1
|
Eto K, Ogata M, Toyooka Y, Hayashi T, Ishibashi H. Ketogenic Diet Alleviates Mechanical Allodynia in the Models of Inflammatory and Neuropathic Pain in Male Mice. Biol Pharm Bull 2024; 47:629-634. [PMID: 38494735 DOI: 10.1248/bpb.b23-00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Inflammation is involved in the induction of chronic inflammatory and neuropathic pain. Moreover, the ketogenic diet, a high-fat, low-carbohydrate, and adequate protein diet, has an anti-inflammatory effect. Thus, we hypothesized that a ketogenic diet has a therapeutic effect on both types of chronic pain. In the present study, we investigated the effect of a ketogenic diet on mechanical allodynia, a chronic pain symptom, in formalin-induced chronic inflammatory pain and nerve injury-induced neuropathic pain models using adult male mice. Formalin injection into the hind paw induced mechanical allodynia in both the injected and intact hind paws, and the ketogenic diet alleviated mechanical allodynia in both hind paws. In addition, the ketogenic diet prevented formalin-induced edema. Furthermore, the diet alleviated mechanical allodynia induced by peripheral nerve injury. Thus, these findings indicate that a ketogenic diet has a therapeutic effect on chronic pain induced by inflammation and nerve injury.
Collapse
Affiliation(s)
- Kei Eto
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| | - Yoshitaka Toyooka
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| | - Toru Hayashi
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University
- Department of Brain Science, Kitasato University Graduate School of Medical Sciences
| |
Collapse
|
2
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Gu N, Yi MH, Murugan M, Xie M, Parusel S, Peng J, Eyo UB, Hunt CL, Dong H, Wu LJ. Spinal microglia contribute to sustained inflammatory pain via amplifying neuronal activity. Mol Brain 2022; 15:86. [PMID: 36289499 PMCID: PMC9609165 DOI: 10.1186/s13041-022-00970-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.
Collapse
Affiliation(s)
- Nan Gu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Min-Hee Yi
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Madhuvika Murugan
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Manling Xie
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Sebastian Parusel
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jiyun Peng
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Christine L. Hunt
- grid.417467.70000 0004 0443 9942Department of Pain Medicine, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Hailong Dong
- grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Long-Jun Wu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
4
|
Jeffrey-Gauthier R, Bouyer J, Piché M, Côté MP, Leblond H. Locomotor deficits induced by lumbar muscle inflammation involve spinal microglia and are independent of KCC2 expression in a mouse model of complete spinal transection. Exp Neurol 2021; 338:113592. [PMID: 33388315 PMCID: PMC7904639 DOI: 10.1016/j.expneurol.2020.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Spinal cord injury (SCI) is associated with damage to musculoskeletal tissues of the spine. Recent findings show that pain and inflammatory processes caused by musculoskeletal injury mediate plastic changes in the spinal cord. These changes could impede the adaptive plastic changes responsible for functional recovery. The underlying mechanism remains unclear, but may involve the microglia-BDNF-KCC2 pathway, which is implicated in sensitization of dorsal horn neurons in neuropathic pain and in the regulation of spinal excitability by step-training. In the present study, we examined the effects of step-training and lumbar muscle inflammation induced by complete Freund's adjuvant (CFA) on treadmill locomotion in a mouse model of complete spinal transection. The impact on locomotor recovery of each of these interventions alone or in combination were examined in addition to changes in microglia and KCC2 expression in the dorsal and ventral horns of the sublesional spinal cord. Results show that angular motion at the hip, knee and ankle joint during locomotion were decreased by CFA injection and improved by step-training. Moreover, CFA injection enhanced the expression of the microglial marker Iba1 in both ventral and dorsal horns, with or without step-training. However, this change was not associated with a modulation of KCC2 expression, suggesting that locomotor deficits induced by inflammation are independent of KCC2 expression in the sublesional spinal cord. These results indicate that musculoskeletal injury hinders locomotor recovery after SCI and that microglia is involved in this effect.
Collapse
Affiliation(s)
- Renaud Jeffrey-Gauthier
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| | - Julien Bouyer
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, United States.
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, United States.
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
5
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
6
|
Ho IHT, Chan MTV, Wu WKK, Liu X. Spinal microglia-neuron interactions in chronic pain. J Leukoc Biol 2020; 108:1575-1592. [PMID: 32573822 DOI: 10.1002/jlb.3mr0520-695r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Current deficiency in our understanding of acute-to-chronic pain transition remains a hurdle for developing effective treatments against chronic pain. Whereas neurocentric mechanisms alone are insufficient to provide satisfactory explanation for such transition, neuro-immune crosstalk has attracted attention in recent pain research. In contrast to brain microglia, spinal microglia are activated immediately in various pain states. The fast-responsive enrichment and activation of spinal microglia among different pain conditions have highlighted the crucial role of neuroinflammation caused by microglia-neuron crosstalk in pain initiation. Recent studies have revealed spinal microglia-neuron interactions are also involved in chronic pain maintenance, albeit, with different anatomic distribution, cellular and molecular mechanisms, and biologic functions. Delineating the exact temporal discrepancies of spinal microglia distribution and functions along acute-to-chronic pain transition may provide additional mechanistic insights for drug development to prevent deterioration of acute pain into the chronic state. This narrative review summerizes the longitudinal alterations of spinal microglia-neuron interactions in the initiation of pain hypersensitivity, acute-to-chronic pain progression, and chronic pain maintenance, followed by an overview of current clinical translation of preclinical studies on spinal microglia. This review highlights the crucial role of the interaction between spinal microglia and neighboring neurons in the initiation and maintenance of pain hypersensitivity, in relation to the release of cytokines, chemokines, and neuroactive substances, as well as the modulation of synaptic plasticity. Further exploration of the uncharted functions of spinal microglia-neuron crosstalk may lead to the design of novel drugs for preventing acute-to-chronic pain transition.
