1
|
Lin S, Shu Y, Shen R, Zhou Y, Pan H, He L, Fang F, Zhu X, Wang X, Wang Y, Xu W, Ding J. The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease. J Neuroinflammation 2024; 21:229. [PMID: 39294682 PMCID: PMC11409543 DOI: 10.1186/s12974-024-03231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Aging, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinrui Wang
- Maternity and child care centers, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200135, China.
| |
Collapse
|
2
|
Zhai B, Meng YM, Xie SC, Peng JJ, Liu Y, Qiu Y, Wang L, Zhang J, He JJ. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after Toxoplasma gondii Infection. Animals (Basel) 2023; 13:3537. [PMID: 38003154 PMCID: PMC10668779 DOI: 10.3390/ani13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite, has the ability to invade and proliferate within most nucleated cells. The invasion and destruction of host cells by T. gondii lead to significant changes in the cellular signal transduction network. One important post-translational modification (PTM) of proteins is phosphorylation/dephosphorylation, which plays a crucial role in cell signal transmission. In this study, we aimed to investigate how T. gondii regulates signal transduction in definitive host cells. We employed titanium dioxide (TiO2) affinity chromatography to enrich phosphopeptides in the small intestinal epithelia of cats at 10 days post-infection with the T. gondii Prugniuad (Pru) strain and quantified them using iTRAQ technology. A total of 4998 phosphopeptides, 3497 phosphorylation sites, and 1805 phosphoproteins were identified. Among the 705 differentially expressed phosphoproteins (DEPs), 68 were down-regulated and 637 were up-regulated. The bioinformatics analysis revealed that the DE phosphoproteins were involved in various cellular processes, including actin cytoskeleton reorganization, cell necroptosis, and MHC immune processes. Our findings confirm that T. gondii infection leads to extensive changes in the phosphorylation of proteins in the cat intestinal epithelial cells. The results of this study provide a theoretical foundation for understanding the interaction between T. gondii and its definitive host.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Yu-Meng Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jun-Jie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China;
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Lu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
4
|
French T, Israel N, Düsedau HP, Tersteegen A, Steffen J, Cammann C, Topfstedt E, Dieterich D, Schüler T, Seifert U, Dunay IR. The Immunoproteasome Subunits LMP2, LMP7 and MECL-1 Are Crucial Along the Induction of Cerebral Toxoplasmosis. Front Immunol 2021; 12:619465. [PMID: 33968021 PMCID: PMC8099150 DOI: 10.3389/fimmu.2021.619465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (β1i/LMP2, β2i/MECL-1 and β5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anne Tersteegen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Daniela Dieterich
- Institute of Pharmacology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
5
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Hu RS, He JJ, Elsheikha HM, Zou Y, Ehsan M, Ma QN, Zhu XQ, Cong W. Transcriptomic Profiling of Mouse Brain During Acute and Chronic Infections by Toxoplasma gondii Oocysts. Front Microbiol 2020; 11:570903. [PMID: 33193165 PMCID: PMC7604304 DOI: 10.3389/fmicb.2020.570903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
Infection by the protozoan Toxoplasma gondii can have a devastating impact on the structure and function of the brain of the infected individuals, particularly immunocompromised patients. A systems biology view of the brain transcriptome can identify key molecular targets and pathways that mediate the neuropathogenesis of cerebral toxoplasmosis. Here, we performed transcriptomic analysis of the brain of mice infected by T. gondii Pru strain oocysts at 11 and 33 days post-infection (dpi) compared to uninfected (control) mice using RNA sequencing (RNA-seq). T. gondii altered the expression of 936 and 2,081 transcripts at 11 and 33 dpi, respectively, and most of these were upregulated in the infected brains. Gene Ontology (GO) enrichment and pathway analysis showed that immune response, such as interferon-gamma (IFN-γ) responsive genes were strongly affected at 11dpi. Likewise, differentially expressed transcripts (DETs) related to T cell activation, cytokine production and immune cell proliferation were significantly altered at 33 dpi. Host-parasite interactome analysis showed that some DETs were involved in immune signaling, metabolism, biosynthesis-related processes and interspecies interaction. These findings should increase knowledge of the mouse brain transcriptome and the changes in transcriptional regulation and downstream signaling pathways during acute and chronic T. gondii infections.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
7
|
