1
|
Oblasov I, Bal NV, Shvadchenko AM, Fortygina P, Idzhilova OS, Balaban PM, Nikitin ES. Ca 2+-permeable AMPA receptor-dependent silencing of neurons by KCa3.1 channels during epileptiform activity. Biochem Biophys Res Commun 2024; 733:150434. [PMID: 39068818 DOI: 10.1016/j.bbrc.2024.150434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.
Collapse
Affiliation(s)
- Ilya Oblasov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Anastasya M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Olga S Idzhilova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485.
| |
Collapse
|
2
|
Nikitin ES, Postnikova TY, Proskurina EY, Borodinova AA, Ivanova V, Roshchin MV, Smirnova MP, Kelmanson I, Belousov VV, Balaban PM, Zaitsev AV. Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability. Gene Ther 2024; 31:144-153. [PMID: 37968509 DOI: 10.1038/s41434-023-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.
Collapse
Affiliation(s)
- Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia.
| | - Tatiana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | - Elena Y Proskurina
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | | | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Matvey V Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Maria P Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Ilya Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia.
| |
Collapse
|
3
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
4
|
Fromm J, Lautner S. Electrical Signaling and Its Functions Under Conditions of Abiotic Stress: A Review of Methodological Approaches and Physiological Implications. Methods Mol Biol 2023; 2642:179-193. [PMID: 36944879 DOI: 10.1007/978-1-0716-3044-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In contrast to chemical messengers, electrical signals such as action potentials and variation potentials can transmit information much faster over long distances. Electrical signals can be triggered by various abiotic stress factors and are propagated via plasmodesmata over short distances and within the phloem over long distances. Thus, in addition to assimilate transport from sources to sinks, the phloem serves as a communication highway for various types of information. Key factors for systemic signaling in the phloem are peptides, RNAs, hormones, and electrical signals. In recent years, there has been increasing evidence that rapid communication by means of electrical signals is essential for various plant physiological processes. Thus, this chapter focuses on electrical signaling and various associated physiological effects, such as regulation of leaf movements, assimilate transport, photosynthesis, and gas exchange, as well as plant water status.
Collapse
Affiliation(s)
- Jörg Fromm
- Wood Biology, Institute for Wood Science, Universität Hamburg, Hamburg, Germany.
| | - Silke Lautner
- Applied Wood Biology, Eberswalde University for Sustainable Development, Eberswalde, Germany
| |
Collapse
|
5
|
Okamoto Y, Hamaguchi K, Watanabe M, Watanabe N, Umakoshi H. Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope. MEMBRANES 2022; 12:770. [PMID: 36005685 PMCID: PMC9415343 DOI: 10.3390/membranes12080770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The lipid membrane forms nanodomains (rafts) and shows heterogeneous properties. These nanodomains relate to significant roles in various cell functions, and thus the analysis of the nanodomains in phase-separated lipid membranes is important to clarify the function and role of the nanodomains. However, the lipid membrane possesses small-sized nanodomains and shows a small height difference between the nanodomains and their surroundings at certain lipid compositions. In addition, nanodomain analysis sometimes requires highly sensitive and expensive apparatus, such as a two-photon microscope. These have prevented the analysis by the conventional fluorescence microscope and by the topography of the scanning probe microscope (SPM), even though these are promising methods in macroscale and microscale analysis, respectively. Therefore, this study aimed to overcome these problems in nanodomain analysis. We successfully demonstrated that solvatochromic dye, LipiORDER, could analyze the phase state of the lipid membrane at the macroscale with low magnification lenses. Furthermore, we could prove that the phase mode of SPM was effective in the visualization of specific nanodomains by properties difference as well as topographic images of SPM. Hence, this combination method successfully gave much information on the phase state at the micro/macro scale, and thus this would be applied to the analysis of heterogeneous lipid membranes.