Collapse
Affiliation(s)
- Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
7
|
Ismail CAN, Suppian R, Ab Aziz CB, Long I. Expressions of spinal microglia activation, BDNF, and DREAM proteins correlated with formalin-induced nociceptive responses in painful and painless diabetic neuropathy rats. Neuropeptides 2020; 79:102003. [PMID: 31902597 DOI: 10.1016/j.npep.2019.102003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
Abstract
The complications of diabetic polyneuropathy (DN) determines its level of severity. It may occur with distinctive clinical symptoms (painful DN) or appears undetected (painless DN). This study aimed to investigate microglia activation and signalling molecules brain-derived neurotrophic factor (BDNF) and downstream regulatory element antagonist modulator (DREAM) proteins in spinal cord of streptozotocin-induced diabetic neuropathy rats. Thirty male Sprague-Dawley rats (200-230 g) were randomly assigned into three groups: (1) control, (2) painful DN and (3) painless DN. The rats were induced with diabetes by single intraperitoneal injection of streptozotocin (60 mg/kg) whilst control rats received citrate buffer as a vehicle. Four weeks post-diabetic induction, the rats were induced with chronic inflammatory pain by intraplantar injection of 5% formalin and pain behaviour responses were recorded and assessed. Three days later, the rats were sacrificed and lumbar enlargement region of spinal cord was collected. The tissue was immunoreacted against OX-42 (microglia), BDNF and DREAM proteins, which was also quantified by western blotting. The results demonstrated that painful DN rats exhibited increased pain behaviour score peripherally and centrally with marked increase of spinal activated microglia, BDNF and DREAM proteins expressions compared to control group. In contrast, painless DN group demonstrated a significant reduction of pain behaviour score peripherally and centrally with significant reduction of spinal activated microglia, BDNF and DREAM proteins expressions. In conclusions, the spinal microglia activation, BDNF and DREAM proteins correlate with the pain behaviour responses between the variants of DN.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rapeah Suppian
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Che Badariah Ab Aziz
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Kolos EA, Korzhevskii DE. Spinal Cord Microglia in Health and Disease. Acta Naturae 2020; 12:4-17. [PMID: 32477594 PMCID: PMC7245960 DOI: 10.32607/actanaturae.10934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The review summarizes data of recent experimental studies on spinal microglia, the least explored cells of the spinal cord. It focuses on the origin and function of microglia in mammalian spinal cord embryogenesis. The main approaches to the classification of microgliocytes based on their structure, function, and immunophenotypic characteristics are analyzed. We discuss the results of studies conducted on experimental models of spinal cord diseases such as multiple sclerosis, amyotrophic lateral sclerosis, systemic inflammation, and some others, with special emphasis on the key role of microglia in the pathogenesis of these diseases. The review highlights the need to detect the new microglia-specific marker proteins expressed at all stages of ontogeny. New sensitive and selective microglial markers are necessary in order to improve identification of spinal cord microgliocytes in normal and pathological conditions. Possible morphometric methods to assess the functional activity of microglial cells are presented.
Collapse
Affiliation(s)
- E. A. Kolos
- Institute of Experimental Medicine, St. Petersburg, 197376 Russia
| | | |
Collapse
|
9
|
Tenza-Ferrer H, Magno LAV, Romano-Silva MA, da Silva JF, Gomez MV. Phα1β Spider Toxin Reverses Glial Structural Plasticity Upon Peripheral Inflammation. Front Cell Neurosci 2019; 13:306. [PMID: 31354431 PMCID: PMC6635560 DOI: 10.3389/fncel.2019.00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
The incoming signals from injured sensory neurons upon peripheral inflammation are processed in the dorsal horn of spinal cord, where glial cells accumulate and play a critical role in initiating allodynia (increased pain in response to light-touch). However, how painful stimuli in the periphery engage glial reactivity in the spinal cord remains unclear. Here, we found that a hind paw inflammation induced by CFA produces robust morphological changes in spinal astrocytes and microglia compatible with the reactive phenotype. Strikingly, we discovered that a single intrathecal injection with venom peptides that inhibit calcium channels reversed all the glial pathological features of the peripheral inflammation. These effects were more apparent in rats treated with the Phα1β spider toxin (non-specific calcium channel antagonist) than ω-MVIIA cone snail toxin (selective N-type calcium channel antagonist). These data reveal for the first time a venom peptide acting on glial structural remodeling in vivo. We, therefore, suggest that calcium-dependent plasticity is an essential trigger for glial cells to initiate reactivity, which may represent a new target for the antinociceptive effects of Phα1β and ω-MVIIA toxins in inflammatory pain conditions.
Collapse
Affiliation(s)
- Helia Tenza-Ferrer
- Centro de Tecnologia em Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luiz Alexandre Viana Magno
- Centro de Tecnologia em Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Centro de Tecnologia em Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Figueira da Silva
- Centro de Tecnologia em Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório de Toxinas, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Marcus Vinicius Gomez
- Centro de Tecnologia em Medicina Molecular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório de Toxinas, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Eidson LN, Murphy AZ. Inflammatory mediators of opioid tolerance: Implications for dependency and addiction. Peptides 2019; 115:51-58. [PMID: 30890355 PMCID: PMC6863079 DOI: 10.1016/j.peptides.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
Each year, over 50 million Americans suffer from persistent pain, including debilitating headaches, joint pain, and severe back pain. Although morphine is amongst the most effective analgesics available for the management of severe pain, prolonged morphine treatment results in decreased analgesic efficacy (i.e., tolerance). Despite significant headway in the field, the mechanisms underlying the development of morphine tolerance are not well understood. The midbrain ventrolateral periaqueductal gray (vlPAG) is a primary neural substrate for the analgesic effects of morphine, as well as for the development of morphine tolerance. A growing body of literature indicates that activated glia (i.e., microglia and astrocytes) facilitate pain transmission and oppose morphine analgesia, making these cells important potential targets in the treatment of chronic pain. Morphine affects glia by binding to the innate immune receptor toll-like receptor 4 (TLR4), leading to the release of proinflammatory cytokines and opposition of morphine analgesia. Despite the established role of the vlPAG as an integral locus for the development of morphine tolerance, most studies have examined the role of glia activation within the spinal cord. Additionally, the role of TLR4 in the development of tolerance has not been elucidated. This review attempts to summarize what is known regarding the role of vlPAG glia and TLR4 in the development of morphine tolerance. These data, together, provide information about the mechanism by which central nervous system glia regulate morphine tolerance, and identify a potential therapeutic target for the enhancement of analgesic efficacy in the clinical treatment of chronic pain.
Collapse
Affiliation(s)
- Lori N Eidson
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30308, United States.
| |
Collapse
|
11
|
Sheehan K, Lee J, Chong J, Zavala K, Sharma M, Philipsen S, Maruyama T, Xu Z, Guan Z, Eilers H, Kawamata T, Schumacher M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One 2019; 14:e0211349. [PMID: 30811405 PMCID: PMC6392229 DOI: 10.1371/journal.pone.0211349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.
Collapse
Affiliation(s)
- Kayla Sheehan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jessica Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jillian Chong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Kathryn Zavala
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tomoyuki Maruyama
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Zheyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Genty J, Tetsi Nomigni M, Anton F, Hanesch U. The combination of postnatal maternal separation and social stress in young adulthood does not lead to enhanced inflammatory pain sensitivity and depression-related behavior in rats. PLoS One 2018; 13:e0202599. [PMID: 30142161 PMCID: PMC6108470 DOI: 10.1371/journal.pone.0202599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The cumulative and match/mismatch hypotheses of stress are still under discussion regarding the effects of early life stress (ELS) on the vulnerability or resilience to psychopathology. In this context, an additional stress in later life (second hit) often leads to stress-related disorders that frequently include comorbid pain states. We previously observed that maternal separation (MS), a model of ELS, reduces vulnerability to neuropathic and inflammatory pain in rats. In the present study, we investigated the effects of an additional later stressor on the vulnerability to inflammatory pain. Sprague Dawley pups were divided into 4 groups: controls (CON, no stress), MS, social stress (SS) and MS+SS. At young adult age (from 7 to 15 weeks), stress- as well as pain-related parameters were evaluated prior and during 21 days following the induction of paw inflammation with complete Freund's adjuvant (CFA). Finally spinal glutamatergic transmission, immunocompetent cells, pro-inflammatory cytokines and growth factors were examined using qPCR. None of the stress conditions had a significant impact on corticosterone levels and anhedonia. In the forced swim test, MS and SS displayed increased passive coping whereas the combination of both stressors revoked this effect. The different stress conditions had no influence on basal mechanical thresholds and heat sensitivity. At 4 days post-inflammation all stress groups displayed lower mechanical thresholds than CON but the respective values were comparable at 7, 10, and 14 days. Only on day 21, MS rats were more sensitive to mechanical stimulation compared to the other groups. Regarding noxious heat sensitivity, MS+SS animals were significantly less sensitive than CON at 10 and 21 days after CFA-injection. qPCR results were mitigated. Despite the finding that stress conditions differentially affected different players of glutamatergic transmission, astrocyte activity and NGF expression, our biochemical results could not readily be related to the behavioral observations, precluding a congruent conclusion. The present results do neither confirm the cumulative nor corroborate or disprove the match/mismatch hypothesis.