Hwang YS, Shin JH, Yang JP, Jung BK, Lee SH, Shin EH. Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain. Front Immunol 2018; 9:158. [PMID: 29459868 PMCID: PMC5807351 DOI: 10.3389/fimmu.2018.00158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/18/2018] [Indexed: 01/28/2023] Open
Abstract
To examine the immune environment of chronic Toxoplasma gondii infection in the brain, the characteristics of infection-immunity (premunition) in infection with T. gondii strain ME49 were investigated for 12 weeks postinfection (PI). The results showed that neuronal cell death, microglia infiltration and activation, inflammatory and anti-inflammatory cytokine expression, Stat1 phosphorylation, and microglia activation and inflammatory gene transcripts related to M1 polarization in the brain were increased during the acute infection (AI) stage (within 6 weeks PI), suggesting that innate and cellular inflammatory response activation and neurodegeneration contributed to excessive inflammatory responses. However, these immune responses decreased during the chronic infection (CI) stage (over 6 weeks PI) with reductions in phosphorylated STAT1 (pSTAT1) and eosinophilic neurons. Notably, increases were observed in transcripts of T-cell exhaustion markers (TIM3, LAG3, KLRG1, etc.), suppressor of cytokines signaling 1 protein (SOCS1), inhibitory checkpoint molecules (PD-1 and PD-L1), and Arg1 from the AI stage (3 weeks PI), implying active immune intervention under the immune environment of M1 polarization of microglia and increases in inflammatory cytokine levels. However, when BV-2 microglia were stimulated with T. gondii lysate antigens (strain RH or ME49) in vitro, nitrite production increased and urea production decreased. Furthermore, when BV-2 cells were infected by T. gondii tachyzoites (strain RH or ME49) in vitro, nitric oxide synthase and COX-2 levels decreased, whereas Arg1 levels significantly increased. Moreover, Arg1 expression was higher in ME49 infection than in RH infection, whereas nitrite production was lower in ME49 infection than in RH infection. Accordingly, these results strongly suggest that immune triggering of T. gondii antigens induces M1 polarization and activation of microglia as well as increase NO production, whereas T. gondii infection induces the inhibition of harmful inflammatory responses, even with M1 polarization and activation of microglia and Th1 inflammatory responses, suggesting a host–parasite relationship through immune regulation during CI. This is a characteristic of infection immunity in infection with T. gondii in the central nervous system, and SOCS1, a negative regulator of toxoplasmic encephalitis, may play a role in the increase in Arg1 levels to suppress NO production.
Collapse
Affiliation(s)
- Young Sang Hwang
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Ji-Hun Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Jung-Pyo Yang
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea.,Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul, South Korea
| | - Sang Hyung Lee
- Department of Neurosurgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea.,Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
8
|
Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro 2017; 9:1759091417724915. [PMID: 28817954 PMCID: PMC5565021 DOI: 10.1177/1759091417724915] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023] Open
Abstract
Genetic and pathologic data suggest that amyloid beta (Aβ), produced by processing of the amyloid precursor protein, is a major initiator of Alzheimer's disease (AD). To gain new insights into Aβ modulation, we sought to harness the power of the coevolution between the neurotropic parasite Toxoplasma gondii and the mammalian brain. Two prior studies attributed Toxoplasma-associated protection against Aβ to increases in anti-inflammatory cytokines (TGF-β and IL-10) and infiltrating phagocytic monocytes. These studies only used one Toxoplasma strain making it difficult to determine if the noted changes were associated with Aβ protection or simply infection. To address this limitation, we infected a third human amyloid precursor protein AD mouse model (J20) with each of the genetically distinct, canonical strains of Toxoplasma (Type I, Type II, or Type III). We then evaluated the central nervous system (CNS) for Aβ deposition, immune cell responses, global cytokine environment, and parasite burden. We found that only Type II infection was protective against Aβ deposition despite both Type II and Type III strains establishing a chronic CNS infection and inflammatory response. Compared with uninfected and Type I-infected mice, both Type II- and Type III-infected mice showed increased numbers of CNS T cells and microglia and elevated pro-inflammatory cytokines, but neither group showed a >2-fold elevation of TGF-β or IL-10. These data suggest that we can now use our identification of protective (Type II) and nonprotective (Type III) Toxoplasma strains to determine what parasite and host factors are linked to decreased Aβ burden rather than simply with infection.
