1
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Yeh CC, Yang CP, Ma KH, Shih JH, Tseng CS, Huang YS. Endogenous Expression of G-CSF in Rat Dorsal Root Ganglion Neurons after Nerve Injury. Brain Sci 2021; 11:brainsci11070956. [PMID: 34356190 PMCID: PMC8303554 DOI: 10.3390/brainsci11070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been reported to modulate pain function following nerve injury. However, the expression of endogenous G-CSF in the dorsal root ganglion (DRG) and the response to nerve injury remain unclear. In the present study, we demonstrated that G-CSF and G-CSFR are mainly expressed in both small- and medium-diameter DRG neurons in rats and are responsible for transmitting pain responses. G-CSF and G-CSFR were co-expressed in certain nociceptive DRG neurons. In addition, G-CSF was expressed in satellite glial cells around large-diameter DRG neurons. After sciatic nerve injury, the number of G-CSF-positive DRG neurons was increased in both the ipsilateral and contralateral lesion sites in rats. However, G-CSF expression in satellite glial cells was not affected by nerve injury. To clarify the role of G-CSF in pain, exogenous G-CSF was administered to a rat model of neuropathic pain induced by partial sciatic nerve transaction (PST). Our results indicate that treatment with G-CSF did not attenuate but exacerbated neuropathic pain. In summary, G-CSF may directly activate sensory neurons and contribute to nociceptive signaling.
Collapse
Affiliation(s)
- Chun-Chang Yeh
- Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-C.Y.); (C.-P.Y.)
| | - Chih-Ping Yang
- Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-C.Y.); (C.-P.Y.)
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (K.-H.M.); (C.-S.T.)
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 11490, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ching-San Tseng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (K.-H.M.); (C.-S.T.)
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (K.-H.M.); (C.-S.T.)
- Correspondence: ; Tel.: +886-87923100 (ext. 18735)
| |
Collapse
|
3
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
4
|
Scheff NN, Alemu RG, Klares R, Wall IM, Yang SC, Dolan JC, Schmidt BL. Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma. Front Mol Neurosci 2019; 12:217. [PMID: 31607857 PMCID: PMC6756004 DOI: 10.3389/fnmol.2019.00217] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 01/25/2023] Open
Abstract
Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G+ immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G+ neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G+ neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G+ neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G+ neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.
Collapse
Affiliation(s)
- Nicole N. Scheff
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Robel G. Alemu
- College of Dentistry, New York University, New York, NY, United States
| | - Richard Klares
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Ian M. Wall
- College of Dentistry, New York University, New York, NY, United States
| | - Stephen C. Yang
- College of Dentistry, New York University, New York, NY, United States
| | - John C. Dolan
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
| |
Collapse
|
5
|
Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol 2018; 39:240-255. [DOI: 10.1016/j.it.2017.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023]
|
6
|
Zhang E, Lee S, Yi MH, Nan Y, Xu Y, Shin N, Ko Y, Lee YH, Lee W, Kim DW. Expression of granulocyte colony-stimulating factor 3 receptor in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Mol Med Rep 2017; 16:2009-2015. [PMID: 28656207 PMCID: PMC5561782 DOI: 10.3892/mmr.2017.6853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
In previous studies that have profiled gene expression in patients with complex regional pain syndrome (CRPS), the expression of granulocyte colony-stimulating factor 3 receptor (G-CSFR) was elevated, as were a number of pain-associated genes. The present study determined the expression of G-CSFR and the mechanisms by which it may affect hypersensitivity, focusing on the signal transducer and activator of transcription 3 (STAT3)/transient receptor potential cation channel subfamily V 1 (TRPV1) signaling pathway in particular, which is an important mediator of pain. Following L5 spinal nerve ligation (SNL) surgery, the protein and mRNA levels of G-CSFR increased in the ipsilateral spinal dorsal horn when compared with the sham and/or contralateral control. Double immunofluorescence further demonstrated that G-CSFR colocalized with TRPV1 and phosphorylated STAT in the neurons of the spinal dorsal horn. G-CSF treatment led to an increase in G-CSFR and TRPV1 expression and phosphorylation of STAT3. These results indicate that G-CSF-induced G-CSFR expression may activate TRPV1 by promoting phosphorylation of STAT3. Collectively, the results suggest, for the first time, that the expression of G-CSFR in neurons following peripheral nerve injury may be involved in the induction and maintenance of neuropathic pain through the STAT3 and TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Enji Zhang
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Sunyeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, Yanbian, Jilin 133000, P.R. China