Collapse
Affiliation(s)
- Julien Genty
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| | - Milène Tetsi Nomigni
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
13
|
Zhang L, Yin JB, Hu W, Zhao WJ, Fan QR, Qiu ZC, He MJ, Ding T, Sun Y, Kaye AD, Wang ER. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA. Front Pharmacol 2018; 9:317. [PMID: 29692727 PMCID: PMC5902556 DOI: 10.3389/fphar.2018.00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.
Collapse
Affiliation(s)
- Lie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun-Bin Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Neurology, The 456th Hospital of PLA, Jinan, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Qing-Rong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhi-Chun Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming-Jie He
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Sun
- Cadet Bridge, The Fourth Military Medical University, Xi'an, China
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - En-Ren Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
14
|
TAFA4 Reverses Mechanical Allodynia through Activation of GABAergic Transmission and Microglial Process Retraction. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Batti L, Sundukova M, Murana E, Pimpinella S, De Castro Reis F, Pagani F, Wang H, Pellegrino E, Perlas E, Di Angelantonio S, Ragozzino D, Heppenstall PA. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Cell Rep 2017; 15:2608-15. [PMID: 27332874 PMCID: PMC4921873 DOI: 10.1016/j.celrep.2016.05.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 12/10/2015] [Accepted: 05/07/2016] [Indexed: 12/31/2022] Open
Abstract
Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain. Microglial TMEM16F channels are required for neuropathic pain development in mice TMEM16F-deficient microglia display deficits in process motility and phagocytosis Deleting TMEM16F spares injury-induced loss of spinal cord GABA immunoreactivity Microglial phagocytosis may contribute to neuropathic pain development
Collapse
Affiliation(s)
- Laura Batti
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy.
| | - Mayya Sundukova
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | - Emanuele Murana
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Sofia Pimpinella
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | | | - Francesca Pagani
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Hong Wang
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Eloisa Pellegrino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Emerald Perlas
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Davide Ragozzino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy; IRCCS Neuromed, Via Atinese, Pozzilli 86077, Italy
| | - Paul A Heppenstall
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy; Molecular Medicine Partnership Unit (MMPU), 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Guan Z, Hellman J, Schumacher M. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways. F1000Res 2016; 5. [PMID: 27781082 PMCID: PMC5054801 DOI: 10.12688/f1000research.8710.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction, ischemia, or infection, evokes a complex cellular response (inflammation) that is associated with painful hyperalgesic states. Although in the acute stages it is necessary for protective reflexes and wound healing, inflammation may persist well beyond the need for tissue repair or survival. Prolonged inflammation may well represent the greatest challenge mammalian organisms face, as it can lead to chronic painful conditions, organ dysfunction, morbidity, and death. The complexity of the inflammatory response reflects not only the inciting event (infection, trauma, surgery, cancer, or autoimmune) but also the involvement of heterogeneous cell types including neuronal (primary afferents, sensory ganglion, and spinal cord), non-neuronal (endothelial, keratinocytes, epithelial, and fibroblasts), and immune cells. In this commentary, we will examine 1.) the expression and regulation of two members of the transient receptor potential family in primary afferent nociceptors and their activation/regulation by products of inflammation, 2.) the role of innate immune pathways that drive inflammation, and 3.) the central nervous system’s response to injury with a focus on the activation of spinal microglia driving painful hyperalgesic states.
Collapse
Affiliation(s)
- Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Moniruzzaman M, Bose S, Kim YM, Chin YW, Cho J. The ethyl acetate fraction from Physalis alkekengi inhibits LPS-induced pro-inflammatory mediators in BV2 cells and inflammatory pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:26-36. [PMID: 26806571 DOI: 10.1016/j.jep.2016.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis alkekengi is an edible herb whose fruit and calyx are traditionally used to treat a wide range of diseases including inflammation, toothache, and rheumatism. However, the effects of Physalis alkekengi fruit along with its calyx (PAF) on neuroinflammation and inflammatory pain behavior have not been reported yet. AIM OF THE STUDY This study evaluated the anti-inflammatory effect of PAF on lipopolysaccharide (LPS)-induced neuroinflammation and several in vivo model of inflammatory pain in mice. MATERIALS AND METHODS Here, first we studied the effects of PAF fractions on the production of pro-inflammatory mediators in LPS-treated BV2 microglial cells using enzyme-linked immunosorbent assay. The translocation of nuclear factor-kappa B (NF-κB) and the involvements of Akt and mitogen-activated protein (MAP) kinases in ethyl acetate fraction of PAF (PAF-EA)-mediated anti-inflammatory effect were measured using Western blotting. In in vivo experiments, the efficacy of PAF-EA was evaluated at the doses of 100 and 200mg/kg using several chemical-induced models of inflammatory pain such as acetic acid-induced writhing, formalin-induced paw licking and edema. RESULTS We found that compared to other fractions, the PAF-EA more potently inhibited the LPS-induced generation of nitric oxide, tumor necrosis factor-α, interleukin-6 and reactive oxygen species. It also inhibited LPS-induced nuclear translocation of NF-κB. These actions of EA fraction were found to be associated with a disruption of Akt and MAP kinases signaling pathways. The EA fraction also significantly inhibited acetic acid-induced writhing, formalin-induced licking time and edema in mice. CONCLUSIONS Our findings support the ethnopharmacological use of P. alkekengi fruit along with its calyx as an anti-inflammatory agent and suggest that the EA fraction of PAF may serve as a potential candidate to treat different neurological disorders and pain associated with inflammation.