Collapse
Affiliation(s)
| | | | - Wes R. MacDonald
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Jenna Franco
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Anita A. Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Fereig RM, Kuroda Y, Terkawi MA, Mahmoud ME, Nishikawa Y. Immunization with Toxoplasma gondii peroxiredoxin 1 induces protective immunity against toxoplasmosis in mice. PLoS One 2017; 12:e0176324. [PMID: 28448521 PMCID: PMC5407612 DOI: 10.1371/journal.pone.0176324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
To develop a vaccine against Toxoplasma gondii, a vaccine antigen with immune-stimulating activity is required. In the present study, we investigated the immunogenicity and prophylactic potential of T. gondii peroxiredoxin 1 (TgPrx1). The TgPrx1 was detected in the ascitic fluid of mice 6 days postinfection, while specific antibody levels were low in the sera of chronically infected mice. Treatment of murine peritoneal macrophages with recombinant TgPrx1 triggered IL-12p40 and IL-6 production, but not IL-10 production. In response to TgPrx1, activation of NF-kB and IL-6 production were confirmed in mouse macrophage cell line (RAW 264.7). These results suggest the immune-stimulating potentials of TgPrx1. Immunization of mice with recombinant TgPrx1 stimulated specific antibody production (IgG1 and IgG2c). Moreover, spleen cell proliferation and interferon-gamma production significantly increased in the TgPrx1- sensitized cells from mice immunized with the same antigen. Immunization with TgPrx1 also increased mouse survival and decreased cerebral parasite burden against lethal T. gondii infection. Thus, our results suggest that TgPrx1 efficiently induces humoral and cellular immune responses and is useful as a new vaccine antigen against toxoplasmosis.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena, Egypt
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Motamed Elsayed Mahmoud
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Behavior, Management, Genetics and Breeding, Faculty of Veterinary Medicine, Sohag University, Sohag City, Sohag, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
10
|
Cartwright T, Perkins ND, L Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016; 283:1812-22. [PMID: 26663363 DOI: 10.1111/febs.13627] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapid ageing phenotype. In humans, low expression of Kip1 ubiquitination-promoting complex 1 (KPC1), a ubiquitin ligase required for p105 to p50 processing, was shown to correlate with a reduction in p50 and glioblastoma incidence. Therefore, while the majority of research in this field has focused on the upstream signalling pathways leading to NF-κB activation or the function of other NF-κB subunits, such as RelA (p65), these data demonstrate a critical role for NFKB1, potentially revealing new strategies for targeting this pathway in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tyrell Cartwright
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | - Caroline L Wilson
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| |
Collapse
|
11
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Sher A, Jankovic D, Siebenlist U. Adaptive immune-mediated host resistance to Toxoplasma gondii is governed by the NF-κB regulator Bcl-3 in dendritic cells. Eur J Immunol 2015; 45:1972-9. [PMID: 25884683 PMCID: PMC11042791 DOI: 10.1002/eji.201445045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
The atypical IκB family member Bcl-3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, thereby either positively or negatively modulating transcription in a context-dependent manner. Previously we reported that Bcl-3 was critical for host resistance to Toxoplasma gondii. Bcl-3-deficient mice succumbed within 3-5 weeks after infection, correlating with an apparently impaired Th1-type adaptive immune response. However in which cell type(s) Bcl-3 functioned to assure resistance remained unknown. We now show that Bcl-3 expression in dendritic cells is required to generate a protective Th1-type immune response and confer resistance to T. gondii. Surprisingly, mice lacking Bcl-3 in dendritic cells were as susceptible as mice globally deficient for Bcl-3. Furthermore, early innate defenses were not compromised by the absence of Bcl-3, as initial production of IL-12 by dendritic cells and IFN-γ by NK cells were preserved. However, subsequent production of IFN-γ by CD4(+) and CD8(+) T-cells was compromised when dendritic cells lacked Bcl-3, and these mice succumbed at a time when T-cell-mediated IFN-γ production was essential for host resistance. These findings demonstrate that Bcl-3 is required in dendritic cells to prime protective T-cell-mediated immunity to T. gondii.