1
|
Dujon AM, Jeanjean J, Vincze O, Giraudeau M, Lemaître J, Pujol P, Ujvari B, Thomas F. Cancer hygiene hypothesis: A test from wild captive mammals. Ecol Evol 2023; 13:e10547. [PMID: 37745791 PMCID: PMC10515881 DOI: 10.1002/ece3.10547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
The hygiene hypothesis, according to which the recent reduction of exposure to infectious agents in the human species would be the origin of various diseases, including autoimmune diseases and cancer, has often been proposed but not properly tested on animals. Here, we evaluated the relevance of this hypothesis to cancer risk in mammals in an original way, namely by using information on zoo mammals. We predicted that a higher richness of parasitic cohorts in the species' natural habitat would result in a greater occurrence of evolutionary mismatch due to the reduction of parasites in captive conditions. This, in turn, could contribute to an increased risk of developing lethal cancers. Using a comparative analysis of 112 mammalian species, we explored the potential relationship between cancer risk and parasite species richness using generalized phylogenetic least squares regressions to relate parasite species richness to cancer risk data. We found no strong evidence that parasite species richness increased cancer risk in zoo mammals for any of the parasite groups we tested. Without constituting definitive proof of the irrelevance of the hygienic hypothesis, our comparative study using zoo mammals does not support it, at least with respect to cancer risks.
Collapse
Affiliation(s)
- Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Jérémy Jeanjean
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological ResearchDebrecenHungary
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabes‐Bolyai UniversityCluj‐NapocaRomania
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Jean‐François Lemaître
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie EvolutiveUniversité de LyonVilleurbanneFrance
- Laboratory of Rare Human Circulating Cells (LCCRH)University Hospital of MontpellierMontpellierFrance
| | - Pascal Pujol
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
- Centre Hospitalier Universitaire Arnaud de VilleneuveMontpellierFrance
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
2
|
Mateen FJ. Multiple sclerosis in resource-limited settings: Research opportunities in an unequal world. Neurology 2020; 93:176-180. [PMID: 31332086 DOI: 10.1212/wnl.0000000000007837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This position piece is meant to extend the humanitarian argument for assisting people with multiple sclerosis (MS) in resource-limited settings, in this case, through research. It is also meant to highlight areas of strength of some low- and middle-income countries (LMICs), and therefore emphasize how the field of MS could best be served globally by more research with and for resource-limited populations. Possible areas of particular strength include (1) ethnicity, genetic diversity, and migration studies; (2) analysis of possibly emerging environmental and lifestyle-related risk factors; (3) understanding the immune system when exposed to novel pathogens and various infectious agents; (4) reverse innovation to promote better point-of-care diagnostic tests; (5) high participation rates in clinical registries and research; (6) appreciation of MS in special populations including a higher focus on pediatrics and pregnancy; (7) culturally adept means of treatment and rehabilitating disability; (8) models of care delivery for chronic, complex neurologic diseases; and (9) use of off-label, generic, and less commonly implemented disease-modifying therapy sequences. Strategies for strengthening the MS research landscape include (1) creation of centers of research excellence in LMICs and twinning of institutions between high- and low-income countries; (2) standardization of research procedures and reduction of bureaucracies; (3) consensus meetings and network building; (4) opening additional avenues for publications and expanding the types of available publications; (5) identifying and establishing dedicated funding mechanisms; (6) focus on local relevance; and (7) setting expectations to include patients from LMICs in international clinical trials. These underutilized opportunities build an argument that global partnerships for research and knowledge coordination could better reach across populations, geographies, economies, and expertise.
