1
|
Stuart SA, Palacios-Filardo J, Domanski A, Udakis M, Duguid I, Jones MW, Mellor JR. Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment. Sci Rep 2024; 14:14315. [PMID: 38906952 PMCID: PMC11192748 DOI: 10.1038/s41598-024-64807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.
Collapse
Affiliation(s)
- Sarah A Stuart
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Aleks Domanski
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Matt Udakis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Matt W Jones
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Avvisati R, Kaufmann AK, Young CJ, Portlock GE, Cancemi S, Costa RP, Magill PJ, Dodson PD. Distributional coding of associative learning in discrete populations of midbrain dopamine neurons. Cell Rep 2024; 43:114080. [PMID: 38581677 PMCID: PMC7616095 DOI: 10.1016/j.celrep.2024.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.
Collapse
Affiliation(s)
- Riccardo Avvisati
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Anna-Kristin Kaufmann
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Callum J Young
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Gabriella E Portlock
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Cancemi
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Paul D Dodson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
3
|
Kalelkar A, Sipe G, Castro E Costa AR, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. Neuropharmacology 2024; 245:109800. [PMID: 38056524 PMCID: PMC11292593 DOI: 10.1016/j.neuropharm.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ilka M Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University - New Brunswick, 604 Allison Road, Piscataway, NJ, 08904, USA.
| |
Collapse
|
4
|
Bannerman DM, Barkus C, Eltokhi A. Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory. Methods Mol Biol 2024; 2799:107-138. [PMID: 38727905 DOI: 10.1007/978-1-0716-3830-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.
Collapse
Affiliation(s)
- David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ahmed Eltokhi
- Department of Biomedical Sciences, School of Medicine, Mercer University, Columbus, GA, USA
| |
Collapse
|
5
|
Kalelkar A, Sipe G, Costa ARCE, Lorenzo IM, Nguyen M, Linares-Garcia I, Vazey E, Huda R. A paradigm for ethanol consumption in head-fixed mice during prefrontal cortical two-photon calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549846. [PMID: 37503061 PMCID: PMC10370124 DOI: 10.1101/2023.07.20.549846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The prefrontal cortex (PFC) is a hub for higher-level cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Preclinical models of ethanol consumption are instrumental for understanding how acute and repeated drinking affects PFC structure and function. Recent advances in genetically encoded sensors of neuronal activity and neuromodulator release combined with functional microscopy (multiphoton and one-photon widefield imaging) allow multimodal in-vivo PFC recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking modulated activity rates in a subset of neurons on slow (minutes) and fast (seconds) time scales but the majority of neurons were unaffected. Moreover, ethanol intake did not significantly affect network level interactions in the PFC as assessed through inter-neuronal pairwise correlations. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits.
Collapse
Affiliation(s)
- Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Grayson Sipe
- Department of Brain and Cognitive Science, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge MA, 02139, USA
| | - Ana Raquel Castro E Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ilka M. Lorenzo
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - My Nguyen
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Ivan Linares-Garcia
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| | - Elena Vazey
- Department of Biology, The University of Massachusetts Amherst, 611 North Pleasant Street, Amherst MA, 01003, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, 604 Allison Road, Piscataway NJ, 08904, USA
| |
Collapse
|
6
|
Bolding KA, Franks KM. Electrophysiological Recordings from Identified Cell Types in the Olfactory Cortex of Awake Mice. Methods Mol Biol 2023; 2710:209-221. [PMID: 37688735 DOI: 10.1007/978-1-0716-3425-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Neural circuits consist of a myriad of distinct cell types, each with specific intrinsic properties and patterns of synaptic connectivity, which transform neural input and convey this information to downstream targets. Understanding how different features of an odor stimulus are encoded and relayed to their appropriate targets will require selective identification and manipulation of these different elements of the circuit. Here, we describe methods to obtain dense, extracellular electrophysiological recordings of odor-evoked activity in olfactory (piriform) cortex of awake, head-fixed mice, and optogenetic tools and procedures to identify genetically defined cell types within this circuit.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University, Durham, NC, USA
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|