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Du J, An R, Chen L, Shen Y, Chen Y, Cheng L, Jiang Z, Zhang A, Yu L, Chu D, Shen Y, Luo Q, Chen H, Wan L, Li M, Xu X, Shen J. WITHDRAWN: Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation. J Biol Chem 2014; 289:12578-92. [PMID: 24648522 PMCID: PMC4007449 DOI: 10.1074/jbc.m113.544718] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii secretes effector molecules into the host cell to modulate host immunity. Previous studies have shown that T. gondii could interfere with host NF-κB signaling to promote their survival, but the effectors of type I strains remain unclear. The polymorphic rhoptry protein ROP18 is a key serine/threonine kinase that phosphorylates host proteins to modulate acute virulence. Our data demonstrated that the N-terminal portion of ROP18 is associated with the dimerization domain of p65. ROP18 phosphorylates p65 at Ser-468 and targets this protein to the ubiquitin-dependent degradation pathway. The kinase activity of ROP18 is required for p65 degradation and suppresses NF-κB activation. Consistently, compared with wild-type ROP18 strain, ROP18 kinase-deficient type I parasites displayed a severe inability to inhibit NF-κB, culminating in the enhanced production of IL-6, IL-12, and TNF-α in infected macrophages. In addition, studies have shown that transgenic parasites carrying kinase-deficient ROP18 induce M1-biased activation. These results demonstrate for the first time that the virulence factor ROP18 in T. gondii type I strains is responsible for inhibiting the host NF-κB pathway and for suppressing proinflammatory cytokine expression, thus providing a survival advantage to the infectious agent.
Collapse
Affiliation(s)
- Jian Du
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ran An
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Ying Chen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Li Cheng
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongru Jiang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Aimei Zhang
- Central Laboratory of Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, China, and
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Deyong Chu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Qingli Luo
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - He Chen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Lijuan Wan
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Min Li
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Xiucai Xu
- Central Laboratory of Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, China, and
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
13
|
Raetz M, Kibardin A, Sturge CR, Pifer R, Li H, Burstein E, Ozato K, Larin S, Yarovinsky F. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. THE JOURNAL OF IMMUNOLOGY 2013; 191:4818-27. [PMID: 24078692 DOI: 10.4049/jimmunol.1301301] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TLRs play a central role in the innate recognition of pathogens and the activation of dendritic cells (DCs). In this study, we establish that, in addition to TLR11, TLR12 recognizes the profilin protein of the protozoan parasite Toxoplasma gondii and regulates IL-12 production by DCs in response to the parasite. Similar to TLR11, TLR12 is an endolysosomal innate immune receptor that colocalizes and interacts with UNC93B1. Biochemical experiments revealed that TLR11 and TLR12 directly bind to T. gondii profilin and are capable of forming a heterodimer complex. We also establish that the transcription factor IFN regulatory factor 8, not NF-κB, plays a central role in the regulation of the TLR11- and TLR12-dependent IL-12 response of DCs. These results suggest a central role for IFN regulatory factor 8-expressing CD8(+) DCs in governing the TLR11- and TLR12-mediated host defense against T. gondii.
Collapse
Affiliation(s)
- Megan Raetz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Torres M, Guiton R, Lacroix-Lamandé S, Ryffel B, Leman S, Dimier-Poisson I. MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection. J Neuroinflammation 2013; 10:19. [PMID: 23374751 PMCID: PMC3566937 DOI: 10.1186/1742-2094-10-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022] Open
Abstract
Background Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination. Method MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR). Results Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain. Conclusion MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS).
Collapse
Affiliation(s)
- Marbel Torres
- Université de Tours, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, Tours F-37000, France
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR.
