1
|
Bánszegi O, Rosetti M, Olivares UJ, Szenczi P. Response to geometrical visual illusions in non-human animals: a meta-analysis. Proc Biol Sci 2024; 291:20240414. [PMID: 38889782 DOI: 10.1098/rspb.2024.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Visual illusions have been studied in many non-human species, spanning a wide range of biological and methodological variables. While early reviews have proved useful in providing an overview of the field, they have not been accompanied by quantitative analysis to systematically evaluate the contribution of biological and methodological moderators on the proportion of illusory choice. In the current meta-analytical study, we confirm that geometrical visual illusion perception is a general phenomenon among non-human animals. Additionally, we found that studies testing birds report stronger illusion perception compared to other classes, as do those on animals with lateral-positioned eyes compared to animals with forward-facing eyes. In terms of methodological choices, we found a positive correlation between the number of trials during training or testing and the effect sizes, while studies with larger samples report smaller effect sizes. Despite studies that trained animals with artificial stimuli showing larger effect sizes compared with those using spontaneous testing with naturalistic stimuli, like food, we found more recent studies prefer spontaneous choice over training. We discuss the challenges and bottlenecks in this area of study, which, if addressed, could lead to more successful advances in the future.
Collapse
Affiliation(s)
- Oxána Bánszegi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcos Rosetti
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad Psicopatología y Desarrollo, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Uriel J Olivares
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Péter Szenczi
- Unidad Psicopatología y Desarrollo, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México, Mexico
| |
Collapse
|
2
|
Lucon-Xiccato T, De Russi G, Frigato E, Dadda M, Bertolucci C. One-trial odour recognition learning and its underlying brain areas in the zebrafish. Behav Brain Res 2024; 465:114949. [PMID: 38479474 DOI: 10.1016/j.bbr.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Distinguishing familiar from novel stimuli is critical in many animals' activities, and procedures based on this ability are among the most exploited in translational research in rodents. However, recognition learning and the underlying brain substrates remain unclear outside a few mammalian species. Here, we investigated one-trial recognition learning for olfactory stimuli in a teleost fish using a behavioural and molecular approach. With our behavioural analysis, we found that zebrafish can learn to recognise a novel odour after a single encounter and then, discriminate between this odour and a different one provided that the molecular structure of the cues is relatively differentiated. Subsequently, by expression analysis of immediate early genes in the main brain areas, we found that the telencephalon was activated when zebrafish encountered a familiar odour, whereas the hypothalamus and the optic tectum were activated in response to the novel odour. Overall, this study provided evidence of single-trial spontaneous learning of novel odours in a teleost fish and the presence of multiple neural substrates involved in the process. These findings are promising for the development of zebrafish models to investigate cognitive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Lucon-Xiccato T. Inhibitory control in teleost fish: a methodological and conceptual review. Anim Cogn 2024; 27:27. [PMID: 38530456 DOI: 10.1007/s10071-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
4
|
Tomonaga M, Haraguchi D, Wilkinson A. Slowly walking down to the more food: relative quantity discrimination in African spurred tortoises (Centrochelys sulcata). Anim Cogn 2023; 26:1675-1683. [PMID: 37477740 PMCID: PMC10442272 DOI: 10.1007/s10071-023-01812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Quantity discrimination, is thought to be highly adaptive as it allows an organism to select greater amounts of food or larger social groups. In contrast to mammals, the processes underlying this ability are not as well understood in reptiles. This study examined the effects of ratio and number size on relative quantity discrimination in African spurred tortoises (Centrochelys sulcata). To assess these effects, tortoises were presented with trays containing favored food pieces in all possible number combinations between 1 and 7. The tortoises had to approach the tray they perceived as having the larger quantity. If correct, they received one piece of food as reinforcement. The results revealed that relative quantity discrimination was influenced by the ratio between the numbers of pieces, with performance improving as the ratio between the numbers increased. This finding suggests that the approximate number system or analogue magnitude estimation may control their behavior. However, as the number size increased, their performance declined, also suggesting that the approximate number system alone could not explain the present results.
Collapse
Affiliation(s)
- Masaki Tomonaga
- Japan Monkey Centre, Inuyama, Aichi, 484-0081, Japan.
- University of Human Environments, Matsuyama, Ehime, 790-0825, Japan.
| | | | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- Wildlife Research Center, Kyoto University, Kyoto, 606-8203, Japan.
| |
Collapse
|
5
|
Bengochea M, Sitt JD, Izard V, Preat T, Cohen L, Hassan BA. Numerical discrimination in Drosophila melanogaster. Cell Rep 2023; 42:112772. [PMID: 37453418 PMCID: PMC10442639 DOI: 10.1016/j.celrep.2023.112772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Sensitivity to numbers is a crucial cognitive ability. The lack of experimental models amenable to systematic genetic and neural manipulation has precluded discovering neural circuits required for numerical cognition. Here, we demonstrate that Drosophila flies spontaneously prefer sets containing larger numbers of objects. This preference is determined by the ratio between the two numerical quantities tested, a characteristic signature of numerical cognition across species. Individual flies maintained their numerical choice over consecutive days. Using a numerical visual conditioning paradigm, we found that flies are capable of associating sucrose with numerical quantities and can be trained to reverse their spontaneous preference for large quantities. Finally, we show that silencing lobula columnar neurons (LC11) reduces the preference for more objects, thus identifying a neuronal substrate for numerical cognition in invertebrates. This discovery paves the way for the systematic analysis of the behavioral and neural mechanisms underlying the evolutionary conserved sensitivity to numerosity.
Collapse
Affiliation(s)
- Mercedes Bengochea
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Veronique Izard
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, 75006 Paris, France
| | - Thomas Preat
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Laurent Cohen
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France; AP-HP, Hôpital de La Pitié Salpêtrière, Féderation de Neurologie, Paris, France.
| | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
6
|
Sun X, Piao Y, Wang T, Wang J, Fu J, Cui J. Keep numbers in view: red-eared sliders ( Trachemys scripta elegans) learn to discriminate relative quantities. Biol Lett 2023; 19:20230203. [PMID: 37465912 PMCID: PMC10354689 DOI: 10.1098/rsbl.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to discriminate relative quantities, one of the numerical competences, is considered an adaptive trait in uncertain environments. Besides humans, previous studies have reported this capacity in several non-human primates and birds. Here, we test whether red-eared sliders (Trachemys scripta elegans) can discriminate different relative quantities. Subjects were first trained to distinguish different stimuli with food reward. Then, they were tested with novel stimulus pairs to demonstrate how they distinguished the stimuli. The results show that most subjects can complete the initial training and use relative quantity rather than absolute quantity to make choices during the testing phase. This study provides behavioural evidence of relative quantity discrimination in a reptile species and suggests that such capacity may be widespread among vertebrates.
