1
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
2
|
Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells 2022; 11:cells11101644. [PMID: 35626681 PMCID: PMC9139532 DOI: 10.3390/cells11101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.
Collapse
|
3
|
Műzes G, Bohusné Barta B, Sipos F. Colitis and Colorectal Carcinogenesis: The Focus on Isolated Lymphoid Follicles. Biomedicines 2022; 10:biomedicines10020226. [PMID: 35203436 PMCID: PMC8869724 DOI: 10.3390/biomedicines10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Gut-associated lymphoid tissue is one of the most diverse and complex immune compartments in the human body. The subepithelial compartment of the gut consists of immune cells of innate and adaptive immunity, non-hematopoietic mesenchymal cells, and stem cells of different origins, and is organized into secondary (and even tertiary) lymphoid organs, such as Peyer's patches, cryptopatches, and isolated lymphoid follicles. The function of isolated lymphoid follicles is multifaceted; they play a role in the development and regeneration of the large intestine and the maintenance of (immune) homeostasis. Isolated lymphoid follicles are also extensively associated with the epithelium and its conventional and non-conventional immune cells; hence, they can also function as a starting point or maintainer of pathological processes such as inflammatory bowel diseases or colorectal carcinogenesis. These relationships can significantly affect both physiological and pathological processes of the intestines. We aim to provide an overview of the latest knowledge of isolated lymphoid follicles in colonic inflammation and colorectal carcinogenesis. Further studies of these lymphoid organs will likely lead to an extended understanding of how immune responses are initiated and controlled within the large intestine, along with the possibility of creating novel mucosal vaccinations and ways to treat inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
| | | | - Ferenc Sipos
- Correspondence: ; Tel.: +36-20-478-0752; Fax: +36-1-266-0816
| |
Collapse
|
4
|
Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine 2020; 38:4762-4772. [PMID: 32451213 DOI: 10.1016/j.vaccine.2020.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Toxocariasis, a natural helminth infection of dogs and cats caused by Toxocara canis and T. cati, respectively, that are transmitted to mammals, including humans. Infection control is based currently on periodic antihelmintic treatment and there is a need for the development of vaccines to prevent this infection. MATERIALS AND METHODS Eight potential vaccine candidate T. canis recombinant proteins were identified by in silico (rTcGPRs, rTcCad, rTcVcan, rTcCyst) and larval proteomics (rTES26, rTES32, rMUC-3 and rCTL-4) analyses. Immunogenicity and protection against infectious challenge for seven of these antigens were determined in a murine model of toxocariasis. C57BL/6 female mice were immunized with each of or combinations of recombinant antigens prior to challenge with 500 T. canis embryonated eggs. Levels of specific antibodies (IgG, IgG1, IgG2a and IgE) in sera and cytokines (IL-5, INF-ɣ and IL-10) produced by antigens-stimulated splenocytes, were measured. Presence of specific antibodies to the molecules was measured in sera of T. canis-seropositive dogs and humans. RESULTS All seven molecules were immunogenic in immunized mice; all stimulated significantly elevated levels of specific IgG, IgG1 or IgG2a and six were associated with elevated levels of specific IgE; all induced elevated production of IFN- ɣ and IL-10 by splenocytes, but only the in silico-identified membrane-associated recombinants (rTcCad, rTcVcan, and rTcCyst) induced significantly increased IL-5 production. Vaccination with two of the latter (rTcCad and rTcVcan) reduced larval loads in the T. canis challenged mice by 54.3% and 53.9% (P < 0.0001), respectively, compared to unimmunized controls. All seven recombinants were recognized by T. canis-seropositive dog and human sera. CONCLUSION The identification of vaccine targets by in silico analysis was an effective strategy to identify immunogenic T. canis proteins capable of reducing larval burdens following challenge with the parasite. Two recombinant proteins, rTcCad and rTcVcan, were identified as promising vaccine candidates for canine toxocariasis.