Collapse
Affiliation(s)
- Md Moniruzzaman
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and BK-Plus Team, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and BK-Plus Team, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
18
|
Analgesic Effects of Danggui-Shaoyao-San on Various "Phenotypes" of Nociception and Inflammation in a Formalin Pain Model. Mol Neurobiol 2015; 53:6835-6848. [PMID: 26660325 DOI: 10.1007/s12035-015-9606-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
Abstract
Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine, which has long been used for pain treatment and has been demonstrated to possess anti-oxidative, cognitive enhancement, and anti-depressant effects. In the present study, the effects of aqueous extracts of DSS on spontaneous pain behaviors and long-term hyperalgesia were examined to investigate the anti-nociceptive effects and underlying mechanisms. Single pretreatment of DSS dose-dependently reduced spontaneous flinches/licking time in the second, rather than the first, phase after subcutaneous injection of 5 % formalin into one hindpaw, in doses of 2.4 and 9.6 g/kg. DSS also dose-dependently inhibited FOS and cyclooxygenase-2 (COX-2) expression in both superficial and deep layers within the spinal dorsal horn. Further, DSS reduced hypoalgesia in the injected paw from 1 to 3 days and produced anti-hyperalgesic actions in both the injected paw after 3 days and non-injected paw. These data suggest involvement of enhancement of descending pain inhibition by suppression of 5-HTT levels in the spinal dorsal horn and reduction of peripheral long-term inflammation, including paw edema and ulcers. These findings suggest that DSS may be a useful therapeutic agent for short- and long-term inflammation induced pain, through both anti-inflammatory and suppression of central sensitization mechanisms.
Collapse
|
19
|
Canlas J, Holt P, Carroll A, Rix S, Ryan P, Davies L, Matusica D, Pitson SM, Jessup CF, Gibbins IL, Haberberger RV. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Front Mol Neurosci 2015; 8:29. [PMID: 26283908 PMCID: PMC4522551 DOI: 10.3389/fnmol.2015.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 11/15/2022] Open
Abstract
Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2−/−) showed in contrast to mice deficient in Sphk1 (Sphk1−/−) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2−/− mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2−/− and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2−/− mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2−/− mice. Similarly, Sphk2−/− mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.
Collapse
Affiliation(s)
- Jastrow Canlas
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Phillip Holt
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Alexander Carroll
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Shane Rix
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Paul Ryan
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Claire F Jessup
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Ian L Gibbins
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Rainer V Haberberger
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| |
Collapse
|
20
|
Leitl MD, Potter DN, Cheng K, Rice KC, Carlezon WA, Negus SS. Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund's adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats. Mol Pain 2014; 10:62. [PMID: 25245060 PMCID: PMC4180532 DOI: 10.1186/1744-8069-10-62] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Intraplantar administration of complete Freund's adjuvant (CFA) and formalin are two noxious stimuli commonly used to produce sustained pain-related behaviors in rodents for research on neurobiology and treatment of pain. One clinically relevant manifestation of pain is depression of behavior and mood. This study compared effects of intraplantar CFA and formalin on depression of positively reinforced operant behavior in an assay of intracranial self-stimulation (ICSS) in rats. Effects of CFA and formalin on other physiological and behavioral measures, and opioid effects on formalin-induced depression of ICSS, were also examined. RESULTS There were four main findings. First, consistent with previous studies, both CFA and formalin produced similar paw swelling and mechanical hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. Third, formalin-induced depression of ICSS was reversed by morphine doses that did not significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be interpreted as an example of pain-related and analgesic-reversible depression of behavior. Finally, formalin-induced depression of ICSS was not associated with changes in central biomarkers for activation of endogenous kappa opioid systems, which have been implicated in depressive-like states in rodents, nor was it blocked by the kappa antagonist norbinaltorphimine. CONCLUSIONS These results suggest differential efficacy of sustained pain stimuli to depress brain reward function in rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage brain kappa opioid systems.
Collapse
Affiliation(s)
- Michael D Leitl
- />Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th St., PO Box 980613, Richmond, VA USA
| | - David N Potter
- />Behavioral Genetics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA USA
| | - Kejun Cheng
- />Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Kenner C Rice
- />Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - William A Carlezon
- />Behavioral Genetics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA USA
| | - S Stevens Negus
- />Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th St., PO Box 980613, Richmond, VA USA
| |
Collapse
|
21
|
The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol 2014; 254:41-53. [PMID: 24440229 DOI: 10.1016/j.expneurol.2014.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
|
22
|
Grace PM, Strand KA, Maier SF, Watkins LR. Suppression of voluntary wheel running in rats is dependent on the site of inflammation: evidence for voluntary running as a measure of hind paw-evoked pain. THE JOURNAL OF PAIN 2014; 15:121-8. [PMID: 24287315 PMCID: PMC3948323 DOI: 10.1016/j.jpain.2013.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 01/28/2023]
Abstract
UNLABELLED Decreased voluntary wheel running has recently been proposed as a preclinical pain measure for inflammatory pain, but whether this reflects pain evoked by use of the affected limbs is unknown. To assess the role of inflammation site as a determinant of this measure, complete Freund's adjuvant (CFA), formalin, or equivolume vehicle was subcutaneously injected into the plantar surface of the hind paws (bilateral) or L1 dorsum dermatome (leaving paws unaffected) of male Sprague Dawley rats. CFA-induced hind paw mechanical allodynia (P < .001) did not correlate with reduced voluntary wheel running. Intraplantar formalin did not attenuate voluntary running, despite eliciting robust licking/writhing/flinching behavior and hind paw mechanical allodynia (P < .001). Subcutaneous L1 dorsum dermatome formalin, but not CFA, induced licking/writhing/flinching behavior (P < .001), but neither induced hind paw mechanical allodynia or attenuated voluntary running. That voluntary running is decreased by hind paw CFA, but not by L1 dorsum CFA, implies that the behavior is a measure of CFA-induced pain evoked by use of the affected limbs rather than supraspinal pain processing that is independent of inflammation site. Furthermore, the results suggest that interpretation of voluntary wheel running data cannot simply be explained by correlation with mechanical allodynia. PERSPECTIVE Whether decreased voluntary running is dependent on inflammation site is unknown. We show that intraplantar, but not L1 dorsum, CFA suppressed voluntary running and formalin-induced licking/writhing/flinching behavior but had no effect on voluntary running. These data suggest that suppressed voluntary running by CFA likely reflects pain evoked by use of the affected limbs.
Collapse
Affiliation(s)
- Peter M Grace
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado.
| | - Keith A Strand
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado
| | - Steven F Maier
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado
| | - Linda R Watkins
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado
| |
Collapse
|
23
|
Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast 2013; 2013:753656. [PMID: 24024042 PMCID: PMC3759269 DOI: 10.1155/2013/753656] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022] Open
Abstract
Microglia are regarded as macrophages in the central nervous system (CNS) and play an important role in neuroinflammation in the CNS. Microglial activation has been strongly implicated in neurodegeneration in the brain. Increasing evidence also suggests an important role of spinal cord microglia in the genesis of persistent pain, by releasing the proinflammatory cytokines tumor necrosis factor-alpha (TNFα), Interleukine-1beta (IL-1β), and brain derived neurotrophic factor (BDNF). In this review, we discuss the recent findings illustrating the importance of microglial mediators in regulating synaptic plasticity of the excitatory and inhibitory pain circuits in the spinal cord, leading to enhanced pain states. Insights into microglial-neuronal interactions in the spinal cord dorsal horn will not only further our understanding of neural plasticity but may also lead to novel therapeutics for chronic pain management.