| | - Yinshi Xu
- Department of Anesthesiology, Yanbian University Hospital, Yanbian, Jilin 133000, P.R. China
| | - Nara Shin
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Youngkwon Ko
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Wonhyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| |
Collapse
|
7
|
Lee CM, Peng HH, Yang P, Liou JT, Liao CC, Day YJ. C-C Chemokine Ligand-5 is critical for facilitating macrophage infiltration in the early phase of liver ischemia/reperfusion injury. Sci Rep 2017. [PMID: 28623253 PMCID: PMC5473895 DOI: 10.1038/s41598-017-03956-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CCL5/RANTES, a chemoattractant for myeloid cells, is induced by hepatic ischemia/reperfusion injury (IRI). The roles of CCL5 in hepatic IRI were carried out by means of CCL5 immunodepletion, antagonistic competition by Met-CCL5, and treatment with recombinant murine CCL5 (rmCCL5). Depletion or inhibition of CCL5 reduced severity of hepatic IRI, whereas rmCCL5 treatment aggravated liver IRI as manifested in elevated serum alanine aminotransferase (ALT) and tissue myeloperoxidase (MPO) levels. Moreover, IRI severity was reduced in CCL5-knockout (CCL5-KO) mice versus wildtype (WT) mice, with drops in serum ALT level, intrahepatic MPO activity, and histological pathology. Bone marrow transplantion (BMT) studies show that myeloid cells and tissue cells are both required for CCL5-aggravated hepatic IRI. The profile of liver-infiltrating leukocyte subsets after hepatic reperfusion identified CD11b+ cells as the only compartment significantly reduced in CCL5-KO mice versus WT controls at early reperfusion phase. The role of CCL5 recruiting CD11b+ cells in early reperfusion was validated by in vitro transwell migration assay of murine primary macrophages (broadly characterized by their CD11b expression) in response to liver lysates after early reperfusion. Taken together, our results demonstrate a sequence of early events elicited by CCL5 chemoattracting macrophage that result in inflammatory aggravation of hepatic IRI.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Chang Gung, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Polung Yang
- Molecular Medicine Research Center, Chang Gung University, Chang Gung, Taiwan
| | - Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yuan-Ji Day
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Department of Anesthesiology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
8
|
Lee MC, McCubbin JA, Christensen AD, Poole DP, Rajasekhar P, Lieu T, Bunnett NW, Garcia-Caraballo S, Erickson A, Brierley SM, Saleh R, Achuthan A, Fleetwood AJ, Anderson RL, Hamilton JA, Cook AD. G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3565-3575. [PMID: 28320832 PMCID: PMC10069442 DOI: 10.4049/jimmunol.1602127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
G-CSF or CSF-3, originally defined as a regulator of granulocyte lineage development via its cell surface receptor (G-CSFR), can play a role in inflammation, and hence in many pathologies, due to its effects on mature lineage populations. Given this, and because pain is an extremely important arthritis symptom, the efficacy of an anti-G-CSFR mAb for arthritic pain and disease was compared with that of a neutrophil-depleting mAb, anti-Ly6G, in both adaptive and innate immune-mediated murine models. Pain and disease were ameliorated in Ag-induced arthritis, zymosan-induced arthritis, and methylated BSA/IL-1 arthritis by both prophylactic and therapeutic anti-G-CSFR mAb treatment, whereas only prophylactic anti-Ly6G mAb treatment was effective. Efficacy for pain and disease correlated with reduced joint neutrophil numbers and, importantly, benefits were noted without necessarily the concomitant reduction in circulating neutrophils. Anti-G-CSFR mAb also suppressed zymosan-induced inflammatory pain. A new G-CSF-driven (methylated BSA/G-CSF) arthritis model was established enabling us to demonstrate that pain was blocked by a cyclooxygenase-2 inhibitor, suggesting an indirect effect on neurons. Correspondingly, dorsal root ganglion neurons cultured in G-CSF failed to respond to G-CSF in vitro, and Csf3r gene expression could not be detected in dorsal root ganglion neurons by single-cell RT-PCR. These data suggest that G-CSFR/G-CSF targeting may be a safe therapeutic strategy for arthritis and other inflammatory conditions, particularly those in which pain is important, as well as for inflammatory pain per se.
Collapse
Affiliation(s)
- Ming-Chin Lee
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James A McCubbin
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Anne D Christensen
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pradeep Rajasekhar
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Surgery, Columbia University, New York, NY 10032
| | - Sonia Garcia-Caraballo
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andelain Erickson
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Stuart M Brierley
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; and.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
9
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain. Sci Rep 2016; 6:32799. [PMID: 27605249 PMCID: PMC5015056 DOI: 10.1038/srep32799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.