Collapse
|
6
|
Ierusalimsky VN, Balaban PM, Nikitin ES. Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons. Biochem Biophys Res Commun 2022; 615:102-108. [DOI: 10.1016/j.bbrc.2022.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/14/2022] [Indexed: 12/16/2022]
|
7
|
Ca 2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep 2020; 10:14484. [PMID: 32879404 PMCID: PMC7468258 DOI: 10.1038/s41598-020-71415-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023] Open
Abstract
Layer 5 neocortical pyramidal neurons are known to display slow Ca2+-dependent afterhyperpolarization (sAHP) after bursts of spikes, which is similar to the sAHP in CA1 hippocampal cells. However, the mechanisms of sAHP in the neocortex remain poorly understood. Here, we identified the Ca2+-gated potassium KCa3.1 channels as contributors to sAHP in ER81-positive neocortical pyramidal neurons. Moreover, our experiments strongly suggest that the relationship between sAHP and KCa3.1 channels in a feedback mechanism underlies the adaptation of the spiking frequency of layer 5 pyramidal neurons. We demonstrated the relationship between KCa3.1 channels and sAHP using several parallel methods: electrophysiology, pharmacology, immunohistochemistry, and photoactivatable probes. Our experiments demonstrated that ER81 immunofluorescence in layer 5 co-localized with KCa3.1 immunofluorescence in the soma. Targeted Ca2+ uncaging confirmed two major features of KCa3.1 channels: preferential somatodendritic localization and Ca2+-driven gating. In addition, both the sAHP and the slow Ca2+-induced hyperpolarizing current were sensitive to TRAM-34, a selective blocker of KCa3.1 channels.
Collapse
|
8
|
Gupta P, Balasubramaniam N, Chang HY, Tseng FG, Santra TS. A Single-Neuron: Current Trends and Future Prospects. Cells 2020; 9:E1528. [PMID: 32585883 PMCID: PMC7349798 DOI: 10.3390/cells9061528] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is an intricate network with complex organizational principles facilitating a concerted communication between single-neurons, distinct neuron populations, and remote brain areas. The communication, technically referred to as connectivity, between single-neurons, is the center of many investigations aimed at elucidating pathophysiology, anatomical differences, and structural and functional features. In comparison with bulk analysis, single-neuron analysis can provide precise information about neurons or even sub-neuron level electrophysiology, anatomical differences, pathophysiology, structural and functional features, in addition to their communications with other neurons, and can promote essential information to understand the brain and its activity. This review highlights various single-neuron models and their behaviors, followed by different analysis methods. Again, to elucidate cellular dynamics in terms of electrophysiology at the single-neuron level, we emphasize in detail the role of single-neuron mapping and electrophysiological recording. We also elaborate on the recent development of single-neuron isolation, manipulation, and therapeutic progress using advanced micro/nanofluidic devices, as well as microinjection, electroporation, microelectrode array, optical transfection, optogenetic techniques. Further, the development in the field of artificial intelligence in relation to single-neurons is highlighted. The review concludes with between limitations and future prospects of single-neuron analyses.
Collapse
Affiliation(s)
- Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Nandhini Balasubramaniam
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| |
Collapse
|
9
|
Roshchin M, Ermakova YG, Lanin AA, Chebotarev AS, Kelmanson IV, Balaban PM, Zheltikov AM, Belousov VV, Nikitin ES. Thermogenetic stimulation of single neocortical pyramidal neurons transfected with TRPV1-L channels. Neurosci Lett 2018; 687:153-157. [PMID: 30267850 DOI: 10.1016/j.neulet.2018.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of single neurons using thermosensitive cation channels and IR stimulation. The main advantage of IR stimulation compared to conventional visible light optogenetics is the depth of penetration (up to millimeters). Due to physiological limitations, thermogenetic molecular tools for mammalian brain stimulation remain poorly developed. Here, we tested the possibility of employment of this new technique for stimulation of neocortical neurons. The method is based on activation gating of TRPV1-L channels selectively expressed in specific cells. Pyramidal neurons of layer 2/3 of neocortex were transfected at an embryonic stage using a pCAG expression vector and electroporation in utero. Depolarization and spiking responses of TRPV1L+ pyramidal neurons to IR radiation were recorded electrophysiologically in acute brain slices of adult animals with help of confocal visualization. As TRPV1L-expressing neurons are not sensitive to visible light, there were no limitations of the use of this technique with conventional fluorescence imaging. Our experiments demonstrated that the TRPV1-L+ pyramidal neurons preserve their electrical excitability in acute brain slices, while IR radiation can be successfully used to induce single neuronal depolarization and spiking at near physiological temperatures. Obtained results provide important information for adaptation of thermogenetic technology to mammalian brain studies in vivo.