Collapse
Affiliation(s)
- Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yige Piao
- Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan
| | - Tongliang Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- Departments of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| |
Collapse
|
7
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Aulet LS, Lourenco SF. No intrinsic number bias: Evaluating the role of perceptual discriminability in magnitude categorization. Dev Sci 2023; 26:e13305. [PMID: 35851738 DOI: 10.1111/desc.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
Abstract
Accumulating evidence suggests that there is a spontaneous preference for numerical, compared to non-numerical (e.g., cumulative surface area), information. However, given a paucity of research on the perception of non-numerical magnitudes, it is unclear whether this preference reflects a specific bias towards number, or a general bias towards the more perceptually discriminable dimension (i.e., number). Here, we found that when the number and area of visual dot displays were matched in mathematical ratio, number was more perceptually discriminable than area in both adults and children. Moreover, both adults and children preferentially categorized these ratio-matched stimuli based on number, consistent with previous work. However, when number and area were matched in perceptual discriminability, a different pattern of results emerged. In particular, children preferentially categorized stimuli based on area, suggesting that children's previously observed number bias may be due to a mismatch in the perceptual discriminability of number and area, not an intrinsic salience of number. Interestingly, adults continued to categorize the displays on the basis of number. Altogether, these findings suggest a dominant role for area during childhood, refuting the claim that number is inherently and uniquely salient. Yet they also reveal an increased salience of number that emerges over development. Potential explanations for this developmental shift are discussed. RESEARCH HIGHLIGHTS: Previous work found that children and adults spontaneously categorized dot array stimuli by number, over other magnitudes (e.g., area), suggesting number is uniquely salient. However, here we found that when number and area were matched by ratio, as in prior work, number was significantly more perceptually discriminable than area. When number and area were made equally discriminable ('perceptually-matched'), children, contra adults, spontaneously categorized stimuli by area over number (and other non-numerical magnitudes). These findings suggest that area may be uniquely salient early in childhood, with the previously-observed number bias not emerging until later in development.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
9
|
Sun W, Li B, Ma C. Muscimol-induced inactivation of the ventral prefrontal cortex impairs counting performance in rhesus monkeys. Sci Prog 2022; 105:368504221141660. [PMID: 36443989 PMCID: PMC10358485 DOI: 10.1177/00368504221141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Numbers are one of the three basic concepts of human abstract thinking. When human beings count, they often point to things, one by one, and read numbers in a positive integer column. The prefrontal cortex plays a wide range of roles in executive functions, including active maintenance and achievement of goals, adaptive coding and exertion of general intelligence, and completion of time complexity events. Nonhuman animals do not use number names, such as "one, two, three," or numerals, such as "1, 2, 3" to "count" in the same way as humans do. Our previous study established an animal model of counting in monkeys. Here, we used this model to determine whether the prefrontal cortex participates in counting in monkeys. Two 5-year-old female rhesus monkeys (macaques), weighing 5.0 kg and 5.5 kg, were selected to train in a counting task, counting from 1 to 5. When their counting task performance stabilized, we performed surgery on the prefrontal cortex to implant drug delivery tubes. After allowing the monkeys' physical condition and counting performance to recover, we injected either muscimol or normal saline into their dorsal and ventral prefrontal cortex. Thereafter, we observed their counting task performance and analyzed the error types and reaction time during the counting task. The monkeys' performance in the counting task decreased significantly after muscimol injection into the ventral prefrontal cortex; however, it was not affected after saline injection into the ventral prefrontal cortex, or after muscimol or saline injection into the dorsal prefrontal cortex. The ventral prefrontal cortex of the monkey is necessary for counting performance.
Collapse
Affiliation(s)
- Weiming Sun
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Bosshard TC, Salazar LTH, Laska M. Numerical cognition in black-handed spider monkeys (Ateles geoffroyi). Behav Processes 2022; 201:104734. [PMID: 35970272 DOI: 10.1016/j.beproc.2022.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
We assessed two aspects of numerical cognition in a group of nine captive spider monkeys (Ateles geoffroyi). Petri dishes with varying amounts of food were used to assess relative quantity discrimination, and boxes fitted with dotted cards were used to assess discrete number discrimination with equally-sized dots and various-sized dots, respectively. We found that all animals succeeded in all three tasks and, as a group, reached the learning criterion of 70% correct responses within 110 trials in the quantity discrimination task, 160 trials in the numerosity task with equally-sized dots, and 30 trials in the numerosity task with various-sized dots. In all three tasks, the animals displayed a significant correlation between performance in terms of success rate and task difficulty in terms of numerical similarity of the stimuli and thus a ratio effect. The spider monkeys performed clearly better compared to strepsirrhine, catarrhine, and other platyrrhine primates tested previously on both types of numerical cognition tasks and at the same level as chimpanzees, bonobos, and orangutans. Our results support the notion that ecological traits such as a high degree of frugivory and/or social traits such as a high degree of fission-fusion dynamics may underlie between-species differences in cognitive abilities.
Collapse
Affiliation(s)
- Tiffany Claire Bosshard
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden; Cognitive Ethology Laboratory, German Primate Center, D-37077 Göttingen, Germany
| | | | - Matthias Laska
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
11
|
Anobile G, Marazzi M, Federici S, Napoletti A, Cecconi L, Arrighi R. Unimpaired groupitizing in children and adolescents with dyscalculia. Sci Rep 2022; 12:5629. [PMID: 35379895 PMCID: PMC8980065 DOI: 10.1038/s41598-022-09709-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
When asked to estimate the number of items in the visual field, neurotypical adults are more precise and rapid if the items are clustered into subgroups compared to when they are randomly distributed. It has been suggested that this phenomenon, termed "groupitizing", relies on the recruitment of arithmetical calculation strategies and subitizing. Here the role of arithmetical skills in groupitizing was investigated by measuring the groupitizing effect (or advantage) in a sample of children and adolescents with and without math learning disability (dyscalculia). The results showed that when items were grouped, both groups of participants showed a similar advantage on sensory precision and response time in numerosity estimates. Correlational analyses confirmed a lack of covariation between groupitizing advantage and math scores. Bayesian statistics on sensory precision sustained the frequentist analyses providing decisive evidence in favor of no groups difference on groupitizing advantage magnitude (LBF = - 0.44) and no correlation with math scores (LBF = - 0.57). The results on response times, although less decisive, were again in favor of the null hypothesis. Overall, the results suggest that the link between groupitizing and mathematical abilities cannot be taken for granted, calling for further investigations on the factors underlying this perceptual phenomenon.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| | - Moreno Marazzi
- Clinical Psychology Center "Dedicare", Foligno, Italy.,Developmental Neuropsychology and Speech Therapy Center "Un Mondo di Parole", Perugia, Italy
| | - Stefano Federici
- Department of Philosophy, Social and Human Sciences and Education, University of Perugia, Perugia, Italy
| | - Agnese Napoletti
- Department of Philosophy, Social and Human Sciences and Education, University of Perugia, Perugia, Italy
| | - Lucia Cecconi
- Department of Developmental Psychology and Socialization (DPSS), University of Padova, Padua, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Abstract
Debates have arisen as to whether non-human animals actually can learn abstract non-symbolic numerousness or whether they always rely on some continuous physical aspect of the stimuli, covarying with number. Here, we investigated archerfish (Toxotes jaculatrix) non-symbolic numerical discrimination with accurate control for covarying continuous physical stimulus attributes. Archerfish were trained to select one of two groups of black dots (Exp. 1: 3 vs 6 elements; Exp. 2: 2 vs 3 elements); these were controlled for several combinations of physical variables (elements' size, overall area, overall perimeter, density, and sparsity), ensuring that only numerical information was available. Generalization tests with novel numerical comparisons (2 vs 3, 5 vs 8, and 6 vs 9 in Exp. 1; 3 vs 4, 3 vs 6 in Exp. 2) revealed choice for the largest or smallest numerical group according to the relative number that was rewarded at training. None of the continuous physical variables, including spatial frequency, were affecting archerfish performance. Results provide evidence that archerfish spontaneously use abstract relative numerical information for both small and large numbers when only numerical cues are available.