Collapse
|
24
|
Pathobiology and management of prostate cancer-induced bone pain: recent insights and future treatments. Inflammopharmacology 2013; 21:339-63. [PMID: 23918298 PMCID: PMC3779011 DOI: 10.1007/s10787-013-0183-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) has a high propensity for metastasis to bone. Despite the availability of multiple treatment options for relief of PCa-induced bone pain (PCIBP), satisfactory relief of intractable pain in patients with advanced bony metastases is challenging for the clinicians because currently available analgesic drugs are often limited by poor efficacy and/or dose-limiting side effects. Rodent models developed in the past decade show that the pathobiology of PCIBP comprises elements of inflammatory, neuropathic and ischemic pain arising from ectopic sprouting and sensitization of sensory nerve fibres within PCa-invaded bones. In addition, at the cellular level, PCIBP is underpinned by dynamic cross talk between metastatic PCa cells, cellular components of the bone matrix, factors associated with the bone microenvironment as well as peripheral components of the somatosensory system. These insights are aligned with the clinical management of PCIBP involving use of a multimodal treatment approach comprising analgesic agents (opioids, NSAIDs), radiotherapy, radioisotopes, cancer chemotherapy agents and bisphosphonates. However, a major drawback of most rodent models of PCIBP is their short-term applicability due to ethical concerns. Thus, it has been difficult to gain insight into the mal(adaptive) neuroplastic changes occurring at multiple levels of the somatosensory system that likely contribute to intractable pain at the advanced stages of metastatic disease. Specifically, the functional responsiveness of noxious circuitry as well as the neurochemical signature of a broad array of pro-hyperalgesic mediators in the dorsal root ganglia and spinal cord of rodent models of PCIBP is relatively poorly characterized. Hence, recent work from our laboratory to develop a protocol for an optimized rat model of PCIBP will enable these knowledge gaps to be addressed as well as identification of novel targets for drug discovery programs aimed at producing new analgesics for the improved relief of intractable PCIBP.
Collapse
|
25
|
Different peripheral tissue injury induces differential phenotypic changes of spinal activated microglia. Clin Dev Immunol 2013; 2013:901420. [PMID: 23818916 PMCID: PMC3681311 DOI: 10.1155/2013/901420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 01/23/2023]
Abstract
The purpose of this study is to investigate the possible different cellular marker expression associated with spinal cord microglial activation in different pain models. Immunohistochemistry and western blotting analysis of CD45, CD68, and MHC class I antigen as well as CD11b and Iba-1 in the spinal cord were quantitatively compared among widely used three pain animal models, complete Freund's adjuvant (CFA) injection, formalin injection, and chronic constriction injury (CCI) models. The results showed that significant upregulated expressions of CD45 and MHC class I antigen in spinal microglia as well as morphological changes with increased staining with CD11b and Iba-1 were seen in CCI and formalin models and not found in CFA-induced inflammatory pain model. CD68 expression was only detected in CCI model. Our findings suggested that different peripheral tissue injuries produced differential phenotypic changes associated with spinal microglial activation; peripheral nerve injury might induce spinal microglia to acquire these immunomolecular phenotypic changes.
Collapse
|
26
|
Deumens R, Steyaert A, Forget P, Schubert M, Lavand’homme P, Hermans E, De Kock M. Prevention of chronic postoperative pain: Cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog Neurobiol 2013; 104:1-37. [DOI: 10.1016/j.pneurobio.2013.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 01/13/2023]
|
27
|
Eidson LN, Murphy AZ. Persistent peripheral inflammation attenuates morphine-induced periaqueductal gray glial cell activation and analgesic tolerance in the male rat. THE JOURNAL OF PAIN 2013; 14:393-404. [PMID: 23395474 PMCID: PMC3991566 DOI: 10.1016/j.jpain.2012.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/15/2022]
Abstract
UNLABELLED Morphine is among the most prevalent analgesics prescribed for chronic pain. However, prolonged morphine treatment results in the development of analgesic tolerance. An abundance of evidence has accumulated indicating that central nervous system glial cell activity facilitates pain transmission and opposes morphine analgesia. While the midbrain ventrolateral periaqueductal gray (vlPAG) is an important neural substrate mediating pain modulation and the development of morphine tolerance, no studies have directly assessed the role of PAG glia. Here we test the hypothesis that morphine-induced increases in vlPAG glial cell activity contribute to the development of morphine tolerance. As morphine is primarily consumed for the alleviation of severe pain, the influence of persistent inflammatory pain was also assessed. Administration of morphine, in the absence of persistent inflammatory pain, resulted in the rapid development of morphine tolerance and was accompanied by a significant increase in vlPAG glial activation. In contrast, persistent inflammatory hyperalgesia, induced by intraplantar administration of complete Freund's adjuvant (CFA), significantly attenuated the development of morphine tolerance. No significant differences were noted in vlPAG glial cell activation for CFA-treated animals versus controls. These results indicate that vlPAG glia are modulated by a persistent pain state, and implicate vlPAG glial cells as possible regulators of morphine tolerance. PERSPECTIVE The development of morphine tolerance represents a significant impediment to its use in the management of chronic pain. We report that morphine tolerance is accompanied by increased glial cell activation within the vlPAG, and that the presence of a persistent pain state prevented vlPAG glial activation and attenuated morphine tolerance.
Collapse
Affiliation(s)
- Lori N Eidson
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | | |
Collapse
|
28
|
Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013; 77:43-57. [PMID: 23312515 DOI: 10.1016/j.neuron.2012.10.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Persistent pain induced by noxious stimuli is characterized by the transition from normosensitivity to hypersensitivity. Underlying mechanisms are not well understood, although gene expression is considered important. Here, we show that persistent nociceptive-like activity triggers calcium transients in neuronal nuclei within the superficial spinal dorsal horn, and that nuclear calcium is necessary for the development of long-term inflammatory hypersensitivity. Using a nucleus-specific calcium signal perturbation strategy in vivo complemented by gene profiling, bioinformatics, and functional analyses, we discovered a pain-associated, nuclear calcium-regulated gene program in spinal excitatory neurons. This includes C1q, a modulator of synaptic spine morphogenesis, which we found to contribute to activity-dependent spine remodelling on spinal neurons in a manner functionally associated with inflammatory hypersensitivity. Thus, nuclear calcium integrates synapse-to-nucleus communication following noxious stimulation and controls a spinal genomic response that mediates the transition between acute and long-term nociceptive sensitization by modulating functional and structural plasticity.
