1
|
Georgopoulos AP, James LM. Association between brain cancer immunogenetic profile and in silico immunogenicities of 11 viruses. Sci Rep 2023; 13:21528. [PMID: 38057480 PMCID: PMC10700375 DOI: 10.1038/s41598-023-48843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Several viruses including human herpes viruses (HHVs), human polyomavirus JCV, and human papilloma virus (HPV) have been implicated in brain cancer, albeit inconsistently. Since human leukocyte antigen (HLA) is centrally involved in the human immune response to viruses and has been implicated in brain cancer, we evaluated in silico the immunogenicity between 69 Class I HLA alleles with epitopes of proteins of 9 HHVs, JCV, and HPV with respect to a population-based HLA-brain cancer profile. We found that immunogenicity varied widely across HLA alleles with HLA-C alleles exhibiting the highest immunogenicity, and that immunogenicity scores were negatively associated with the population-based HLA-brain cancer profile, particularly for JCV, HHV6A, HHV5, HHV3, HHV8, and HHV7. Consistent with the role of HLA in foreign antigen elimination, the findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to cause brain cancer; conversely, the absence of highly immunogenic HLA may allow the viral antigens to persist, contributing to cancer.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
James LM, Georgopoulos AP. Positive Association Between the Immunogenetic Human Leukocyte Antigen (HLA) Profiles of Multiple Sclerosis and Brain Cancer. Neurosci Insights 2023; 18:26331055231214543. [PMID: 38046672 PMCID: PMC10693228 DOI: 10.1177/26331055231214543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Previous research has documented elevated risk of brain cancer in patients with multiple sclerosis (MS). Separately, human leukocyte antigen (HLA) has been implicated in protection or susceptibility for both conditions. The aim of the current study was to assess a possible role of shared immunogenetic influence on risk of MS and brain cancer. We first identified an immunogenetic profile for each condition based on the covariance between the population frequency of 127 high-resolution HLA alleles and the population prevalence of each condition in 14 Continental Western European countries and then evaluated the correspondence between MS and brain cancer immunogenetic profiles. Also, since each individual carries 12 HLA alleles (2 × 6 genes), we estimated HLA protection and susceptibility for MS and brain cancer at the individual level. We found that the immunogenetic profiles of MS and brain cancer were highly correlated overall (P < .001) and across all 6 HLA genes with the strongest association observed for DRB1, followed by DQB1 and HLA-A. These findings of immunogenetic overlap between MS and brain cancer are discussed in light of the role of HLA in the immune system response to viruses and other foreign antigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Choi SS, Choi H, Baek IC, Park SA, Park JS, Kim TG, Jeun SS, Ahn S. HLA polymorphisms and risk of glioblastoma in Koreans. PLoS One 2021; 16:e0260618. [PMID: 34882724 PMCID: PMC8659341 DOI: 10.1371/journal.pone.0260618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Immune responses for cancer cells can be altered according to genetic variation of human leukocyte antigen (HLA). Association of HLA polymorphism with risk of various cancer types is well known. However, the association between HLA and glioblastoma (GBM) remains uncertain. We sought to evaluate the association of HLA polymorphism with risk of GBM development in Koreans. Materials and methods A case-control study was performed to identify the odds ratios (OR) of HLA class I and II genes for GBM. The control group consisted of 142 healthy Korean volunteers, and the GBM group was 80 patients with newly diagnosed GBM at our institution. HLA class I (-A, -B, and–C) and class II (-DR, -DQ, and–DP) genotyping was performed by high-resolution polymerase chain reaction (PCR)-sequence-based typing (PCR-SBT) methods. Results There were significantly decreased frequencies of HLA-A*26:02 (OR 0.22 CI 0.05–0.98), HLA-C*08:01 (OR 0.29 CI 0.10–0.87), and HLA-DRB1*08:03 (OR 0.32 CI 0.11–0.98), while there was significantly increased frequency of HLA-C*04:01 (OR 2.29 CI 1.05–4.97). In analysis of haplotypes, the frequency of DRB1*14:05-DQB1*05:03 was significantly decreased (OR 0.22 CI 0.05–0.98). Conclusion This study suggests that genetic variations of HLA may affect GBM development in Koreans. Further investigations with larger sample sizes are needed to delineate any potential role of the HLA polymorphisms in the pathogenesis of GBM development.