Collapse
Affiliation(s)
- Davide Potrich
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Mirko Zanon
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | | |
Collapse
|
13
|
How spontaneous is spontaneous quantity discrimination in companion dogs? Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Lin FC, Whiting MJ, Hsieh MY, Shaner PJL, Lin SM. Superior continuous quantity discrimination in a freshwater turtle. Front Zool 2021; 18:49. [PMID: 34563231 PMCID: PMC8466656 DOI: 10.1186/s12983-021-00431-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantity discrimination, the ability to discriminate a magnitude of difference or discrete numerical information, plays a key role in animal behavior. While quantitative ability has been well documented in fishes, birds, mammals, and even in previously unstudied invertebrates and amphibians, it is still poorly understood in reptiles and has never been tested in an aquatic turtle despite the fact that evidence is accumulating that reptiles possess cognitive skills and learning ability. To help address this deficiency in reptiles, we investigated the quantitative ability of an Asian freshwater turtle, Mauremys sinensis, using red cubes on a white background in a trained quantity discrimination task. While spontaneous quantity discrimination methods are thought to be more ecologically relevant, training animals on a quantity discrimination task allows more comparability across taxa. RESULTS We assessed the turtles' quantitative performance in a series of tests with increasing quantity ratios and numerosities. Surprisingly, the turtles were able to discriminate quantities of up to 9 versus 10 (ratio = 0.9), which shows a good quantitative ability that is comparable to some endotherms. Our results showed that the turtles' quantitative performance followed Weber's law, in which success rate decreased with increasing quantity ratio across a wide range of numerosities. Furthermore, the gradual improvement of their success rate across different experiments and phases suggested that the turtles possess learning ability. CONCLUSIONS Reptile quantitative ability has long been ignored and therefore is likely under-estimated. More comparative research on numerical cognition across a diversity of species will greatly contribute to a clearer understanding of quantitative ability in animals and whether it has evolved convergently in diverse taxa.
Collapse
Affiliation(s)
- Feng-Chun Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Pei-Jen Lee Shaner
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
15
|
Kreuter N, Christofzik N, Niederbremer C, Bollé J, Schluessel V. Counting on Numbers-Numerical Abilities in Grey Bamboo Sharks and Ocellate River Stingrays. Animals (Basel) 2021; 11:2634. [PMID: 34573600 PMCID: PMC8466846 DOI: 10.3390/ani11092634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, studies examining the cognitive abilities of fish have increased, using a broad range of approaches. One of the foci has been to test the ability of fish to discriminate quantities of items and to determine whether fish can solve tasks solely on the basis of numerical information. This study is the first to investigate this ability in two elasmobranch species. All animals were trained in two-alternative forced-choice visual experiments and then examined in transfer tests, to determine if previously gained knowledge could be applied to new tasks. Results show that the grey bamboo shark (Chiloscyllium griseum) and the ocellate river stingray (Potamotrygon motoro) can discriminate quantities based on numerical information alone, while continuous variables were controlled for. Furthermore, the data indicates that similar magnitudes and limits for quantity discrimination exist as in other animals. However, the high degree of intraspecific variation that was observed as well as the low rate of animals proving to be successful suggest that the ability to discriminate quantities may not be as important to these species as to some other vertebrate and invertebrate species tested so far.
Collapse
Affiliation(s)
| | | | | | | | - Vera Schluessel
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Meckenheimerallee 169, 53115 Bonn, Germany; (N.K.); (N.C.); (C.N.); (J.B.)
| |
Collapse
|
16
|
Leibovich-Raveh T, Raveh A, Vilker D, Gabay S. Magnitude integration in the Archerfish. Sci Rep 2021; 11:15664. [PMID: 34341367 PMCID: PMC8329031 DOI: 10.1038/s41598-021-94956-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
We make magnitude-related decisions every day, for example, to choose the shortest queue at the grocery store. When making such decisions, which magnitudes do we consider? The dominant theory suggests that our focus is on numerical quantity, i.e., the number of items in a set. This theory leads to quantity-focused research suggesting that discriminating quantities is automatic, innate, and is the basis for mathematical abilities in humans. Another theory suggests, instead, that non-numerical magnitudes, such as the total area of the compared items, are usually what humans rely on, and numerical quantity is used only when required. Since wild animals must make quick magnitude-related decisions to eat, seek shelter, survive, and procreate, studying which magnitudes animals spontaneously use in magnitude-related decisions is a good way to study the relative primacy of numerical quantity versus non-numerical magnitudes. We asked whether, in an animal model, the influence of non-numerical magnitudes on performance in a spontaneous magnitude comparison task is modulated by the number of non-numerical magnitudes that positively correlate with numerical quantity. Our animal model was the Archerfish, a fish that, in the wild, hunts insects by shooting a jet of water at them. These fish were trained to shoot water at artificial targets presented on a computer screen above the water tank. We tested the Archerfish's performance in spontaneous, untrained two-choice magnitude decisions. We found that the fish tended to select the group containing larger non-numerical magnitudes and smaller quantities of dots. The fish selected the group containing more dots mostly when the quantity of the dots was positively correlated with all five different non-numerical magnitudes. The current study adds to the body of studies providing direct evidence that in some cases animals' magnitude-related decisions are more affected by non-numerical magnitudes than by numerical quantity, putting doubt on the claims that numerical quantity perception is the most basic building block of mathematical abilities.
Collapse
Affiliation(s)
- Tali Leibovich-Raveh
- grid.18098.380000 0004 1937 0562Department of Mathematics Education, Faculty of Education, University of Haifa, Haifa, Israel
| | - Ashael Raveh
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Dana Vilker
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Shai Gabay
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Gatto E, Loukola OJ, Agrillo C. Quantitative abilities of invertebrates: a methodological review. Anim Cogn 2021; 25:5-19. [PMID: 34282520 PMCID: PMC8904327 DOI: 10.1007/s10071-021-01529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 02/04/2023]
Abstract
Quantitative abilities are widely recognized to play important roles in several ecological contexts, such as foraging, mate choice, and social interaction. Indeed, such abilities are widespread among vertebrates, in particular mammals, birds, and fish. Recently, there has been an increasing number of studies on the quantitative abilities of invertebrates. In this review, we present the current knowledge in this field, especially focusing on the ecological relevance of the capacity to process quantitative information, the similarities with vertebrates, and the different methods adopted to investigate this cognitive skill. The literature argues, beyond methodological differences, a substantial similarity between the quantitative abilities of invertebrates and those of vertebrates, supporting the idea that similar ecological pressures may determine the emergence of similar cognitive systems even in distantly related species.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Olli J Loukola
- Ecology and Genetics Research Unit, University of Oulu, POB 3000, 90014, Oulu, Finland
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
18
|
The Challenge of Illusory Perception of Animals: The Impact of Methodological Variability in Cross-Species Investigation. Animals (Basel) 2021; 11:ani11061618. [PMID: 34070792 PMCID: PMC8228898 DOI: 10.3390/ani11061618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Research in neurobiology and ethology has given us a glimpse into the different perceptual worlds of animals. More recently, visual illusions have been used in behavioural research to compare the perception between different animal species. The studies conducted so far have provided contradictory results, raising the possibility that different methodological approaches might influence illusory perception. Here, we review the literature on this topic, considering both field and laboratory studies. In addition, we compare the two approaches used in laboratories, namely spontaneous choice tests and training procedures, highlighting both their relevance and their potential weaknesses. Adopting both procedures has the potential to combine their advantages. Although this twofold approach has seldomly been adopted, we expect it will become more widely used in the near future in order to shed light on the heterogeneous pattern observed in the literature of visual illusions. Abstract Although we live on the same planet, there are countless different ways of seeing the surroundings that reflect the different individual experiences and selective pressures. In recent decades, visual illusions have been used in behavioural research to compare the perception between different vertebrate species. The studies conducted so far have provided contradictory results, suggesting that the underlying perceptual mechanisms may differ across species. Besides the differentiation of the perceptual mechanisms, another explanation could be taken into account. Indeed, the different studies often used different methodologies that could have potentially introduced confounding factors. In fact, the possibility exists that the illusory perception is influenced by the different methodologies and the test design. Almost every study of this research field has been conducted in laboratories adopting two different methodological approaches: a spontaneous choice test or a training procedure. In the spontaneous choice test, a subject is presented with biologically relevant stimuli in an illusory context, whereas, in the training procedure, a subject has to undergo an extensive training during which neutral stimuli are associated with a biologically relevant reward. Here, we review the literature on this topic, highlighting both the relevance and the potential weaknesses of the different methodological approaches.