Collapse
Affiliation(s)
- Manuela Simonetti
- Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Miller TR, Wetter JB, Jarvis MF, Bitner RS. Spinal microglial activation in rat models of neuropathic and osteoarthritic pain: an autoradiographic study using [3H]PK11195. Eur J Pain 2012; 17:692-703. [PMID: 23070996 DOI: 10.1002/j.1532-2149.2012.00232.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Microglia serve as macrophage-like cells in the central nervous system, and activation of microglial cells in the spinal cord may contribute to ongoing pain following peripheral trauma or nerve injury. Following pronociceptive stimulation, activated microglia exhibit increased expression of the peripheral benzodiazepine receptor (PBR)/translocator protein 18 kDa (TSPO). METHODS Using radioligand binding autoradiography and filtration assays, we examined the specific binding of the PBR/TSPO ligand [(3)H]PK11195 in spinal cords from the following rat experimental pain models: neuropathic pain induced by spinal nerve ligation (SNL), osteoarthritic pain induced by intraarticular injection of monosodium iodoacetate in the knee joint (MIA-OA), and subchronic inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA). RESULTS Specific [(3)H]PK11195 binding in dorsal and ventral regions of lumbar spinal cord was increased by ≥70% ipsilateral to SNL. Also, specific [(3)H]PK11195 binding in the ipsilateral (injured) lumbar spinal cord was increased by approximately 25% in MIA-OA. In contrast to the data obtained in these chronic neuropathic and nociceptive pain models, specific [(3)H]PK11195 binding in the ipsilateral (injured) dorsal horn was elevated in only one of six CFA rats. Consistent with increased PBR/TSPO binding measured for SNL and MIA-OA rats, increased anti-OX-42 immunostaining of the cell surface microglial marker CD11b was observed in the ipsilateral spinal cord from these models. CONCLUSIONS These studies demonstrate that [(3)H]PK11195 binding assays may serve as a marker of spinal microglial activation in experimental models of chronic neuropathic or osteoarthritic pain, which may be translatable to clinical research through novel applications of PBR/TSPO imaging agents.
Collapse
Affiliation(s)
- T R Miller
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, USA.
| | | | | | | |
Collapse
|
30
|
Tan YH, Li K, Chen XY, Cao Y, Light AR, Fu KY. Activation of Src Family Kinases in Spinal Microglia Contributes to Formalin-Induced Persistent Pain State Through p38 Pathway. THE JOURNAL OF PAIN 2012; 13:1008-15. [DOI: 10.1016/j.jpain.2012.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 07/21/2012] [Indexed: 12/30/2022]
|
31
|
Abstract
Neuropathic pain, the most debilitating of all clinical pain syndromes, may be a consequence of trauma, infection or pathology from diseases that affect peripheral nerves. Here we provide a framework for understanding the spinal mechanisms of neuropathic pain as distinct from those of acute pain or inflammatory pain. Recent work suggests that a specific microglia response phenotype characterized by de novo expression of the purinergic receptor P2X4 is critical for the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Stimulating P2X4 receptors initiates a core pain signaling pathway mediated by release of brain-derived neurotrophic factor, which produces a disinhibitory increase in intracellular chloride in nociceptive (pain-transmitting) neurons in the spinal dorsal horn. The changes caused by signaling from P2X4R(+) microglia to nociceptive transmission neurons may account for the main symptoms of neuropathic pain in humans, and they point to specific interventions to alleviate this debilitating condition.
Collapse
|
32
|
Tsuda M, Beggs S, Salter MW, Inoue K. Microglia and intractable chronic pain. Glia 2012; 61:55-61. [DOI: 10.1002/glia.22379] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
|
33
|
Xanthos DN, Püngel I, Wunderbaldinger G, Sandkühler J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol Pain 2012; 8:44. [PMID: 22713725 PMCID: PMC3407004 DOI: 10.1186/1744-8069-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Changes in the blood-central nervous system barriers occur under pathological conditions including inflammation and contribute to central manifestations of various diseases. After short-lasting peripheral and neurogenic inflammation, the evidence is mixed whether there are consistent blood-spinal cord changes. In the current study, we examine changes in the blood-spinal cord barrier after intraplantar capsaicin and λ-carrageenan using several methods: changes in occludin protein, immunoglobulin G accumulation, and fluorescent dye penetration. We also examine potential sex differences in male and female adult rats. Results After peripheral carrageenan inflammation, but not capsaicin inflammation, immunohistochemistry shows occludin protein in lumbar spinal cord to be significantly altered at 72 hours post-injection. In addition, there is also significant immunoglobulin G detected in lumbar and thoracic spinal cord at this timepoint in both male and female rats. However, acute administration of sodium fluorescein or Evans Blue dyes is not detected in the parenchyma at this timepoint. Conclusions Our results show that carrageenan inflammation induces changes in tight junction protein and immunoglobulin G accumulation, but these may not be indicative of a blood-spinal cord barrier breakdown. These changes appear transiently after peak nociception and may be indicative of reversible pathology that resolves together with inflammation.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Jha MK, Jeon S, Suk K. Glia as a Link between Neuroinflammation and Neuropathic Pain. Immune Netw 2012; 12:41-7. [PMID: 22740789 PMCID: PMC3382663 DOI: 10.4110/in.2012.12.2.41] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 12/18/2022] Open
Abstract
Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | |
Collapse
|
35
|
Wang J, Geng B, Shen HL, Xu X, Wang H, Wang CF, Ma JL, Wang ZP. Amino acid transport system A is involved in inflammatory nociception in rats. Brain Res 2012; 1449:38-45. [PMID: 22373650 DOI: 10.1016/j.brainres.2012.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have indicated that central sensitization is a state of increased excitability of nociceptive neurons in the spinal dorsal horn following peripheral tissue injury and/or inflammation and astrocytes play an important role in the central sensitization. The current study investigated the role of amino acid transport system A in central sensitization and hyperalgesia induced by intraplantar injection of formalin in rats. Formalin (5%, 50μl) injected subcutaneously into the unilateral hindpaw pad induced typical biphase nociceptive behaviors, including licking/biting and flinching of the injected paw and an increase of glial fibrillary acid protein (GFAP, an activated astrocyte marker) expression in spinal dorsal horn, and these effects could be attenuated by intrathecal injection of the competitive inhibitor of amino acid system A transporter, methylaminoisobutyric acid (MeAIB, 0.1, 0.3, 0.5, and 0.7mmol), in a dose-dependent manner. Intrathecal injection of vehicle (PBS) had no effect on the formalin-induced nociceptive behaviors and increase of the GFAP. These findings suggest that amino acid transport system A is involved in inflammation-induced nociception, and inhibition of this transporter system results in inhibition of the central sensitization and hyperalgesia.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cui Ying Men Street, Lanzhou, Gansu 730030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Graeber MB, Christie MJ. Multiple mechanisms of microglia: a gatekeeper's contribution to pain states. Exp Neurol 2012; 234:255-61. [PMID: 22273537 DOI: 10.1016/j.expneurol.2012.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022]
Abstract
Microglia are gatekeepers in the CNS for a wide range of pathological stimuli and they blow the whistle when things go wrong. Collectively, microglia form a CNS tissue alarm system (Kreutzberg's "sensor of pathology"), and their involvement in physiological pain is in line with this function. However, pathological neuropathic pain is characterized by microglial activation that is unwanted and considered to contribute to or even cause tactile allodynia, hyperalgesia and spontaneous pain. Such abnormal microglial behavior seems likely due to an as yet ill-understood disturbance of microglial functions unrelated to inflammation. The idea that microglia have roles in the CNS that differ from those of peripheral macrophages has gained momentum with the discovery of their separate, pre-hematopoietic lineage during embryonic development and their direct interactions with synapses.