Collapse
Affiliation(s)
- Sang-Soo Choi
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon A. Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- * E-mail:
| |
Collapse
|
4
|
Cao S, Wu Y, Qian X, Ma H. Genetic variants in HLA-DP/DQ contribute to risk of acute myeloid leukemia: A case-control study in Chinese. Pathol Res Pract 2020; 216:152829. [PMID: 32008865 DOI: 10.1016/j.prp.2020.152829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/19/2019] [Accepted: 01/18/2020] [Indexed: 11/28/2022]
Abstract
Human leukocyte antigens (HLA) are heterodimeric cell surface molecules that bind short peptides derived from non-self and self proteins. Accumulative evidence showed that specific alleles of HLA class II were associated with the susceptibility to malignant tumors including acute leukemia. In this study, we investigated the association between four single nucleotide polymorphisms (SNPs) at HLA-DP/DQ and acute myeloid leukemia (AML) risk. We genotyped four SNPs in HLA-DP (rs3077 G > A and rs9277535 G > A) and HLA-DQ (rs2856718 A > G and rs7453920 G > A) in a case-control study of 545 AML cases and 1034 cancer-free controls using Taqman allelic discrimination assay. The associations between these SNPs and AML risk were estimated by computing the odds ratios (ORs) and their 95% confidence intervals (CIs) from multivariate logistic regression analysis. We found significant associations of the variant alleles in HLA-DP (rs3077 and rs9277535) and HLA-DQ rs7453920 with increased AML risk (adjusted OR = 1.29, 95%CI = 1.10-1.51for rs3077 in additive model; adjusted OR = 1.29, 95%CI = 1.11-1.51 for rs9277535 in additive model; adjusted OR = 3.18, 95%CI = 1.86-5.46 for rs7453920 in recessive model). When combining the effects of rs3077, rs9277535 and rs7453920, we found that AML risk was significantly increased with the increasing number of variant alleles of the three SNPs in a dose-dependent manner (P for trend < 0.001). Besides, we found multiplicative interaction between rs3077 and age (≤45 years old and > 45 years old; P = 0.046). In conclusion, HLA-DP and HLA-DQ loci are candidate susceptibility regions for AML in Han Chinese.
Collapse
Affiliation(s)
- Songyu Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xifeng Qian
- Department of Hematology, Wuxi Peoples' Hospital Affiliated to Nanjing Medical University, No. 299 Qingyang Road, Wuxi, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Han S, Deng J, Wang Z, Liu H, Cheng W, Wu A. Decreased human leukocyte antigen A*02:01 frequency is associated with risk of glioma and existence of human cytomegalovirus: a case-control study in Northern China. Cancer Immunol Immunother 2017; 66:1265-1273. [PMID: 28523518 PMCID: PMC11028914 DOI: 10.1007/s00262-017-2018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/14/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human leukocyte antigens (HLAs) play an important role in host defense against viral infection and tumorigenesis. Human cytomegalovirus (HCMV) has been linked to glioma development. This study investigated the relationship between HLA distribution, presence of HCMV, and glioma development in a Han Chinese population. METHODS The study population included 150 glioma patients and 150 tumor-free brain injury control subjects (control-A) matched according to geography, ethnicity, age, and gender. HLA allele frequency was compared between the two groups using peripheral blood samples by PCR sequence-based typing. These data were also compared with HLA frequencies obtained from a Northern Chinese Han population database (control-B). HCMV DNA was detected in the peripheral blood of glioma patients and control group-A by nested PCR. The expression of HCMV proteins IE1-72 and pp65 in tumor tissues was evaluated by immunohistochemistry. RESULTS The frequency of HLA-A*02:01 was decreased in glioma patients as compared to control group-A and -B (P < 0.001 and P = 0.001, respectively). The age/sex-adjusted odds ratio for HLA-A*02:01 positivity vs. negativity was 0.392 (95% confidence interval 0.225-0.683). HCMV was more frequently detected in the peripheral blood and tumor tissue of HLA-A*02:01-negative glioma patients. HLA-A*02:01 and HCMV were not associated with overall survival. CONCLUSION There is a correlation between decreased HLA-A*0201 allele frequency and glioma susceptibility.