Collapse
|
11
|
Liao MF, Yeh SR, Lo AL, Chao PK, Lee YL, Hung YH, Lu KT, Ro LS. An early granulocyte colony-stimulating factor treatment attenuates neuropathic pain through activation of mu opioid receptors on the injured nerve. Sci Rep 2016; 6:25490. [PMID: 27180600 PMCID: PMC4867617 DOI: 10.1038/srep25490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Several studies have shown that the mu opioid receptor (MOR) located in the peripheral nerves can be activated after nerve injury and that it attenuates peripheral nociceptive signals to the spinal dorsal horn. Various cytokines and phosphorylated-p38 (p-p38) activation in the dorsal horn also play an important role in neuropathic pain development. Granulocyte-colony stimulating factor (GCSF) is a growth factor that can stimulate granulocyte formation and has been shown to exert an analgesic effect on neuropathic pain through recruiting opioid-containing leukocytes to the injured nerve. However, the underlying mechanisms are not well understood. Herein, the results of behavior tests in addition to MOR levels in the injured sciatic nerve and the levels of p-p38 and various cytokines in the spinal dorsal horn were studied in vehicle-treated or GCSF-treated chronic constriction injured (CCI) rats at different time points (i.e., 1, 3, and 7 days, respectively) after nerve injury. The results showed that a single early systemic GCSF treatment after nerve injury can up-regulate MORs in the injured nerve, which can decrease peripheral nociceptive signals. Thereafter, those changes suppress the pro-inflammatory cytokine IL-6 but enhance the anti-inflammatory cytokine IL-4, followed by decreases in p-p38 in the dorsal horn, and thus further attenuate neuropathic pain.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Department of Life Science, National Taiwan Normal University, 88, Ting-chou Rd., Sec. 4, Taipei, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 199, Tung Hwa North Rd., Taipei, Taiwan
| | - Shin-Rung Yeh
- College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ai-Lun Lo
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 199, Tung Hwa North Rd., Taipei, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Lin Lee
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 199, Tung Hwa North Rd., Taipei, Taiwan
| | - Yu-Hui Hung
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 199, Tung Hwa North Rd., Taipei, Taiwan
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, 88, Ting-chou Rd., Sec. 4, Taipei, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 199, Tung Hwa North Rd., Taipei, Taiwan
| |
Collapse
|
12
|
Molet J, Mauborgne A, Diallo M, Armand V, Geny D, Villanueva L, Boucher Y, Pohl M. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics. J Neurochem 2015; 136:133-47. [PMID: 26440453 DOI: 10.1111/jnc.13375] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
Abstract
After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling.
Collapse
Affiliation(s)
- Jenny Molet
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| | - Annie Mauborgne
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| | - Mickael Diallo
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
| | - Vincent Armand
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| | - David Geny
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| | - Luis Villanueva
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| | - Yves Boucher
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France.,UFR Odontologie, Université Paris-Diderot, Paris, France
| | - Michel Pohl
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
13
|
Poppler LH, Davidge K, Lu JCY, Armstrong J, Fox IK, Mackinnon SE. Alternatives to sural nerve grafts in the upper extremity. Hand (N Y) 2015; 10:68-75. [PMID: 25767423 PMCID: PMC4349904 DOI: 10.1007/s11552-014-9699-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The sural nerve is the most common nerve graft donor despite requiring a second operative limb and causing numbness of the lateral foot. The purposes of this study were to review our experience using nerve autografts in upper extremity nerve reconstruction and develop recommendations for donor selection. METHODS A retrospective case series study was performed of all consecutive patients undergoing nerve grafting procedures for upper extremity nerve injuries over an 11-year period (2001-2012). RESULTS Eighty-six patients received 109 nerve grafts over the study period. Mean patient age was 42.9 ± 18.3 years; 57 % were male. There were 51 median (59 %), 26 ulnar (30 %), 14 digital (13 %), 13 radial (16 %), and 3 musculocutaneous (4 %) nerve injuries repaired with 99 nerve autografts (71 from upper extremity, 28 from lower extremity). Multiple upper extremity nerve autograft donors were utilized, including the medial antebrachial cutaneous nerve (MABC), third webspace branch of median, lateral antebrachial cutaneous nerve (LABC), palmar cutaneous, and dorsal cutaneous branch of ulnar nerve. By using an upper-extremity donor, a second operative limb was avoided in 58 patients (67 %), and a second incision was avoided in 26 patients (30 %). The frequency of sural graft use declined from 40 % (n = 17/43) to 11 % (n = 7/64). CONCLUSIONS Our algorithm for selecting nerve graft material has evolved with our growing understanding of nerve internal topography and the drive to minimize additional incisions, maximize ease of harvest, and limit donor morbidity. This has led us away from using the sural nerve when possible and allowed us to avoid a second operative limb in two thirds of the cases.
