1
|
Liang L, Zimmermann Rollin I, Alikaya A, Ho JC, Santini T, Bostan AC, Schwerdt HN, Stauffer WR, Ibrahim TS, Pirondini E, Schaeffer DJ. An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys. J Neurosci Methods 2024; 407:110133. [PMID: 38588922 PMCID: PMC11127775 DOI: 10.1016/j.jneumeth.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
Collapse
Affiliation(s)
- Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Isabela Zimmermann Rollin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jonathan C Ho
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Psychiatry, Pittsburgh, PA, USA; University of Pittsburgh, Radiology, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Pedrosa LRR, Leal LCP, Muniz JAPC, Bastos CDO, Gomes BD, Krejcová LV. From imaging to precision: low cost and accurate determination of stereotactic coordinates for brain surgery Sapajus apella using MRI. Front Neurosci 2024; 18:1324669. [PMID: 38362021 PMCID: PMC10867132 DOI: 10.3389/fnins.2024.1324669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
The capuchin monkey (Sapajus apella), a New World monkey species, exhibits prominent characteristics that make it an ideal model for neuroscience research. These characteristics include its phylogenetic traits, telencephalization coefficient, anatomical structures and pathways, genetic profile, immune responses, cognitive abilities, and complex behavioral repertoires. Traditionally, methodologies for stereotactic neurosurgery in research models have relied on the use of brain atlases. However, this approach can lead to errors due to the considerable variation in brain size and shape among individual monkeys. To address this issue, we developed a protocol for deriving individual coordinates for each monkey using a straightforward and relatively inexpensive method involving MRI imaging. Our protocol utilizes a specially designed, 3D-printed stereotactic head-holder that is safe to use with an MR magnet, non-invasive placement of fiducial markers, and post-processing with open-source software. This approach enhances MRI data visualization, improves anatomical targeting, and refines the design of neurosurgical experiments. Our technique could also prove beneficial in other areas of neuroscience research that require accurate calculation of stereotaxic coordinates. Furthermore, it could be useful for other nonhuman primate species for which brain atlases are typically unavailable.
Collapse
Affiliation(s)
| | - Leon C. P. Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Primate Center, Institute Evandro Chagas, Ananindeua, Brazil
| | | | | | - Bruno D. Gomes
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Lane V. Krejcová
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
3
|
A multimodal imaging-guided software for access to primate brains. Heliyon 2023; 9:e12675. [PMID: 36685404 PMCID: PMC9852658 DOI: 10.1016/j.heliyon.2022.e12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Background Imaging-guided access to the brain has become a routine procedure for various research and clinical applications, including drug administration, neurophysiological recording, and sampling tissue. Therefore, open-source software is required to handle such datasets in these specific applications. New methods Here, we proposed an open-source tool utilizing different imaging modalities for automating the steps to access the brain. This tool provides means for easily calculating the coordination of the area of interest concerning a specific point of entry. The source and documentation are available at this link. Results We have used this software for three different applications: electrophysiological recording, drug infusion in the nonhuman primate brain, and guided biopsy procedure in the human brain. We performed a neural recording of two monkeys' prefrontal cortex and inferior temporal cortex using this software in submillimeter resolution. We also applied our procedure for infusion in the putamen and caudate nuclei in both hemispheres of another group of rhesus monkeys with histological proof in one animal. More so, we validated this software in the human subjects that underwent biopsy surgery with the commercial software used in human biopsy surgery. Comparison with existing methods Our software uses different imaging modalities by co-registering them. This will provide structural details of the skull and brain tissue. We can calculate each brain region's coordination at the point of entry by re-slicing the images. Atlas-based image segmentation were implemented in our software. Three mentioned applications of our software in neuroscience will be further discussed in this paper. Conclusion In our procedure, working with different imaging modalities provides a precise estimation of the specific region in the brain related to the location of implants or stereotaxic frames. There is no limitation to using metal implants in this procedure.
