatly facilitated surgical implantation, and eliminated the gap between the implant and the bone. To date, our implants remain robust and well-integrated with the skull. COMPARISON WITH EXISTING METHOD(S) Commercial-off-the-shelf solutions typically come with a uniform, flat base, preventing them from sitting flush against the curved surface of the skull. This leaves gaps for fluid and tissue ingress, increasing the risk of microbial infection and tissue inflammation, as well as implant loss. CONCLUSIONS The use of 3D printing technology enabled us to quickly and affordably create unique, complex designs, avoiding the constraints levied by traditional production methods, thereby boosting experimental success and improving the wellbeing of the animals.
Collapse
Affiliation(s)
- Xing Chen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands.
| | - Jessy K Possel
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Catherine Wacongne
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Anne F van Ham
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands; Department of Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands; Department of Psychiatry, Academic Medical Center, Postbus 22660, 1100 DD, Amsterdam, Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands; Department of Psychiatry, Academic Medical Center, Postbus 22660, 1100 DD, Amsterdam, Netherlands
| |
Collapse
|
14
|
Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:425-432. [DOI: 10.1016/j.msec.2016.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/23/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
|
15
|
Bajpai V, Prasad B, Singh R. Fabrication and functional characterization of engineered features on pyrolytic carbon. ADVANCES IN MANUFACTURING 2016; 4:134-141. [DOI: 10.1007/s40436-016-0139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Salvador-Culla B, Jeong KJ, Kolovou PE, Chiang HH, Chodosh J, Dohlman CH, Kohane DS. Titanium Coating of the Boston Keratoprosthesis. Transl Vis Sci Technol 2016; 5:17. [PMID: 27152247 PMCID: PMC4855478 DOI: 10.1167/tvst.5.2.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose We tested the feasibility of using titanium to enhance adhesion of the Boston Keratoprosthesis (B-KPro), ultimately to decrease the risk of implant-associated complications. Methods Cylindrical rods were made of poly(methyl methacrylate) (PMMA), PMMA coated with titanium dioxide (TiO2) over a layer of polydopamine (PMMATiO2), smooth (Ti) and sandblasted (TiSB) titanium, and titanium treated with oxygen plasma (Tiox and TiSBox). Topography and surface chemistry were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Adhesion force between rods and porcine corneas was measured ex vivo. Titanium sleeves, smooth and sandblasted, were inserted around the stem of the B-KPro and implanted in rabbits. Tissue adhesion to the stem was assessed and compared to an unmodified B-Kpro after 1 month. Results X-ray photoelectron spectroscopy demonstrated successful deposition of TiO2 on polydopamine-coated PMMA. Oxygen plasma treatment did not change the XPS spectra of titanium rods (Ti and TiSB), although it increased their hydrophilicity. The materials did not show cell toxicity. After 14 days of incubation, PMMATiO2, smooth titanium treated with oxygen plasma (Tiox), and sandblasted titanium rods (TiSB, TiSBox) showed significantly higher adhesion forces than PMMA ex vivo. In vivo, the use of a TiSB sleeve around the stem of the B-KPro induced a significant increase in tissue adhesion compared to a Ti sleeve or bare PMMA. Conclusions Sandblasted titanium sleeves greatly enhanced adherence of the B-KPro to the rabbit cornea. This approach may improve adhesion with the donor cornea in humans as well. Translational Relevance This approach may improve adhesion with donor corneas in humans.