Collapse
Affiliation(s)
- Louis H. Poppler
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| | - Kristen Davidge
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| | - Johnny C. Y. Lu
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| | - Jim Armstrong
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| | - Ida K. Fox
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8238, St. Louis, MO 63110 USA
| |
Collapse
|
14
|
Day YJ, Liou JT, Lee CM, Lin YC, Mao CC, Chou AH, Liao CC, Lee HC. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain 2014; 155:1293-1302. [DOI: 10.1016/j.pain.2014.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
|
15
|
Sauer RS, Hackel D, Morschel L, Sahlbach H, Wang Y, Mousa SA, Roewer N, Brack A, Rittner HL. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation. Mol Pain 2014; 10:10. [PMID: 24499354 PMCID: PMC3922964 DOI: 10.1186/1744-8069-10-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund's adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. RESULTS In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48-96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. CONCLUSION Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly transiently enhance pain by impairing peripheral opioid analgesia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Oberdürrbacher Strasse 6, D-97080 Würzburg, Germany.
| |
Collapse
|
16
|
Liou JT, Lee CM, Day YJ. The immune aspect in neuropathic pain: role of chemokines. ACTA ACUST UNITED AC 2013; 51:127-32. [PMID: 24148742 DOI: 10.1016/j.aat.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is a pathological symptom experienced worldwide by patients suffering with nervous system dysfunction caused by various diseases. Treatment of neuropathic pain is always accompanied by a poor response and undesired adverse effects. Therefore, developing a novel "pain-kill" drug design strategy is critical in this field. Recent evidence demonstrates that neuroinflammation and immune response contributes to the development of neuropathic pain. Nerve damage can initiate inflammatory and immune responses, as evidenced by the upregulation of cytokines and chemokines. In this paper, we demonstrated that different chemokines and chemokine receptors (e.g., CX3CL1/CX3CR1, CCL2/CCR2, CCL3/CCR1, CCL4/CCR5 and CCL5/CCR5) serve as mediators for neuron-glia communication subsequently modulate nociceptive signal transmission. By extensively understanding the role of chemokines in neurons and glial cells in nociceptive signal transmission, a novel strategy for a target-specific drug design could be developed.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | | | |
Collapse
|
17
|
Lee KA, Park KT, Yu HM, Jin HY, Baek HS, Park TS. Effect of granulocyte colony-stimulating factor on the peripheral nerves in streptozotocin-induced diabetic rat. Diabetes Metab J 2013; 37:286-90. [PMID: 23991407 PMCID: PMC3753494 DOI: 10.4093/dmj.2013.37.4.286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 12/29/2022] Open
Abstract
There are controversial reports about the effect of granulocyte colony-stimulating factor (G-CSF) in peripheral nerve protection. Therefore, the present study aimed to investigate the effect of G-CSF on peripheral nerves in streptozotocin (STZ) induced diabetic rats. After STZ or vehicle injection, rats were divided into five groups (n=6) as follows: normal+vehicle, normal+G-CSF (50 µg/kg for 5 days), diabetes mellitus (DM)+vehicle, DM+G-CSF (50 µg/kg for 5 days), and DM+G-CSF extension (50 µg/kg for 5 days and followed by two injections per week up to 24 weeks). Our results showed that the current perception threshold was not significantly different among experimental groups. G-CSF treatment inhibited the loss of cutaneous nerves and gastric mucosal small nerve fibers in morphometric comparison, but statistical significance was not observed. The present results demonstrated that G-CSF has no harmful but minimal beneficial effects with respect to peripheral nerve preservation in diabetic rats.