Collapse
|
19
|
Corliss M, Brown T, Hurly TA, Healy SD, Tello-Ramos MC. Estimating on the fly: The approximate number system in rufous hummingbirds (Selasphorus rufus). Learn Behav 2021; 49:67-75. [PMID: 33319341 PMCID: PMC7979633 DOI: 10.3758/s13420-020-00448-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
When presented with resources that differ in quantity, many animals use a numerosity system to discriminate between them. One taxonomically widespread system is the approximate number system. This is a numerosity system that allows the rapid evaluation of the number of objects in a group and which is regulated by Weber's Law. Here we investigated whether wild, free-living rufous hummingbirds (Selasphorus rufus) possess an approximate number system. The hummingbirds were presented with two experiments. In the first we investigated whether hummingbirds spontaneously chose an array containing more flowers than an alternate array. In the second we asked whether the hummingbirds could learn to use numerosity as a cue to which of two arrays contained the better reward. The birds did not spontaneously prefer an array containing more flowers. After minimal training, however, they learned to choose the more numerous array and could differentiate between arrays of five and seven flowers. These data support the presence of an approximate number system in the rufous hummingbird. It seems plausible that having such a system would enable much more efficient foraging in this species.
Collapse
Affiliation(s)
- Mia Corliss
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Theo Brown
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - T Andrew Hurly
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Susan D Healy
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | | |
Collapse
|
20
|
Bisazza A, Gatto E. Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges. Sci Rep 2021; 11:3757. [PMID: 33580099 PMCID: PMC7881015 DOI: 10.1038/s41598-021-82249-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 12/03/2022] Open
Abstract
The ability of invertebrates to discriminate quantities is poorly studied, and it is unknown whether other phyla possess the same richness and sophistication of quantification mechanisms observed in vertebrates. The dune snail, Theba pisana, occupies a harsh habitat characterised by sparse vegetation and diurnal soil temperatures well above the thermal tolerance of this species. To survive, a snail must locate and climb one of the rare tall herbs each dawn and spend the daytime hours in an elevated refuge position. Based on their ecology, we predicted that dune snails would prefer larger to smaller groups of refuges. We simulated shelter choice under controlled laboratory conditions. Snails’ acuity in discriminating quantity of shelters was comparable to that of mammals and birds, reaching the 4 versus 5 item discrimination, suggesting that natural selection could drive the evolution of advanced cognitive abilities even in small-brained animals if these functions have a high survival value. In a subsequent series of experiments, we investigated whether snails used numerical information or based their decisions upon continuous quantities, such as cumulative surface, density or convex hull, which co-varies with number. Though our results tend to underplay the role of these continuous cues, behavioural data alone are insufficient to determine if dune snails were using numerical information, leaving open the question of whether gastropod molluscans possess elementary abilities for numerical processing.
Collapse
Affiliation(s)
- Angelo Bisazza
- Department of General Psychology, University of Padova, Padua, Italy.,Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Elia Gatto
- Department of General Psychology, University of Padova, Padua, Italy.
| |
Collapse
|
21
|
Prey quantity discrimination and social experience affect foraging decisions of rock lizards. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
|
23
|
Rainbow trout discriminate 2-D photographs of conspecifics from distracting stimuli using an innovative operant conditioning device. Learn Behav 2021; 49:292-306. [PMID: 33409895 DOI: 10.3758/s13420-020-00453-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 11/08/2022]
Abstract
Cognitive abilities were studied in rainbow trout, the first continental fish production in Europe. Increasing public concern for the welfare of farmed-fish species highlighted the need for better knowledge of the cognitive status of fish. We trained and tested 15 rainbow trout with an operant conditioning device composed of self-feeders positioned in front of visual stimuli displayed on a screen. The device was coupled with a two-alternative forced-choice (2-AFC) paradigm to test whether rainbow trout can discriminate 2-D photographs of conspecifics (S+) from different visual stimuli (S-). The S- were applied in four stages, the last three stages representing increasing discrimination difficulty: (1) blue shapes; (2) black shape (star); (3) photograph of an object (among a pool of 60); (4) photograph of another fish species (among a pool of 60). Nine fish (out of 15) correctly managed to activate the conditioning device after 30-150 trials. The rainbow trout were able to discriminate images of conspecifics from an abstract shape (five individuals out of five) or objects (four out of five) but not from other fish species. Their ability to learn the category "fish shape" rather than distinguishing between conspecifics and heterospecifics is discussed. The successful visual discrimination task using this complex operant conditioning device is particularly remarkable and novel for this farmed-fish species, and could be exploited to develop cognitive enrichments in future farming systems. This device can also be added to the existing repertoire of testing devices suitable for investigating cognitive abilities in fish.
Collapse
|
24
|
Pomè A, Thompson D, Burr DC, Halberda J. Location- and object-based attention enhance number estimation. Atten Percept Psychophys 2021; 83:7-17. [PMID: 33156512 PMCID: PMC7875840 DOI: 10.3758/s13414-020-02178-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/29/2023]
Abstract
Humans and non-humans can extract an estimate of the number of items in a collection very rapidly, raising the question of whether attention is necessary for this process. Visual attention operates in various modes, showing selectivity both to spatial location and to objects. Here, we tested whether each form of attention can enhance number estimation, by measuring whether presenting a visual cue to increase attentional engagement will lead to a more accurate and precise representation of number, both when attention is directed to location and when it is directed to objects. Results revealed that enumeration of a collection of dots in the location previously cued led to faster, more precise, and more accurate judgments than enumeration in un-cued locations, and a similar benefit was seen when the cue and collection appeared on the same object. This work shows that like many other perceptual tasks, numerical estimation may be enhanced by the spread of active attention inside a pre-cued object.
Collapse
Affiliation(s)
- Antonella Pomè
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
- Johns Hopkins University, Baltimore, MD, USA
| | | | - David Charles Burr
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy.
- Institute of Neuroscience, National Research Council, Pisa, Italy.