Collapse
Affiliation(s)
- Manuel B Graeber
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
37
|
Ambriz-Tututi M, Sánchez-González V, Drucker-Colín R. Chromaffin cell transplant in spinal cord reduces secondary allodynia induced by formalin in the rat. Role of opioid receptors and α2-adrenoceptors. Eur J Pharmacol 2011; 668:147-54. [DOI: 10.1016/j.ejphar.2011.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
|
38
|
Formalin-induced long-term secondary allodynia and hyperalgesia are maintained by descending facilitation. Pharmacol Biochem Behav 2011; 98:417-24. [DOI: 10.1016/j.pbb.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/14/2011] [Indexed: 12/23/2022]
|
39
|
Zheng FY, Xiao WH, Bennett GJ. The response of spinal microglia to chemotherapy-evoked painful peripheral neuropathies is distinct from that evoked by traumatic nerve injuries. Neuroscience 2011; 176:447-54. [PMID: 21195745 PMCID: PMC3040270 DOI: 10.1016/j.neuroscience.2010.12.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 01/22/2023]
Abstract
Painful peripheral neuropathies produced by nerve trauma are accompanied by substantial axonal degeneration and by a response in spinal cord microglia that is characterized by hypertrophy and increased expression of several intracellular and cell-surface markers, including ionizing calcium-binding adapter molecule 1 (Iba1) and Cd11b (a complement receptor 3 antigen recognized by the OX42 antibody). The microglia response has been hypothesized to be essential for the pathogenesis of the neuropathic pain state. In contrast, the painful peripheral neuropathies produced by low doses of cancer chemotherapeutics do not produce degeneration of axons in the peripheral nerve, although they do cause partial degeneration of the sensory axons' distal-most tips, that is the intraepidermal nerve fibers that form the axons' terminal receptor arbors. The question thus arises as to whether the relatively minor and distal axonal injury characterizing the chemotherapy-evoked neuropathies is sufficient to evoke the microglial response that is seen after traumatic nerve injury. We examined the lumbar spinal cord of rats with painful peripheral neuropathies due to the anti-neoplastic agents, paclitaxel, vincristine, and oxaliplatin, and the anti-retroviral agent, 2',3'-dideoxycytidine (ddC), and compared them to rats with a complete sciatic nerve transection and the partial sciatic nerve injury produced in the chronic constriction injury model (CCI). As expected, microglia hypertrophy and increased expression of Iba1 were pronounced in the nerve transection and CCI animals. However, there was no microglia hypertrophy or increased Iba1 staining in the animals treated with paclitaxel, vincristine, oxaliplatin, or ddC. These results suggest that the mechanisms that produce neuropathic pain after exposure to chemotherapeutics may be fundamentally different than those operating after nerve trauma.
Collapse
Affiliation(s)
- F. Y. Zheng
- Department of Anesthesia, McGill University, Montréal, Québec, Canada
| | - W.-H. Xiao
- Department of Anesthesia, McGill University, Montréal, Québec, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, Québec, Canada
| | - G. J. Bennett
- Department of Anesthesia, McGill University, Montréal, Québec, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, Québec, Canada
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
40
|
Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, Abbracchio MP. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain 2010; 6:89. [PMID: 21143950 PMCID: PMC3017032 DOI: 10.1186/1744-8069-6-89] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS). Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA) into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. RESULTS CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. CONCLUSIONS Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.
Collapse
Affiliation(s)
- Giovanni Villa
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Zanardelli
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Giulia Magni
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Luc Jasmin
- Department of Neurosurgery, Cedars Sinai Medical Center, Los Angeles CA 90013, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter T Ohara
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
41
|
Fan W, Huang F, Zhu X, Dong W, Gao Z, Li D, He H. Involvement of microglial activation in the brainstem in experimental dental injury and inflammation. Arch Oral Biol 2010; 55:706-11. [DOI: 10.1016/j.archoralbio.2010.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 06/02/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022]
|
42
|
Ivanusic JJ, Beaini D, Hatch RJ, Staikopoulos V, Sessle BJ, Jennings EA. Peripheral N-methyl-d-aspartate receptors contribute to mechanical hypersensitivity in a rat model of inflammatory temporomandibular joint pain. Eur J Pain 2010; 15:179-85. [PMID: 20675160 DOI: 10.1016/j.ejpain.2010.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether peripheral N-methyl-d-aspartate (NMDA) receptors are involved in inflammation-induced mechanical hypersensitivity of the temporomandibular joint (TMJ) region. We developed a rat model of mechanical sensitivity to Complete Freund's Adjuvant (CFA; 2μl containing 1μg Mycobacterium tuberculosis)-induced inflammation of the TMJ and examined changes in sensitivity following injection of NMDA receptor antagonists (dl-2-amino-5-phosphonovaleric acid (AP5) or Ifenprodil) with CFA. CFA injected into the TMJ resulted in an increase in mechanical sensitivity relative to pre-injection that peaked at day 1 and lasted for up to 3days (n=8, P<0.05). There was no change in mechanical sensitivity in vehicle-injected rats at any time-point (n=9). At day 1, there was a significant increase in mechanical sensitivity in animals injected with CFA+vehicle (n=7) relative to those injected with vehicle alone (n=7, P<0.05), and co-injection of AP5 (n=6) or Ifenprodil (n=7) with CFA blocked this hypersensitivity. Subcutaneous injection of AP5 (n=7) and Ifenprodil (n=5) instead of into the TMJ had no significant effect on CFA-induced hypersensitivity of the TMJ region. Western blot analysis revealed constitutive expression of the NR1 and NR2B subunits in trigeminal ganglion lysates. Immunohistochemical studies showed that 99% and 28% of trigeminal ganglion neurons that innervated the TMJ contained the NR1 and NR2B subunits respectively. Our findings suggest a role for peripheral NMDA receptors in inflammation-induced pain of the TMJ region. Targeting peripheral NMDA receptors with peripheral application of NMDA receptor antagonists could provide therapeutic benefit and avoid side effects associated with blockade of NMDA receptors in the central nervous system.
Collapse
Affiliation(s)
- J J Ivanusic
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Xu B, Zhang WS, Yang JL, Lû N, Deng XM, Xu H, Zhang YQ. Evidence for suppression of spinal glial activation by dexmedetomidine in a rat model of monoarthritis. Clin Exp Pharmacol Physiol 2010; 37:e158-66. [DOI: 10.1111/j.1440-1681.2010.05426.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Abstract
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.
Collapse
Affiliation(s)
- Romain-Daniel Gosselin
- Pain Research Unit, Department of Anesthesiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
45
|
Peripheral formalin injury induces 2 stages of microglial activation in the spinal cord. THE JOURNAL OF PAIN 2010; 11:1056-65. [PMID: 20488758 DOI: 10.1016/j.jpain.2010.01.268] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/15/2010] [Accepted: 01/26/2010] [Indexed: 12/30/2022]
Abstract
UNLABELLED The formalin test produces 2 well-known acute phases of nociceptive behavior. Recently, we have shown that this same formalin test produces a third phase of nociceptive behavior consisting of prolonged thermal and mechanical hyperalgesia beginning days after formalin injection and lasting for at least 3 weeks. Here we investigated the activity of 3 MAPKs (p38, ERK and JNK) in the spinal dorsal horn following 5% formalin injection into rat hind paw. The p38 MAPK was rapidly activated in the spinal microglia minutes after injection and the activation persisted for 1 hour. In addition, this same injury induced a secondary increase of phospho-p38 expression in spinal microglia that was maximal 3 to 7 days postinjection. Intrathecal administration of p38 inhibitor SB203580 not only inhibited the early acute spontaneous nociceptive behaviors, but also inhibited the long-term formalin injury-induced mechanical hyperalgesia. Our results suggest that peripheral formalin injection induces 2 stages of microglial activation, and p38 activation in spinal microglia plays key roles in central pain modulation in formalin test respectively for the early acute phases and the late secondary long-term pain state as well. PERSPECTIVE This article presents unique properties of spinal microglial activation in a pain animal model. This finding could potentially help clinicians to further understand the contributions of spinal microglia to acute and chronic pain state.