Collapse
Affiliation(s)
- Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Kyung Taek Park
- Yeolin Hospital, Department of Internal Medicine, Jeonju, Korea
| | - Hea Min Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Hong Sun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
18
|
Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, Day YJ. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain 2013; 154:2150-2159. [PMID: 23831400 DOI: 10.1016/j.pain.2013.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Growing evidence suggests that leukocyte extravasation is initiated by the interaction of selectins with their ligands; as well as an essential role for P-selectin in the initial recruitment of inflammatory cells to sites of inflammation. In this study, P-selectin-deficient (P-sel-/-) mice were used to test the hypothesis that lack of P-selectin would attenuate the recruitment of inflammatory cells to the site of inflammation, thereby modulating pain in a murine chronic neuropathic pain model. Nociceptive sensitization and the microenvironment of the peripheral injury site were studied in wild-type (P-sel+/+) and P-selectin-deficient (P-sel-/-) mice after partial sciatic nerve ligation (PSNL). Variables measured included myeloperoxidase (MPO) activity, several inflammatory cell infiltration profiles, cytokines, and endogenous opioid peptide expression in damaged nerves. Results indicate that behavioral hypersensitivity, MPO activity, and infiltration of neutrophils and macrophages were attenuated in P-sel-/- mice after PSNL. Proinflammatory cytokines, tumor necrosis factor α, and interleukin (IL)-6, were reduced in damaged nerves following PSNL; however, several antiinflammatory cytokines - IL-1Ra, IL-4, and IL-10 - were significantly increased in P-sel-/- mice. In addition, endogenous opioid peptides mRNA was significantly lower in P-sel-/- mice compared with P-sel +/+ mice. The current results demonstrated that the absence of P-selectin in mice leads to an altered microenvironment that attenuated behavioral hypersensitivity. The specific role of P-selectin could have been a result of decreased neutrophils, as well as the accumulation of macrophages at the site of injury, which may subsequently modulate the inflammatory cytokine expression and impact behavioral hypersensitivity within the injured nerve.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
19
|
Peritoneal Administration of Met-RANTES Attenuates Inflammatory and Nociceptive Responses in a Murine Neuropathic Pain Model. THE JOURNAL OF PAIN 2013. [DOI: 10.1016/j.jpain.2012.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Chao PK, Lu KT, Lee YL, Chen JC, Wang HL, Yang YL, Cheng MY, Liao MF, Ro LS. Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury. PLoS One 2012; 7:e43680. [PMID: 22937076 PMCID: PMC3427178 DOI: 10.1371/journal.pone.0043680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 µg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Lin Lee
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Jin-Chung Chen
- Department of Pharmacology, Chang-Gung University, Tao-Yuan, Taiwan
| | - Hung-Li Wang
- Department of Physiology, Chang-Gung University, Tao-Yuan, Taiwan
| | - Yi-Ling Yang
- Institute of Biotechnology, National Chia-Yi University, Chia-Yi, Taiwan
| | - Mei-Yun Cheng
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Ming-Feng Liao
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Long-Sun Ro
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Liou JT, Yuan HB, Mao CC, Lai YS, Day YJ. Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain 2012; 153:1283-1291. [PMID: 22494919 DOI: 10.1016/j.pain.2012.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Accumulated evidence suggests that the C-C motif chemokine ligand 5 (CCL5) modulates migration of inflammatory cells in several pathological conditions. This study tested the hypothesis that lack of CCL5 would modulate the recruitment of inflammatory cells to painful, inflamed sites and could attenuate pain in a murine chronic neuropathic pain model. Nociceptive sensitization, immune cell infiltration, multiple cytokine expression, and opioid peptide expression in damaged nerves were studied in wild-type (CCL5 +/+) and CCL5-deficient (CCL5 -/-) mice after partial sciatic nerve ligation (PSNL). Results indicated that CCL5 -/- mice had less behavioral hypersensitivity after PSNL. Macrophage infiltration and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and interferon-γ) in damaged nerves following PSNL were significantly decreased in CCL5 -/- mice. Conversely, several antiinflammatory cytokine (IL-4 and IL-10) proteins were significantly increased in CCL5 -/- animals and the expression of enkephalin, β-endorphin, and dynorphin mRNA was significantly lower than in wild-type control mice. These results represent the first evidence that CCL5 is capable of regulating the pathway that controls hyperalgesia at the level of the peripheral injured site in a murine chronic neuropathic pain model. We demonstrated that lack of CCL5 modulated cell infiltration and the proinflammatory milieu within the injured nerve. Attenuated behavioral hypersensitivity in CCL5 -/- mice observed in the current study could be a result of decreased macrophage infiltration, mobilization, and functional ability at injured sites. Collectively, the present study results suggest that CCL5 receptor antagonists may ultimately provide a novel class of analgesics for therapeutic intervention in chronic neuropathic pain.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC Department of Anesthesiology, Taipei-Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC
| | | | | | | | | |
Collapse
|