- School of Psychology, University of Sydney, Sydney, NSW, Australia.
| | | |
Collapse
|
25
|
Szabo B, Noble DWA, Whiting MJ. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev Camb Philos Soc 2020; 96:331-356. [PMID: 33073470 DOI: 10.1111/brv.12658] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023]
Abstract
Recently, there has been a surge in cognition research using non-avian reptile systems. As a diverse group of animals, non-avian reptiles [turtles, the tuatara, crocodylians, and squamates (lizards, snakes and amphisbaenids)] are good model systems for answering questions related to cognitive ecology, from the role of the environment on the brain, behaviour and learning, to how social and life-history factors correlate with learning ability. Furthermore, given their variable social structure and degree of sociality, studies on reptiles have shown that group living is not a pre-condition for social learning. Past research has demonstrated that non-avian reptiles are capable of more than just instinctive reactions and basic cognition. Despite their ability to provide answers to fundamental questions in cognitive ecology, and a growing literature, there have been no recent systematic syntheses of research in this group. Here, we systematically, and comprehensively review studies on reptile learning. We identify 92 new studies investigating learning in reptiles not included in previous reviews on this topic - affording a unique opportunity to provide a more in-depth synthesis of existing work, its taxonomic distribution, the types of cognitive domains tested and methodologies that have been used. Our review therefore provides a major update on our current state of knowledge and ties the collective evidence together under nine umbrella research areas: (i) habituation of behaviour, (ii) animal training through conditioning, (iii) avoiding aversive stimuli, (iv) spatial learning and memory, (v) learning during foraging, (vi) quality and quantity discrimination, (vii) responding to change, (viii) solving novel problems, and (ix) social learning. Importantly, we identify knowledge gaps and propose themes which offer important future research opportunities including how cognitive ability might influence fitness and survival, testing cognition in ecologically relevant situations, comparing cognition in invasive and non-invasive populations of species, and social learning. To move the field forward, it will be immensely important to build upon the descriptive approach of testing whether a species can learn a task with experimental studies elucidating causal reasons for cognitive variation within and among species. With the appropriate methodology, this young but rapidly growing field of research should advance greatly in the coming years providing significant opportunities for addressing general questions in cognitive ecology and beyond.
Collapse
Affiliation(s)
- Birgit Szabo
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.,Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Bern, 3032, Switzerland
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
26
|
Rivas-Blanco D, Pohl IM, Dale R, Heberlein MTE, Range F. Wolves and Dogs May Rely on Non-numerical Cues in Quantity Discrimination Tasks When Given the Choice. Front Psychol 2020; 11:573317. [PMID: 33041945 PMCID: PMC7518719 DOI: 10.3389/fpsyg.2020.573317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
A wide array of species throughout the animal kingdom has shown the ability to distinguish between quantities. Aside from being important for optimal foraging decisions, this ability seems to also be of great relevance in group-living animals as it allows them to inform their decisions regarding engagement in between-group conflicts based on the size of competing groups. However, it is often unclear whether these animals rely on numerical information alone to make these decisions or whether they employ other cues that may covary with the differences in quantity. In this study, we used a touch screen paradigm to investigate the quantity discrimination abilities of two closely related group-living species, wolves and dogs, using a simultaneous visual presentation paradigm. Both species were able to successfully distinguish between stimuli of different quantities up to 32 items and ratios up to 0.80, and their results were in accordance with Weber’s law (which predicts worse performances at higher ratios). However, our controls showed that both wolves and dogs may have used continuous, non-numerical cues, such as size and shape of the stimuli, in conjunction with the numerical information to solve this task. In line with this possibility, dogs’ performance greatly exceeded that which they had shown in other numerical competence paradigms. We discuss the implications these results may have on these species’ underlying biases and numerical capabilities, as well as how our paradigm may have affected the animals’ ability to solve the task.
Collapse
Affiliation(s)
- Dániel Rivas-Blanco
- Domestication Lab, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ina-Maria Pohl
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Rachel Dale
- Domestication Lab, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marianne Theres Elisabeth Heberlein
- Domestication Lab, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Friederike Range
- Domestication Lab, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria.,Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.,Wolf Science Center, Ernstbrunn, Austria
| |
Collapse
|
27
|
Gómez-Laplaza LM, Gerlai R. Food Quantity Discrimination in Angelfish ( Pterophyllum scalare): The Role of Number, Density, Size and Area Occupied by the Food Items. Front Behav Neurosci 2020; 14:106. [PMID: 32655384 PMCID: PMC7324792 DOI: 10.3389/fnbeh.2020.00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022] Open
Abstract
Quantity discrimination, the ability to identify, process, and respond to differences in number, has been shown in a variety of animal species and may have fitness value. In fish, the ability to distinguish between numerically different shoals has been well studied. However, little work has been devoted to the investigation of such ability in a foraging context. Nevertheless, angelfish (Pterophyllum scalare) have been previously shown to be able to discriminate numerically different sets of food items, with variables such as size and density of the food items playing important roles in making the choice. Here, we examine the possible role of other numerical and non-numerical variables. Using a spontaneous binary choice task, we contrasted sets of food items differing in specifically controlled ways: (1) different numerical size but equal inter-item distance; (2) different numerical size and different inter-item distance; and (3) identical total contour length and area occupied but different individual food size and inter-food distance between the contrasted food sets. In Experiment 1, angelfish were found to prefer the sets with a large number of food items. In Experiment 2, they preferred the numerically smaller sets with clustered items to the numerically larger sets with scattered items, but only when the sets were in the large number range (10 vs. 5 food items). Finally, in Experiment 3 fish preferred numerically smaller sets with large-sized and scattered food items in the large number range sets. We conclude that food item number, density, and size may not be considered individually by angelfish, but instead, the fish respond to all these factors attempting to maximize energy gained from eating the food while minimizing energy expenditure collecting and/or protecting the food.
Collapse
Affiliation(s)
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
28
|
Howard SR, Schramme J, Garcia JE, Ng L, Avarguès-Weber A, Greentree AD, Dyer AG. Spontaneous quantity discrimination of artificial flowers by foraging honeybees. J Exp Biol 2020; 223:223/9/jeb223610. [DOI: 10.1242/jeb.223610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many animals need to process numerical and quantity information in order to survive. Spontaneous quantity discrimination allows differentiation between two or more quantities without reinforcement or prior training on any numerical task. It is useful for assessing food resources, aggressive interactions, predator avoidance and prey choice. Honeybees have previously demonstrated landmark counting, quantity matching, use of numerical rules, quantity discrimination and arithmetic, but have not been tested for spontaneous quantity discrimination. In bees, spontaneous quantity discrimination could be useful when assessing the quantity of flowers available in a patch and thus maximizing foraging efficiency. In the current study, we assessed the spontaneous quantity discrimination behaviour of honeybees. Bees were trained to associate a single yellow artificial flower with sucrose. Bees were then tested for their ability to discriminate between 13 different quantity comparisons of artificial flowers (numeric ratio range: 0.08–0.8). Bees significantly preferred the higher quantity only in comparisons where ‘1’ was the lower quantity and where there was a sufficient magnitudinal distance between quantities (e.g. 1 versus 12, 1 versus 4, and 1 versus 3 but not 1 versus 2). Our results suggest a possible evolutionary benefit to choosing a foraging patch with a higher quantity of flowers when resources are scarce.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31000, France
| | - Jürgen Schramme
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University, Mainz 55122, Germany
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Leslie Ng
- School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31000, France
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
29
|
Santacà M, Agrillo C, Miletto Petrazzini ME, Bisazza A. The ontogeny of continuous quantity discrimination in zebrafish larvae (Danio rerio). Anim Cogn 2020; 23:731-739. [PMID: 32297031 DOI: 10.1007/s10071-020-01384-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023]
Abstract
Several studies have investigated the ontogeny of the capacity to discriminate between discrete numerical information in human and non-human animals. Contrarily, less attention has been devoted to the development of the capacity to discriminate continuous quantities. Recently, we set up a fast procedure for screening continuous quantity abilities in adult individuals of an animal model in neurodevelopmental research, the zebrafish. Two different sized holes are presented in a wall that divides the home tank in two halves and the spontaneous preference of fish for passing through the larger hole is exploited to measure their discrimination ability. We tested zebrafish larvae in the first, second and third week of life varying the relative size of the smaller circle (0.60, 0.75, 0.86, 0.91 area ratio). We found that the number of passages increased across the age. The capacity to discriminate the larger hole decreased as the ratio between the areas increased. No difference in accuracy was found as a function of age. The accuracy of larval zebrafish almost overlaps that found in adults in a previous study, suggesting a limited role of maturation and experience on the ability to estimate areas in this species.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Santacà M, Miletto Petrazzini ME, Wilkinson A, Agrillo C. Anisotropy of perceived space in non-primates? The horizontal-vertical illusion in bearded dragons (Pogona vitticeps) and red-footed tortoises (Chelonoidis carbonaria). Behav Processes 2020; 176:104117. [PMID: 32259624 DOI: 10.1016/j.beproc.2020.104117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
The horizontal-vertical illusion is a size illusion in which two same-sized objects appear to be different if presented on a horizontal or vertical plane, with the vertical one appearing longer. This illusion represents one of the main evidences of the anisotropy of the perceived space of humans, an asymmetrical perception of the object size presented in the vertical and horizontal space. Although this illusion has been widely investigated in humans, there is an almost complete lack of studies in non-human animals. Here we investigated whether reptiles perceive the horizontal-vertical illusion. We tested two reptile species: bearded dragons (Pogona vitticeps) and red-footed tortoises (Chelonoidis carbonaria). In control trials, two different-sized food strips were presented and animals were expected to choose the longer one. In test trials, animals received two same-sized strips, presented in a spatial arrangement eliciting the illusion. Only bearded dragons significantly preferred the longer strip in control trials; in test trials, bearded dragons selected the strip arranged vertically, suggesting a human-like perception of this pattern, while no clear choice for either array was observed in tortoises. Our results raise the interesting possibility that the anisotropy of perceived space can exists also in a reptile brain.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Italy; School of Life Sciences, University of Lincoln, Lincoln, UK.
| | | | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Italy; Padua Neuroscience Center, University of Padova, Italy
| |
Collapse
|
31
|
Pecunioso A, Miletto Petrazzini ME, Agrillo C. Anisotropy of perceived numerosity: Evidence for a horizontal-vertical numerosity illusion. Acta Psychol (Amst) 2020; 205:103053. [PMID: 32151792 DOI: 10.1016/j.actpsy.2020.103053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 01/29/2023] Open
Abstract
Many studies have investigated whether numerical and spatial abilities share similar cognitive systems. A novel approach to this issue consists of investigating whether the same perceptual biases underlying size illusions can be identified in numerical estimation tasks. In this study, we required adult participants to estimate the number of white dots in arrays made of white and black dots displayed in such a way as to generate horizontal-vertical illusions with inverted T and L configurations. In agreement with previous literature, we found that participants tended to underestimate the target numbers. However, in the presence of the illusory patterns, participants were less inclined to underestimate the number of vertically aligned white dots. This reflects the perceptual biases underlying horizontal-vertical illusions. In addition, we identified an enhanced illusory effect when participants observed vertically aligned white dots in the T shape compared to the L shape, a result that resembles the length bisection bias reported in the spatial domain. Overall, we found the first evidence that numerical estimation differs as a function of the vertical or horizontal displacement of the stimuli. In addition, the involvement of the same perceptual biases observed in spatial tasks supports the idea that spatial and numerical abilities share similar cognitive processes.
Collapse
Affiliation(s)
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, Italy; Padua Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
32
|
Chacha J, Szenczi P, González D, Martínez-Byer S, Hudson R, Bánszegi O. Revisiting more or less: influence of numerosity and size on potential prey choice in the domestic cat. Anim Cogn 2020; 23:491-501. [PMID: 32052284 DOI: 10.1007/s10071-020-01351-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
Quantity discrimination is of adaptive relevance in a wide range of contexts and across a wide range of species. Trained domestic cats can discriminate between different numbers of dots, and we have shown that they also spontaneously choose between different numbers and sizes of food balls. In the present study we performed two experiments with 24 adult cats to investigate spontaneous quantity discrimination in the more naturalistic context of potential predation. In Experiment 1 we presented each cat with the simultaneous choice between a different number of live prey (1 white mouse vs. 3 white mice), and in Experiment 2 with the simultaneous choice between live prey of different size (1 white mouse vs. 1 white rat). We repeated each experiment six times across 6 weeks, testing half the cats first in Experiment 1 and then in Experiment 2, and the other half in the reverse order. In Experiment 1 the cats more often chose the larger number of small prey (3 mice), and in Experiment 2, more often the small size prey (a mouse). They also showed repeatable individual differences in the choices which they made and in the performance of associated predation-like behaviours. We conclude that domestic cats spontaneously discriminate between the number and size of potential prey in a way that can be interpreted as adaptive for a lone-hunting, obligate carnivore, and show complex levels of risk-reward analysis.
Collapse
Affiliation(s)
- Jimena Chacha
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio A, Circuito de Posgrados, CP 04510, Mexico City, Mexico
| | - Péter Szenczi
- CONACYT-Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Unidad Psicopatología y Desarrollo, Calz. México-Xochimilco 101, CP 14370, Mexico City, Mexico
| | - Daniel González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, Mexico City, Mexico
| | - Sandra Martínez-Byer
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio A, Circuito de Posgrados, CP 04510, Mexico City, Mexico
| | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, Mexico City, Mexico.
| | - Oxána Bánszegi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510, Mexico City, Mexico.
| |
Collapse
|
33
|
Food density and preferred quantity: discrimination of small and large numbers in angelfish (Pterophyllum scalare). Anim Cogn 2020; 23:509-522. [PMID: 32009216 DOI: 10.1007/s10071-020-01355-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Many animal species share the ability to discriminate between sets with different quantity of food items. In fish, this ability has rarely been investigated, although findings have been obtained do indicate a preference, as in other animals, for sets with large over small quantities. The role played by food item size has also been found to be important in the discrimination. However, another potentially important non-numerical variable, food density, has not been investigated. In this study, we examined the influence of density (inter-item distance) in the decision-making process of food discrimination in angelfish (Pterophyllum scalare). In a binary choice task, we kept the number and size of food items constant, but contrasted a set containing food items spaced further apart (sparse set) to another set with food items spaced more closely (dense set). We conducted this analysis with sets in the small (3 vs 3 food items) and in the large number range (5 vs 5 food items) and also varied the specific spatial arrangements of the food items in the sets. Contrary to expectations, angelfish showed a preference for the sparse sets over the dense sets in the five vs five contrasts irrespective of the specific spatial arrangement, but exhibited no preference in case of the three vs three contrasts. Subsequently, we slightly lengthened the inter-item distance in the dense sets, and found preference for the dense over the sparse sets. Last, we further examined the potential effect of spatial configuration of the items in the sets, but found no effect of this latter factor. Overall, these results indicate that higher density of the contrasted food item sets significantly influences choice in angelfish, which prefer denser sets if a clear discriminability of each individual item within the sets is provided.