Collapse
Affiliation(s)
- José Eymard Homem Pittella
- Pathology Service, Hospital das Clínicas, Medical Faculty of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J Parasitol Res 2012; 2012:589295. [PMID: 22545203 PMCID: PMC3321570 DOI: 10.1155/2012/589295] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a prevalent obligate intracellular parasite which chronically infects more than a third of the world's population. Key to parasite prevalence is its ability to form chronic and nonimmunogenic bradyzoite cysts, which typically form in the brain and muscle cells of infected mammals, including humans. While acute clinical infection typically involves neurological and/or ocular damage, chronic infection has been more recently linked to behavioral changes. Establishment and maintenance of chronic infection involves a balance between the host immunity and parasite evasion of the immune response. Here, we outline the known cellular interplay between Toxoplasma gondii and cells of the central nervous system and review the reported effects of Toxoplasma gondii on behavior and neurological disease. Finally, we review new technologies which will allow us to more fully understand host-pathogen interactions.
Collapse
|
17
|
Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev Mol Med 2011; 13:e31. [PMID: 22005272 DOI: 10.1017/s1462399411002018] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes various diseases, including lymphadenitis, congenital infection of fetuses and life-threatening toxoplasmic encephalitis in immunocompromised individuals. Interferon-gamma (IFN-γ)-mediated immune responses are essential for controlling tachyzoite proliferation during both acute acquired infection and reactivation of infection in the brain. Both CD4+ and CD8+ T cells produce this cytokine in response to infection, although the latter has more potent protective activity. IFN-γ can activate microglia, astrocytes and macrophages, and these activated cells control the proliferation of tachyzoites using different molecules, depending on cell type and host species. IFN-γ also has a crucial role in the recruitment of T cells into the brain after infection by inducing expression of the adhesion molecule VCAM-1 on cerebrovascular endothelial cells, and chemokines such as CXCL9, CXCL10 and CCL5. A recent study showed that CD8+ T cells are able to remove T. gondii cysts, which represent the stage of the parasite in chronic infection, from the brain through their perforin-mediated activity. Thus, the resistance to cerebral infection with T. gondii requires a coordinated network using both IFN-γ- and perforin-mediated immune responses. Elucidating how these two protective mechanisms function and collaborate in the brain against T. gondii will be crucial in developing a new method to prevent and eradicate this parasitic infection.
Collapse
|
18
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Jordan KA, Dupont CD, Tait ED, Liou HC, Hunter CA. Role of the NF-κB transcription factor c-Rel in the generation of CD8+ T-cell responses to Toxoplasma gondii. Int Immunol 2011; 22:851-61. [PMID: 21118906 DOI: 10.1093/intimm/dxq439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear factor κB transcription factor c-Rel is exclusively expressed in immune cells and plays a role in numerous cellular functions including proliferation, survival and production of chemokines and cytokines. c-Rel has also been implicated in the regulation of multiple genes involved in innate and adaptive immune responses to the intracellular protozoan parasite Toxoplasma gondii, in particular IL-12. To better understand how this transcription factor controls the CD8(+) T-cell response to this organism, wild-type (WT) and c-Rel(-/-) mice were challenged with a replication-deficient strain of T. gondii that expresses the model antigen ovalbumin (OVA). These studies revealed that c-Rel was required for optimal primary expansion of OVA-specific CD8(+) T cells and that immunized c-Rel-deficient mice were susceptible to challenge with a virulent strain of T. gondii. However, when c-Rel(-/-) cells specific for OVA were adoptively transferred into a WT recipient, or c-Rel(-/-) mice were treated with IL-12 at the time of immunization, there was no apparent proliferative defect. Surprisingly, upon secondary challenge, antigen-specific CD8(+) T cells in c-Rel(-/-) mice expanded to a much greater degree in terms of frequency as well as numbers when compared with WT mice. Despite this, the cytokine responses of c-Rel(-/-) mice remained defective, consistent with their susceptibility to secondary challenge. Together, these results indicate that in this infection model, the major influence of c-Rel in generation of CD8(+) T-cell responses is through its regulation of the inflammatory environment, rather than playing a substantial T-cell-intrinsic role.
Collapse
Affiliation(s)
- Kimberly A Jordan
- Department of Pathobiology, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|