Collapse
Affiliation(s)
- Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Jian Deng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Zixun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Huan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
6
|
Zhang C, de Smith AJ, Smirnov IV, Wiencke JK, Wiemels JL, Witte JS, Walsh KM. Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma. J Neurooncol 2017; 135:237-244. [PMID: 28721485 DOI: 10.1007/s11060-017-2569-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Although genome-wide association studies have identified several susceptibility loci for adult glioma, little is known regarding the potential contribution of genetic variation in the human leukocyte antigen (HLA) region to glioma risk. HLA associations have been reported for various malignancies, with many studies investigating selected candidate HLA polymorphisms. However, no systematic analysis has been conducted in glioma patients, and no investigation into potential non-additive effects has been described. We conducted comprehensive genetic analyses of HLA variants among 1746 adult glioma patients and 2312 controls of European-ancestry from the GliomaScan Consortium. Genotype data were generated with the Illumina 660-Quad array, and we imputed HLA alleles using a reference panel of 5225 individuals in the Type 1 Diabetes Genetics Consortium who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for population stratification using ancestry-informative principal components. Because alleles in different loci across the HLA region are linked, we created multigene haplotypes consisting of the genes DRB1, DQA1, and DQB1. Although none of the haplotypes were associated with glioma in additive models, inclusion of a dominance term significantly improved the model for multigene haplotype HLA-DRB1*1501-DQA1*0102-DQB1*0602 (P = 0.002). Heterozygous carriers of the haplotype had an increased risk of glioma [odds ratio (OR) 1.23; 95% confidence interval (CI) 1.01-1.49], while homozygous carriers were at decreased risk compared with non-carriers (OR 0.64; 95% CI 0.40-1.01). Our results suggest that the DRB1*1501-DQA1*0102-DQB1*0602 haplotype may contribute to the risk of glioma in a non-additive manner, with the positive dominance effect partly explained by an epistatic interaction with HLA-DRB1*0401-DQA1*0301-DQB1*0301.
Collapse
Affiliation(s)
- Chenan Zhang
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ivan V Smirnov
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - John K Wiencke
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Joseph L Wiemels
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kyle M Walsh
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA.,Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Orouji E, Tavakkol Afshari J, Badiee Z, Shirdel A, Alipour A. Association between HLA-DQB1 gene and patients with acute lymphoblastic leukemia (ALL). Int J Hematol 2012; 95:551-5. [PMID: 22434102 DOI: 10.1007/s12185-012-1051-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 01/22/2023]
Abstract
Acute lymphoblastic leukemia (ALL) affects both children and adults. Survival in ALL has improved in recent decades due to recognition of its biological heterogeneity. Although children have higher remission and cure rates than adults, both populations have benefited from these improvements. Our aim in this study is to determine the association between HLA-DQB1 genes with childhood and adult ALL patients. To define this association, we compared HLA-DQB1 allele frequencies and allele carrier frequencies in a cohort of 135 adults and children with ALL with 150 controls, using polymerase chain reaction with sequence-specific primers. Allele carrier frequencies in childhood ALL show a deficiency in DQ2 (*0201) (P 0.049 and RR 0.75), but an increase in DQ5 (*0501-*0504) and DQ7 (*0301, *0304) compared to the control group (P 0.001 RR 1.89, P 0.003 RR 1.48, respectively). Allele carrier frequencies in adult ALL indicated an increase in DQ5 (*0501-*0504) (P0.045 RR 2.28). Allelic frequencies in childhood ALL revealed the same increase in DQ5 and DQ7, and a decrease in DQ2. In adult ALL it shows a decrease in DQ7. Therefore, our results in adult ALL were similar to childhood ALL addressing DQ5 allele carriers, which showed an increase in both age groups. We suggest that DQ5 could be more strongly considered as an ALL susceptibility allele, and that this allele may underlie a pathogenic phenotype with a major role in the immunologic process involved in both adults and children with ALL.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Immunogenetics, BuAli Research Institute, Mashhad University of Medical Sciences (MUMS), BuAli Square, Mashhad, Iran.
| | | | | | | | | |
Collapse
|