Collapse
|
34
|
Size discrimination in adult zebrafish (Danio rerio): Normative data and individual variation. Sci Rep 2020; 10:1164. [PMID: 31980718 PMCID: PMC6981261 DOI: 10.1038/s41598-020-57813-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022] Open
Abstract
In humans, aging and neurodegenerative diseases have been found to be associated with impairment in both mathematical abilities and estimation of continuous quantities such as size, weight or distance. Zebrafish (Danio rerio) is rapidly becoming a model for human aging and brain disorders but we currently lack any instrument for rapid assessment of quantity estimation abilities in this species. Here we developed a simple method based on spontaneous preference of zebrafish for using the larger available hole to pass an obstacle. We collected a large amount of data from small groups of zebrafish moving between compartments of their tank and we used these normative data to compare the performance of individually tested fish. Zebrafish significantly discriminated size ratios from 0.60 to 0.91 with their performance decreasing while increasing the size ratio between the smaller and the larger hole presented. On average, individually tested fish showed the same performance, but a large inter-individual variability was observed. Test-retest analyses revealed a good reliability of this test, with 0.60 and 0.75 ratios being the most informative. Experience did not affect individual performance, suggesting the suitability of this test to measure the longitudinal changes and the effects of pharmacological treatments on cognitive abilities.
Collapse
|
35
|
Aulet LS, Chiu VC, Prichard A, Spivak M, Lourenco SF, Berns GS. Canine sense of quantity: evidence for numerical ratio-dependent activation in parietotemporal cortex. Biol Lett 2019; 15:20190666. [PMID: 31847744 PMCID: PMC6936025 DOI: 10.1098/rsbl.2019.0666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The approximate number system (ANS), which supports the rapid estimation of quantity, emerges early in human development and is widespread across species. Neural evidence from both human and non-human primates suggests the parietal cortex as a primary locus of numerical estimation, but it is unclear whether the numerical competencies observed across non-primate species are subserved by similar neural mechanisms. Moreover, because studies with non-human animals typically involve extensive training, little is known about the spontaneous numerical capacities of non-human animals. To address these questions, we examined the neural underpinnings of number perception using awake canine functional magnetic resonance imaging. Dogs passively viewed dot arrays that varied in ratio and, critically, received no task-relevant training or exposure prior to testing. We found evidence of ratio-dependent activation, which is a key feature of the ANS, in canine parietotemporal cortex in the majority of dogs tested. This finding is suggestive of a neural mechanism for quantity perception that has been conserved across mammalian evolution.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Veronica C Chiu
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Ashley Prichard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Mark Spivak
- Comprehensive Pet Therapy, Atlanta, GA 30328, USA
| | | | - Gregory S Berns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
The role of item size on choosing contrasted food quantities in angelfish (Pterophyllum scalare). Sci Rep 2019; 9:15305. [PMID: 31653899 PMCID: PMC6814702 DOI: 10.1038/s41598-019-51753-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
Comparative studies on quantity discrimination in animals are important for understanding potential evolutionary roots of numerical competence. A previous study with angelfish has shown that they discriminate numerically different sets of same-sized food items and prefer the larger set. However, variables that covary with number were not controlled and choice could have been influenced by variables such as size or density of the food items rather than numerical attributes. Here using a recently developed approach, we examined whether contour length of the food items affects choice in a spontaneous binary choice task. In Experiment 1, a contrast of 1 vs. 1 food item was presented, but the ratio between the size (diameter) of the food items was varied. In Experiment 2, numerically different food sets were equated in overall size by increasing the size (diameter) of the items in the numerically small sets. In both Experiments, subjects showed a preference for the larger sized food items with a discrimination limit. These results show that item size plays a prominent role in foraging decisions in angelfish. Experiment 3 placed numerical and size attributes of the sets in conflict by presenting one larger-sized food item in the numerically smaller set that also had smaller overall size (diameter) of food items. Angelfish showed no preference in any of the contrasts, suggesting that they could not make optimal foraging decisions when these attributes were in conflict. Maximization of energy return is central to optimal foraging. Accordingly, here item size was also found to be a key feature of the sets, although the numerical attributes of the sets also influenced the choice.
Collapse
|
37
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees. J Exp Biol 2019; 222:222/19/jeb205658. [DOI: 10.1242/jeb.205658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Animals including humans, fish and honeybees have demonstrated a quantity discrimination threshold at four objects, often known as subitizing elements. Discrimination between numerosities at or above the subitizing range is considered a complex capacity. In the current study, we trained and tested two groups of bees on their ability to differentiate between quantities (4 versus 5 through to 4 versus 8) when trained with different conditioning procedures. Bees trained with appetitive (reward) differential conditioning demonstrated no significant learning of this task, and limited discrimination above the subitizing range. In contrast, bees trained using appetitive–aversive (reward–aversion) differential conditioning demonstrated significant learning and subsequent discrimination of all tested comparisons from 4 versus 5 to 4 versus 8. Our results show conditioning procedure is vital to performance on numerically challenging tasks, and may inform future research on numerical abilities in other animals.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
38
|
Affiliation(s)
- Elia Gatto
- Department of General Psychology University of Padua Padua Italy
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Daniele Carlesso
- Department of General Psychology University of Padua Padua Italy
| |
Collapse
|
39
|
Bortot M, Agrillo C, Avarguès-Weber A, Bisazza A, Miletto Petrazzini ME, Giurfa M. Honeybees use absolute rather than relative numerosity in number discrimination. Biol Lett 2019; 15:20190138. [PMID: 31213140 DOI: 10.1098/rsbl.2019.0138] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Various vertebrate species use relative numerosity judgements in comparative assessments of quantities for which they use larger/smaller relationships rather than absolute number. The numerical ability of honeybees shares basic properties with that of vertebrates but their use of absolute or relative numerosity has not been explored. We trained free-flying bees to choose variable images containing three dots; one group ('larger') was trained to discriminate 3 from 2, while another group ('smaller') was trained to discriminate 3 from 4. In both cases, numbers were kept constant but stimulus characteristics and position were varied from trial to trial. Bees were then tested with novel stimuli displaying the previously trained numerosity (3) versus a novel numerosity (4 for 'larger' and 2 for 'smaller'). Both groups preferred the three-item stimulus, consistent with absolute numerosity. They also exhibited ratio-dependent discrimination of numbers, a property shared by vertebrates, as performance after 2 versus 3 was better than after 3 versus 4 training. Thus, bees differ from vertebrates in their use of absolute rather than of relative numerosity but they also have some numeric properties in common.
Collapse
Affiliation(s)
- Maria Bortot
- 1 Center for Mind/Brain Sciences, University of Trento , 38068 Rovereto , Italy.,2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France
| | - Christian Agrillo
- 3 Department of General Psychology, University of Padova , 35131 Padova , Italy
| | - Aurore Avarguès-Weber
- 2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France
| | - Angelo Bisazza
- 3 Department of General Psychology, University of Padova , 35131 Padova , Italy
| | | | - Martin Giurfa
- 2 Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse , 31062 Toulouse Cedex 09 , France.,5 College of Bee Science, Fujian Agriculture and Forestry University , Fuzhou 350002 , People's Republic of China
| |
Collapse
|
40
|
Quantity discrimination in Port Jackson sharks incubated under elevated temperatures. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2706-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Gatto E, Agrillo C, Brown C, Dadda M. Individual differences in numerical skills are influenced by brain lateralization in guppies (Poecilia reticulata). INTELLIGENCE 2019. [DOI: 10.1016/j.intell.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
43
|
Impact of stimulus format and reward value on quantity discrimination in capuchin and squirrel monkeys. Learn Behav 2019; 46:89-100. [PMID: 28840526 DOI: 10.3758/s13420-017-0295-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantity discrimination abilities are seen in a diverse range of species with similarities in performance patterns, suggesting common underlying cognitive mechanisms. However, methodological factors that impact performance make it difficult to draw broad phylogenetic comparisons of numerical cognition across studies. For example, some Old World monkeys selected a higher quantity stimulus more frequently when choosing between inedible (pebbles) than edible (food) stimuli. In Experiment 1 we presented brown capuchin (Cebus [Sapajus] paella) and squirrel monkeys (Saimiri sciureus) with the same two-choice quantity discrimination task in three different stimulus conditions: edible, inedible, and edible replaced (in which choice stimuli were food items that stood in for the same quantity of food items that were given as a reward). Unlike Old World monkeys, capuchins selected the higher quantity stimulus more in the edible condition and squirrel monkeys showed generally poor performance across all stimulus types. Performance patterns suggested that differences in subjective reward value might motivate differences in choice behavior between and within species. In Experiment 2 we manipulated the subjective reinforcement value of the reward by varying reward type and delay to reinforcement and found that delay to reinforcement had no impact on choice behavior, while increasing the value of the reward significantly improved performance by both species. The results of this study indicate that species presented with identical tasks may respond differently to methodological factors such as stimulus and reward types, resulting in significant differences in choice behavior that may lead to spurious suggestions of species differences in cognitive abilities.