Collapse
|
5
|
Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol 2019; 25:3503-3526. [PMID: 31367153 PMCID: PMC6658389 DOI: 10.3748/wjg.v25.i27.3503] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are currently regarded as versatile mobile cells controlling and regulating multiple biological pathways and responses in health and disease. These cells store in their specific granules numerous biologically active substances (cytotoxic cationic proteins, cytokines, growth factors, chemokines, enzymes) ready for rapid release. The human gut is the main destination of eosinophils that are produced and matured in the bone marrow and then transferred to target tissues through the circulation. In health the most important functions of gut-residing eosinophils comprise their participation in the maintenance of the protective mucosal barrier and interactions with other immune cells in providing immunity to microbiota of the gut lumen. Eosinophils are closely involved in the development of inflammatory bowel disease (IBD), when their cytotoxic granule proteins cause damage to host tissues. However, their roles in Crohn’s disease and ulcerative colitis appear to follow different immune response patterns. Eosinophils in IBD are especially important in altering the structure and protective functions of the mucosal barrier and modulating massive neutrophil influx to the lamina propria followed by transepithelial migration to colorectal mucus. IBD-associated inflammatory process involving eosinophils then appears to expand to the mucus overlaying the internal gut surface. The author hypothesises that immune responses within colorectal mucus as well as ETosis exerted by both neutrophils and eosinophils on the both sides of the colonic epithelial barrier act as additional pathogenetic factors in IBD. Literature analysis also shows an association between elevated eosinophil levels and better colorectal cancer (CRC) prognosis, but mechanisms behind this effect remain to be elucidated. In conclusion, the author emphasises the importance of investigating colorectal mucus in IBD and CRC patients as a previously unexplored milieu of disease-related inflammatory responses.
Collapse
|
6
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
7
|
Vukman KV, Adams PN, Dowling D, Metz M, Maurer M, O’Neill SM. The effects of Fasciola hepatica tegumental antigens on mast cell function. Int J Parasitol 2013; 43:531-9. [DOI: 10.1016/j.ijpara.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
|
8
|
Wagner M, Stridsberg M, Peterson CGB, Sangfelt P, Lampinen M, Carlson M. Increased Fecal Levels of Chromogranin A, Chromogranin B, and Secretoneurin in Collagenous Colitis. Inflammation 2013; 36:855-61. [DOI: 10.1007/s10753-013-9612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Constantinovits M, Sipos F, Molnár B, Tulassay Z, Műzes G. Organizer and regulatory role of colonic isolated lymphoid follicles in inflammation. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:344-52. [PMID: 22982722 DOI: 10.1556/aphysiol.99.2012.3.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is supposed to play an integral role in the organization of colonic repair mechanisms. Majority of the GALT is composed of isolated and aggregated lymphoid follicles distributed throughout the intestines. These lymphoid follicles, including Peyer's patches of the small, and isolated lymphoid follicles (ILFs) of both the small and large intestines, are composed of a specialised follicle associated epithelium overlying a subepithelial dome containing numerous dendritic cells, macrophages, T and B cells. Within inflammatory conditions the number, the diameter and the density of ILFs are increasing. Follicles are involved not just in immune surveillance, but their presence is also indispensable for normal colonic mucosal regeneration. Regarding mucosal repair the relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts and crypt formations, and the putative organizer role of ILFs have not been clarified yet.
Collapse
|
10
|
The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies. Parasitol Res 2012; 110:1587-99. [PMID: 22314781 DOI: 10.1007/s00436-012-2832-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 01/16/2012] [Indexed: 01/21/2023]
Abstract
Despite the increasing knowledge of the immunobiology and epidemiology of parasitic helminths of the gastrointestinal system and the cardiorespiratory system, complications arising from infections of animals and humans with these parasites are a major clinical and economic problem. This has been attributed to the high incidence of these parasites, the widespread emergence of multi-drug resistant parasite strains and the lack of effective vaccines. Efforts to develop and produce vaccines against virtually all helminths (with the exception of Dictyocaulus viviparus and some cestode species) have been hindered by the complexity of the host-parasite relationship, and incomplete understanding of the molecular and immune regulatory pathways associated with the development of protective immunity against helminths. Novel genomic and proteomic technologies have provided opportunities for the discovery and characterisation of effector mechanisms and molecules that govern the host-parasite interactions in these two body systems. Such knowledge provided clues on how appropriate and protective responses are elicited against helminths and, thus, may lead to the development of effective therapeutic strategies. Here, we review advances in the immune response to selected helminths of animal health significance, and subsequent vaccine potential. The topics addressed are important for understanding how helminths interact with host immune defences and also are relevant for understanding the pathogenesis of diseases caused by helminths.