Collapse
Affiliation(s)
- Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow 117485, Russia
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 17997, Russia
| | - Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
| | - Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ilya V Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 17997, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow 117485, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 17997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen, D-37073, Germany
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow 117485, Russia.
| |
Collapse
|
10
|
Nikitin ES, Bal NV, Malyshev A, Ierusalimsky VN, Spivak Y, Balaban PM, Volgushev M. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons. Front Cell Neurosci 2017; 11:28. [PMID: 28261059 PMCID: PMC5306208 DOI: 10.3389/fncel.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11-25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation.
Collapse
Affiliation(s)
- Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Aleksey Malyshev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia; Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| | - Victor N Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Yulia Spivak
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow, Russia
| | - Maxim Volgushev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia; Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
11
|
Shafeghat N, Heidarinejad M, Murata N, Nakamura H, Inoue T. Optical detection of neuron connectivity by random access two-photon microscopy. J Neurosci Methods 2016; 263:48-56. [PMID: 26851307 DOI: 10.1016/j.jneumeth.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Knowledge about the distribution, strength, and direction of synaptic connections within neuronal networks are crucial for understanding brain function. Electrophysiology using multiple electrodes provides a very high temporal resolution, but does not yield sufficient spatial information for resolving neuronal connection topology. Optical recording techniques using single-cell resolution have provided promise for providing spatial information. Although calcium imaging from hundreds of neurons has provided a novel view of the neural connections within the network, the kinetics of calcium responses are not fast enough to resolve each action potential event with high fidelity. Therefore, it is not possible to detect the direction of neuronal connections. NEW METHOD We took advantage of the fast kinetics and large dynamic range of the DiO/DPA combination of voltage sensitive dye and the fast scan speed of a custom-made random-access two-photon microscope to resolve each action potential event from multiple neurons in culture. RESULTS Long-duration recording up to 100min from cultured hippocampal neurons yielded sufficient numbers of spike events for analyzing synaptic connections. Cross-correlation analysis of neuron pairs clearly distinguished synaptically connected neuron pairs with the connection direction. COMPARISON WITH EXISTING METHOD The long duration recording of action potentials with voltage-sensitive dye utilized in the present study is much longer than in previous studies. Simultaneous optical voltage and calcium measurements revealed that voltage-sensitive dye is able to detect firing events more reliably than calcium indicators. CONCLUSIONS This novel method reveals a new view of the functional structure of neuronal networks.
Collapse
Affiliation(s)
- Nasrin Shafeghat
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noboru Murata
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
12
|
Zhao DJ, Chen Y, Wang ZY, Xue L, Mao TL, Liu YM, Wang ZY, Huang L. High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 2015; 5:13425. [PMID: 26333536 PMCID: PMC4558603 DOI: 10.1038/srep13425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants.
Collapse
Affiliation(s)
- Dong-Jie Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Chen
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Zi-Yang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Xue
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Tong-Lin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Min Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.,Key Laboratory of Agricultural information acquisition technology (Beijing), Ministry of Agriculture, Beijing 100083, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.,Key Laboratory of Agricultural information acquisition technology (Beijing), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
13
|
Mathew A, Pakan JMP, Collin EC, Wang W, McDermott KW, Fitzgerald U, Reynolds R, Pandit AS. An ex-vivo multiple sclerosis model of inflammatory demyelination using hyperbranched polymer. Biomaterials 2013; 34:5872-82. [PMID: 23660252 DOI: 10.1016/j.biomaterials.2013.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is characterized by the presence of inflammatory demyelinating foci throughout the brain and spinal cord, accompanied by axonal and neuronal damage. Although inflammatory processes are thought to underlie the pathological changes, the individual mediators of this damage are unclear. In order to study the role of pro-inflammatory cytokines in demyelination in the central nervous system, we have utilized a hyperbranched poly(2-dimethyl-aminoethylmethacrylate) based non-viral gene transfection system to establish an inflammatory demyelinating model of MS in an ex-vivo environment. The synthesized non-viral gene transfection system was optimized for efficient transfection with minimal cytotoxicity. Organotypic brain slices were then successfully transfected with the TNF or IFNγ genes. TNF and IFNγ expression and release in cerebellar slices via non-viral gene delivery approach resulted in inflammation mediated myelin loss, thus making it a promising ex-vivo approach for studying the underlying mechanisms of demyelination in myelin-related diseases such as MS.
Collapse
Affiliation(s)
- Asha Mathew
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|