Collapse
|
44
|
Huang YH, Lin HJ, Lin LY, Chiao CC. Do cuttlefish have fraction number sense? Anim Cogn 2019; 22:163-168. [DOI: 10.1007/s10071-018-01232-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022]
|
45
|
Vasas V, Chittka L. Insect-Inspired Sequential Inspection Strategy Enables an Artificial Network of Four Neurons to Estimate Numerosity. iScience 2018; 11:85-92. [PMID: 30590253 PMCID: PMC6308245 DOI: 10.1016/j.isci.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
Varying levels of numerical cognition have been found in several animal species. Bees, in particular, have been argued to be able to count up to four items and solve complex numerical tasks. Here we present an exceedingly simple neural circuit that, when provided with the actual visual input that the bee is receiving while carrying out the task, can make reliable estimates on the number of items in the display. Thus we suggest that the elegance of numerical problem solving in bees might not lie in the formation of numerical concepts (such as “more,” “less,” or “zero”), but in the use of specific flight movements to scan targets, which streamlines the visual input and so renders the task of counting computationally inexpensive. Careful examination of the actual inspection strategies used by animals might reveal that animals often employ active scanning behaviors as shortcuts to simplify complex visual pattern discrimination tasks. Small-brained animals such as bees can solve counting tasks Exceedingly small neural circuits can mediate numerosity estimations The method requires a sequential inspection strategy to generate the visual input Active scanning behavior is suggested to play a role in complex cognitive tasks
Collapse
Affiliation(s)
- Vera Vasas
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Berlin 14193, Germany
| |
Collapse
|
46
|
Xiong W, Yi LC, Tang Z, Zhao X, Fu SJ. Quantity discrimination in fish species: fish use non-numerical continuous quantity traits to select shoals. Anim Cogn 2018; 21:813-820. [PMID: 30242668 DOI: 10.1007/s10071-018-1214-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Fish typically prefer to live in big shoals due to the associated ecological benefits. Shoaling is a behavior that depends on the ability to quantitatively discriminate. The fundamental mechanism involved in quantity discrimination determines whether fish can discriminate a shoal using numerical discrete cues (e.g., number of shoal members), non-numerical continuous traits (e.g., total body surface area) or both; however, the mechanism is currently a controversial topic. In the present study, we used a spontaneous choice experiment to test whether guppy (Poecilia reticulata), zebrafish (Danio rerio), Chinese crucian carp (Carassius auratus) and qingbo (Spinibarbus sinensis) rely on continuous (i.e., body surface area) or discrete (i.e., number of shoal members) information for shoal selection by altering the body surface area (cumulative body surface area ratio of 3:2 or 1:1) between two stimulus shoals with a different number of members (2 individuals vs 3 individuals). All four fish species preferred to shoal with the stimulus shoal with the larger cumulative surface area even if the shoal had fewer members; however, fish showed no shoal preference when the cumulative surface body areas of both stimulus shoals were equal. Furthermore, qingbo did not numerically discriminate between a shoal with 1 individual and a shoal with 3 individuals when the cumulative surface areas of both stimulus shoals were equal; however, qingbo showed a preference for the shoal with the larger cumulative surface area when the two stimulus shoals each had 3 individuals. In conclusion, the present study demonstrated that all four fish species relied only on non-numerical continuous quantity information for shoal selection, at least under a difficult task (i.e., 2 vs 3).
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Lian-Chun Yi
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhonghua Tang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Xin Zhao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
47
|
Quantity discrimination in angelfish, Pterophyllum scalare: a novel approach with food as the discriminant. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Benson-Amram S, Gilfillan G, McComb K. Numerical assessment in the wild: insights from social carnivores. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0508. [PMID: 29292356 DOI: 10.1098/rstb.2016.0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Playback experiments have proved to be a useful tool to investigate the extent to which wild animals understand numerical concepts and the factors that play into their decisions to respond to different numbers of vocalizing conspecifics. In particular, playback experiments have broadened our understanding of the cognitive abilities of historically understudied species that are challenging to test in the traditional laboratory, such as members of the Order Carnivora. Additionally, playback experiments allow us to assess the importance of numerical information versus other ecologically important variables when animals are making adaptive decisions in their natural habitats. Here, we begin by reviewing what we know about quantity discrimination in carnivores from studies conducted in captivity. We then review a series of playback experiments conducted with wild social carnivores, including African lions, spotted hyenas and wolves, which demonstrate that these animals can assess the number of conspecifics calling and respond based on numerical advantage. We discuss how the wild studies complement those conducted in captivity and allow us to gain insights into why wild animals may not always respond based solely on differences in quantity. We then consider the key roles that individual discrimination and cross-modal recognition play in the ability of animals to assess the number of conspecifics vocalizing nearby. Finally, we explore new directions for future research in this area, highlighting in particular the need for further work on the cognitive basis of numerical assessment skills and experimental paradigms that can be effective in both captive and wild settings.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Sarah Benson-Amram
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA .,Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Geoff Gilfillan
- School of Psychology, University of Sussex, Falmer BN1 9RH, UK
| | - Karen McComb
- School of Psychology, University of Sussex, Falmer BN1 9RH, UK
| |
Collapse
|
49
|
|
50
|
Miletto Petrazzini ME, Bertolucci C, Foà A. Quantity Discrimination in Trained Lizards ( Podarcis sicula). Front Psychol 2018; 9:274. [PMID: 29563890 PMCID: PMC5845883 DOI: 10.3389/fpsyg.2018.00274] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Quantitative abilities have been reported in many animal species. Two main methods have been extensively used: spontaneous choice tests and training procedures. A recent study showed that ruin lizards are capable of spontaneously discriminating between the surface area of two food items of different size, but failed when food was presented in sets of discrete items differing in number. In the present study, we used a training procedure to further investigate quantitative abilities in ruin lizards. Subjects were presented with two sets of yellow disks differing either in number (Experiment 1) or in area (Experiment 2) and were trained on different discriminations of increasing difficulty (1 vs. 4, 2 vs. 4, and 2 vs. 3). Results showed that lizards were more accurate in discriminating sets of discrete items differing in number than the area of two individual items, in contrast to what had earlier been observed in spontaneous choice tests. Although we cannot exclude other factors that affected the performance of ruin lizards, the poor accuracy here observed in both experiments might reflect a true limit in lizards' quantitative abilities.
Collapse
Affiliation(s)
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Augusto Foà
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|