Collapse
|
11
|
Sipos F, Muzes G. Isolated lymphoid follicles in colon: switch points between inflammation and colorectal cancer? World J Gastroenterol 2011; 17:1666-73. [PMID: 21483625 PMCID: PMC3072629 DOI: 10.3748/wjg.v17.i13.1666] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
Gut-associated lymphoid tissue is supposed to play a central role in both the organization of colonic repair mechanisms and colorectal carcinogenesis. In inflammatory conditions, the number, diameter and density of isolated lymphoid follicles (ILFs) increases. They are not only involved in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. In carcinogenesis, ILFs may play a dual role. On the one hand they may support tumor growth and the metastatic process by vascular endothelial growth factor receptor signaling and producing a specific cytokine and cellular milieu, but on the other hand their presence is sometimes associated with a better prognosis. The relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation, which are all involved in mucosal repair and carcinogenesis, has not been directly studied. Data about the putative organizer role of ILFs is scattered in scientific literature.
Collapse
|
12
|
Walsh MT, Connell K, Sheahan AM, Gleich GJ, Costello RW. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation. Am J Respir Cell Mol Biol 2011; 45:946-52. [PMID: 21454806 DOI: 10.1165/rcmb.2010-0454oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.
Collapse
Affiliation(s)
- Marie-Therese Walsh
- Department of Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
13
|
Sipos F, Muzes G, Galamb O, Spisák S, Krenács T, Tóth K, Tulassay Z, Molnár B. The possible role of isolated lymphoid follicles in colonic mucosal repair. Pathol Oncol Res 2010; 16:11-8. [PMID: 19557549 DOI: 10.1007/s12253-009-9181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023]
Abstract
The continuous reformation and rapid repair of the colonic mucosa is essential for avoiding the aggregation of pernicious mutations induced by bacterial, toxic, or mitogenic factors. Gut-associated lymphoid tissue is supposed to play a central role in the organization of the repair mechanisms. In inflammatory conditions, the number, the diameter and the density of isolated lymphoid follicles (ILFs) are increasing. They are involved not just in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. The relation of ILFs to the components of mucosal renewal such as bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation has not been directly studied, and data about their putative organizer role are scattered in scientific literature. Whether they act as a regenerative pool containing stem cells in case of mucosal damage, or they are responsible only for the optimal cytokine milieu for the differentiation of immigrating stem cells is a question under debate. Our aim is to review the relation of ILFs to the different elements of colonic mucosal repair.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Cell Analysis Laboratory, Semmelweis University, 1088, Budapest, Szentkirályi street 46., Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Abnormal neural function contributes to the pathogenesis of airway disease. In addition to affecting airway physiology, the nerves produce and release inflammatory mediators, contributing to the recruitment and activation of leukocytes. Activated inflammatory cells in turn affect the function of airway nerves, changing the production and release of neurotransmitters. Cross-talk between airway nerves and leukocytes helps to maintain chronic inflammation and accentuates neural control of the airways.
Collapse
|
15
|
Solarino B, Di Vella G, Magrone T, Jirillo F, Tafaro A, Piscitelli D, Casiello M, Amati L, Jirillo E, Tattoli L. Postmortem morphology and viability of human Peyer's patches in distal ileum: a technical note. Immunopharmacol Immunotoxicol 2009; 31:563-9. [PMID: 19874223 DOI: 10.3109/08923970902821710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The intestinal mucosa contains a highly specialized immune system which plays a central role in the induction of immune reactions. In the small bowel, Gut-Associated Lymphoid Tissue (GALT) is organized in lymphoid aggregates which are known as Peyer's Patches (PP). Even though human PP involvement in systemic immunity has been described, little is known about their anatomy and morphology and viability. The aim of this study was to examine PP according to their macroscopic anatomy, distribution and cell viability after death. Specimens from the distal ileum were obtained from 72 serial autopsy cases: PP were identified and, parts of them were analyzed for histological examination. Moreover, viability of recovered PP cells was assessed by the trypan blue exclusion test. Most of the PP (90%) were situated on the antimesenteric border of ileum, and the greatest density of PP occurred in the most distal segment. The number of PP varied with age, with the maximum number observed in 21- to 30-years old cadavers. Histological examination showed their remarkable architectural preservation at different post-mortem intervals (PMI), while the mucosal surface underwent autolysis. In 56% of cases PP cells were still viable, especially at PMI < 24 hours after death. These data confirm that human PP are still well preserved in a remarkable percentage of cadavers also several hours after death, and their availability may be helpful in various fields of research.
Collapse
Affiliation(s)
- Biagio Solarino
- Department of Legal Medicine, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|