Collapse
|
46
|
Dexmedetomidine blocks thermal hyperalgesia and spinal glial activation in rat model of monoarthritis. Acta Pharmacol Sin 2010; 31:523-30. [PMID: 20364156 DOI: 10.1038/aps.2010.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate the effect of systemic administration dexmedetomidine, a selective alpha 2 adrenergic receptor (alpha(2)AR) agonist, on thermal hyperalgesia and spinal glial activation evoked by monoarthritis (MA). METHODS MA was induced by an intra-articular injection of complete Freund's adjuvant (CFA). Thermal hyperalgesia was measured by Hargreaves' test. The spinal glial activation status was analyzed by GFAP (an astrocytic marker) and Iba-1 (a microglial marker) immunohistochemistry or immunoblotting. RESULTS Unilateral intra-articular injection of CFA produced a robust glial activation of astrocytes and microglia in the spinal cord, which was associated with the development and maintenance of thermal hyperalgesia. Intraperitoneal (ip) injection of dexmedetomidine (2.5 and 10 microg/kg) was repeatedly given once daily for 5 days with the first injection 60 min before intra-articular CFA. At the dose of 10 microg/kg, dexmedetomidine significantly attenuated MA-induced ipsilateral hyperalgesia from day 2 to day 5. MA-induced up-regulation of GFAP expression on both sides of the spinal dorsal horn was significantly suppressed by day 5 post-MA following dexmedetomidine application, whereas MA-induced Iba-1 up-regulation was only partially suppressed. CONCLUSION Systemic dexmedetomidine inhibits the activation of spinal glia, which is possibly associated with its antihyperalgesia in monoarthritic rats.
Collapse
|
47
|
Systemic minocycline differentially influences changes in spinal microglial markers following formalin-induced nociception. J Neuroimmunol 2010; 221:25-31. [PMID: 20202692 DOI: 10.1016/j.jneuroim.2010.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/27/2022]
Abstract
In the present study, intraperitoneal administration of minocycline attenuated enhancing nociceptive behaviors in those rats receiving dual formalin injections (5% formalin followed at 7 days later by 1% formalin). The minocycline treatment did not prevent the increase in OX-42 and MHC class I labeling and morphological changes, but significantly attenuated upregulation of phospho-p38 in activated microglia. These results suggest that the later days of microglial activation with upregulated immune markers in the spinal cord contributes to enhancing long-term pain response by a pathway of p38 activation in microglia.
Collapse
|
48
|
Chang YW, Tan A, Saab C, Waxman S. Unilateral Focal Burn Injury Is Followed by Long-Lasting Bilateral Allodynia and Neuronal Hyperexcitability in Spinal Cord Dorsal Horn. THE JOURNAL OF PAIN 2010; 11:119-30. [DOI: 10.1016/j.jpain.2009.06.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 12/30/2022]
|
49
|
Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CE. N-Methyl-D-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain 2009; 148:237-246. [PMID: 20005044 DOI: 10.1016/j.pain.2009.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/24/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Following peripheral inflammation, NMDA receptor (NMDAR) activation in spinal cord dorsal horn neurons facilitates the generation of pain in response to low threshold inputs (allodynia) and signals the phosphorylation of protein kinase C (pPKC) and extracellular signal-regulated kinase 2 (pERK2). Intraplantar complete Freund's adjuvant (CFA) induces inflammatory nociception (allodynic pain) at 24 hours (h) with a concurrent increase in neuronal pPKCgamma and pERK2 but not glial pERK2. These effects are attenuated in a spatial knockout of the NMDAR (NR1 KO) confined to SCDH neurons. Although glia and proinflammatory cytokines are implicated in the maintenance of inflammatory pain and neuronal activation, the role of NMDARs and neuronal-glial-cytokine interactions that initiate and maintain inflammatory pain are not well defined. In the maintenance phase of inflammatory pain at 96h after CFA the NR1 KO mice are no longer protected from allodynia and the SCDH expression of pPKCgamma and pERK2 are increased. At 96h the expression of the proinflammatory cytokine, IL-1beta, and pERK2 are increased in astrocytes. Intrathecal IL-1 receptor antagonist (IL-1ra), acting on neuronal IL-1 receptors, completely reverses the allodynia at 96h after CFA. Deletion of NMDAR-dependent signaling in neurons protects against early CFA-induced allodynia. Subsequent NMDAR-independent signaling that involves neuronal expression of pPKCgamma and the induction of pERK2 and IL-1beta in activated astrocytes contributes to the emergence of NMDAR-independent inflammatory pain behavior at 96h after CFA. Effective reduction of the initiation and maintenance of inflammatory pain requires targeting the neuron-astrocyte-cytokine interactions revealed in these studies.
Collapse
Affiliation(s)
- Amanda R Weyerbacher
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA Department of Neurology and the Pain and Palliative Care Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
50
|
Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain. Exp Neurol 2009; 220:383-90. [PMID: 19815011 DOI: 10.1016/j.expneurol.2009.09.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 12/21/2022]
Abstract
Although activation of spinal glia has been implicated in the development of pathological pain, the mechanisms underlying glial activation are not fully understood. One such mechanism may be triggered by reaction to neuroactive substances released from central axons of sensory afferents. The vanilloid receptor TRPV1, a nonselective cation channel in nociceptive sensory afferents, mediates the release of neurotransmitters, such as glutamate and CGRP in the dorsal horn, which can subsequently activate glia. To test the hypothesis that activation of spinal glia is mediated, at least in part, by TRPV1, we studied the expression of markers for microglia (ionized calcium-binding adapter molecule 1, Iba1) and astrocytes (glial fibrillary acidic protein, GFAP) in the spinal cord of TRPV1 knockout mice (KO) vs. wild-type mice (WT) in models of acute (intraplantar capsaicin), inflammatory (adjuvant-induced arthritis, AIA), and neuropathic pain (partial sciatic nerve ligation, PSNL). We found that (i) naïve KO mice had denser immunostaining for both Iba1 and GFAP than naive WT mice; (ii) the immunostaining for Iba1 increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 7-14 days after AIA or PSNL, and was significantly greater in WT than in KO mice 3 days after capsaicin, 7-14 days after AIA, and 7 days after PSNL; and iii) the immunostaining for GFAP increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 14-21 days after AIA or PSNL, and was significantly greater in WT than in KO mice 14 days after AIA or PSNL. Our results suggest that TRPV1 plays a role in the activation of spinal glia in mice with nociceptive, inflammatory, and neuropathic pain.
Collapse
|