Collapse
|
4
|
Novel Multimodal, Multiscale Imaging System with Augmented Reality. Diagnostics (Basel) 2021; 11:diagnostics11030441. [PMID: 33806547 PMCID: PMC7999725 DOI: 10.3390/diagnostics11030441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/23/2023] Open
Abstract
A novel multimodal, multiscale imaging system with augmented reality capability were developed and characterized. The system offers 3D color reflectance imaging, 3D fluorescence imaging, and augmented reality in real time. Multiscale fluorescence imaging was enabled by developing and integrating an in vivo fiber-optic microscope. Real-time ultrasound-fluorescence multimodal imaging used optically tracked fiducial markers for registration. Tomographical data are also incorporated using optically tracked fiducial markers for registration. Furthermore, we characterized system performance and registration accuracy in a benchtop setting. The multiscale fluorescence imaging facilitated assessing the functional status of tissues, extending the minimal resolution of fluorescence imaging to ~17.5 µm. The system achieved a mean of Target Registration error of less than 2 mm for registering fluorescence images to ultrasound images and MRI-based 3D model, which is within clinically acceptable range. The low latency and high frame rate of the prototype system has shown the promise of applying the reported techniques in clinically relevant settings in the future.
Collapse
|
5
|
de Paiva FB, Campbell BA, Frizon LA, Martin A, Maldonado-Naranjo A, Machado AG, Baker KB. Feasibility and performance of a frameless stereotactic system for targeting subcortical nuclei in nonhuman primates. J Neurosurg 2021; 134:1064-1071. [PMID: 32114536 PMCID: PMC8630522 DOI: 10.3171/2019.12.jns192946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective therapy for different neurological diseases, despite the lack of comprehension of its mechanism of action. The use of nonhuman primates (NHPs) has been historically important in advancing this field and presents a unique opportunity to uncover the therapeutic mechanisms of DBS, opening the way for optimization of current applications and the development of new ones. To be informative, research using NHPs should make use of appropriate electrode implantation tools. In the present work, the authors report on the feasibility and accuracy of targeting different deep brain regions in NHPs using a commercially available frameless stereotactic system (microTargeting platform). METHODS Seven NHPs were implanted with DBS electrodes, either in the subthalamic nucleus or in the cerebellar dentate nucleus. A microTargeting platform was designed for each animal and used to guide implantation of the electrode. Imaging studies were acquired preoperatively for each animal, and were subsequently analyzed by two independent evaluators to estimate the electrode placement error (EPE). The interobserver variability was assessed as well. RESULTS The radial and vector components of the EPE were estimated separately. The magnitude of the vector of EPE was 1.29 ± 0.41 mm and the mean radial EPE was 0.96 ± 0.63 mm. The interobserver variability was considered negligible. CONCLUSIONS These results reveal the suitability of this commercial system to enhance the surgical insertion of DBS leads in the primate brain, in comparison to rigid traditional frames. Furthermore, our results open up the possibility of performing frameless stereotaxy in primates without the necessity of relying on expensive methods based on intraoperative imaging.
Collapse
Affiliation(s)
| | - Brett A. Campbell
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Leonardo A. Frizon
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
- Postgraduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Martin
- Department of Anesthesia, Cleveland Clinic, Cleveland, Ohio
| | | | - André G. Machado
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
| | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
McGinley LM, Willsey MS, Kashlan ON, Chen KS, Hayes JM, Bergin IL, Mason SN, Stebbins AW, Kwentus JF, Pacut C, Kollmer J, Sakowski SA, Bell CB, Chestek CA, Murphy GG, Patil PG, Feldman EL. Magnetic resonance imaging of human neural stem cells in rodent and primate brain. Stem Cells Transl Med 2020; 10:83-97. [PMID: 32841522 PMCID: PMC7780819 DOI: 10.1002/sctm.20-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell transplantation therapies are currently under investigation for central nervous system disorders. Although preclinical models show benefit, clinical translation is somewhat limited by the absence of reliable noninvasive methods to confirm targeting and monitor transplanted cells in vivo. Here, we assess a novel magnetic resonance imaging (MRI) contrast agent derived from magnetotactic bacteria, magneto‐endosymbionts (MEs), as a translatable methodology for in vivo tracking of stem cells after intracranial transplantation. We show that ME labeling provides robust MRI contrast without impairment of cell viability or other important therapeutic features. Labeled cells were visualized immediately post‐transplantation and over time by serial MRI in nonhuman primate and mouse brain. Postmortem tissue analysis confirmed on‐target grft location, and linear correlations were observed between MRI signal, cell engraftment, and tissue ME levels, suggesting that MEs may be useful for determining graft survival or rejection. Overall, these findings indicate that MEs are an effective tool for in vivo tracking and monitoring of cell transplantation therapies with potential relevance to many cellular therapy applications.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew S Willsey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shayna N Mason
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W Stebbins
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Kollmer
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Caleb B Bell
- Bell Biosystems, San Francisco, California, USA.,G4S Capital & Ikigai Accelerator, Santa Clara, California, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Neuroscience and Robotics Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Parag G Patil
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|