Collapse
Affiliation(s)
- Borja Salvador-Culla
- Department of Ophthalmology Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, USA ; Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| | - Paraskevi Evi Kolovou
- Department of Ophthalmology Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Homer H Chiang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Chodosh
- Department of Ophthalmology Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Claes H Dohlman
- Department of Ophthalmology Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA ; Department of Ophthalmology Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Azimi K, Prescott IA, Marino RA, Winterborn A, Levy R. Low profile halo head fixation in non-human primates. J Neurosci Methods 2016; 268:23-30. [PMID: 27132241 DOI: 10.1016/j.jneumeth.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND We present a new halo technique for head fixation of non-human primates during electrophysiological recording experiments. Our aim was to build on previous halo designs in order to create a simple low profile system that provided long-term stability. NEW METHOD Our design incorporates sharp skull pins that are directly threaded through a low set halo frame and are seated into implanted titanium foot plates on the skull. The inwardly directed skull pins provide an easily calibrated force against the skull. RESULTS This device allowed for head fixation within 1 week after implantation surgery. The low-profile design maximized the area of the skull available and potential implant orientations for electrophysiological experiments. It was easily maintained and was stable in 2 animals for the 6-8 months of testing. The quality of single unit neural recordings collected while using this device to head fix was indistinguishable from traditional head-post fixation. The foot plates used in this system did not result in significant MRI distortion in the location of deep brain targets (∼0.5mm) of a 3D printed phantom skull. COMPARISON WITH EXISTING METHOD(S) The low profile design of this halo design allows greater access to the majority of the frontal, parietal, and occipital skull. It has fewer parts and can hold larger animals than previous halo designs. CONCLUSIONS Given the stability, simplicity, immediate usability, and low profile of our head fixation device, we propose that it is a practical and useful means for performing electrophysiological recording experiments on non-human primates.
Collapse
Affiliation(s)
- Kousha Azimi
- School of Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Ian A Prescott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Surgery, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada.
| | - Robert A Marino
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Surgery, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada.
| | - Andrew Winterborn
- Animal Care Services, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Ron Levy
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Surgery, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada.
| |
Collapse
|
18
|
Petrochenko PE, Torgersen J, Gruber P, Hicks LA, Zheng J, Kumar G, Narayan RJ, Goering PL, Liska R, Stampfl J, Ovsianikov A. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells. Adv Healthc Mater 2015; 4:739-47. [PMID: 25522214 DOI: 10.1002/adhm.201400442] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/23/2014] [Indexed: 01/10/2023]
Abstract
A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.
Collapse
Affiliation(s)
- Peter E. Petrochenko
- Office of Science and Engineering Laboratories; U.S. Food and Drug Administration (FDA); Silver Spring MD USA
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill; NC USA
| | - Jan Torgersen
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstrasse 9-11 Vienna Austria
| | - Peter Gruber
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstrasse 9-11 Vienna Austria
| | - Lucas A. Hicks
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill; NC USA
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories; U.S. Food and Drug Administration (FDA); Silver Spring MD USA
| | - Girish Kumar
- Office of Science and Engineering Laboratories; U.S. Food and Drug Administration (FDA); Silver Spring MD USA
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill; NC USA
| | - Peter L. Goering
- Office of Science and Engineering Laboratories; U.S. Food and Drug Administration (FDA); Silver Spring MD USA
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9 Vienna Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstrasse 9-11 Vienna Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstrasse 9-11 Vienna Austria
| |
Collapse
|
19
|
Pitkin M. Design features of implants for direct skeletal attachment of limb prostheses. J Biomed Mater Res A 2013; 101:3339-48. [PMID: 23554122 DOI: 10.1002/jbm.a.34606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/11/2022]
Abstract
In direct skeletal attachment (DSA) of limb prostheses, a construct is implanted into an amputee's residuum bone and protrudes out of the residuum's skin. This technology represents an alternative to traditional suspension of prostheses via various socket systems, with clear indications when the sockets cannot be properly fitted. Contemporary DSA was invented in the 1990s, and several implant systems have been introduced since then. The current review is intended to compare the design features of implants for DSA whose use in humans or in animal studies has been reported in the literature.
Collapse
Affiliation(s)
- M Pitkin
- Tufts University School of Medicine, Boston, Massachusetts, 02111; Poly-Orth International, Sharon, Massachusetts, 02067
| |
Collapse
|