Collapse
Affiliation(s)
- Farrah J Mateen
- From the Department of Neurology, Massachusetts General Hospital; and Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Manus MB. Evolutionary mismatch. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:190-191. [PMID: 30159142 PMCID: PMC6109377 DOI: 10.1093/emph/eoy023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/02/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Melissa B Manus
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Triangle Center for Evolutionary Medicine Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, Troy S, Leech A, Hotez PJ, Zhan B, Laha T, Prentice R, Sparwasser T, Croese J, Engwerda CR, Upham JW, Julia V, Giacomin PR, Loukas A. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci Transl Med 2017; 8:362ra143. [PMID: 27797959 DOI: 10.1126/scitranslmed.aaf8807] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
In the developed world, declining prevalence of some parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Moreover, experimental human infection with some parasitic worms confers protection against inflammatory diseases in phase 2 clinical trials. Parasitic worms manipulate the immune system by secreting immunoregulatory molecules that offer promise as a novel therapeutic modality for inflammatory diseases. We identify a protein secreted by hookworms, anti-inflammatory protein-2 (AIP-2), that suppressed airway inflammation in a mouse model of asthma, reduced expression of costimulatory markers on human dendritic cells (DCs), and suppressed proliferation ex vivo of T cells from human subjects with house dust mite allergy. In mice, AIP-2 was primarily captured by mesenteric CD103+ DCs and suppression of airway inflammation was dependent on both DCs and Foxp3+ regulatory T cells (Tregs) that originated in the mesenteric lymph nodes (MLNs) and accumulated in distant mucosal sites. Transplantation of MLNs from AIP-2-treated mice into naïve hosts revealed a lymphoid tissue conditioning that promoted Treg induction and long-term maintenance. Our findings indicate that recombinant AIP-2 could serve as a novel curative therapeutic for allergic asthma and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Severine Navarro
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Darren A Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ivana B Ferreira
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Sally Troy
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Andrew Leech
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | | | - Bin Zhan
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Roger Prentice
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | | | - John W Upham
- University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Valerie Julia
- CNRS UMR7275, INSERM U1080, Université de Nice Sophia Antipolis, Nice, France
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
5
|
Toxoplasma gondii tachyzoite-extract acts as a potent immunomodulator against allergic sensitization and airway inflammation. Sci Rep 2017; 7:15211. [PMID: 29123241 PMCID: PMC5680314 DOI: 10.1038/s41598-017-15663-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Epidemiological and experimental studies have shown an inverse relationship between infections with certain parasites and a reduced incidence of allergic diseases. We and others have shown that infection with Toxoplasma gondii prevents the development of allergy in mice. To establish whether this beneficial effect could be recapitulated by soluble products of this parasite, we tested an extract derived from T. gondii tachyzoites. Immunization of BALB/c mice with tachyzoites lysate antigen (TLA) elicited mixed Th1/Th2 responses. When TLA was applied together with the sensitizing ovalbumin (OVA), the development of allergic airway inflammation was reduced, with decreased airway hyperresponsiveness associated with reduced peribronchial and perivascular cellular infiltration, reduced production of OVA-specific Th2 cytokines in lungs and spleens and reduced levels of serum OVA-specific IgG1 as well as IgE-dependent basophil degranulation. Of note, TLA retained its immunomodulatory properties, inducing high levels of IL-6, TNFα, IL-10 and IL-12p70 in bone marrow-derived dendritic cells after heat-inactivation or proteinase K-treatment for disruption of proteins, but not after sodium metaperiodate-treatment that degrades carbohydrate structures, suggesting that carbohydrates may play a role in immunomodulatory properties of TLA. Here we show that extracts derived from parasites may replicate the benefits of parasitic infection, offering new therapies for immune-mediated disorders.
Collapse
|
6
|
Enteric nematodes and the path to up-regulation of type 2 cytokines IL-4 and IL-13. Cytokine 2015; 75:62-7. [DOI: 10.1016/j.cyto.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/26/2022]
|
7
|
Acute disseminated encephalomyelitis progressing to multiple sclerosis: are infectious triggers involved? Immunol Res 2015; 60:16-22. [PMID: 24668297 PMCID: PMC7091333 DOI: 10.1007/s12026-014-8499-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) are demyelinating disorders affecting the central nervous system. An autoimmune aetiology has been proposed for both. ADEM principally affects adolescents following acute infection by a variety of pathogens and has also been reported to occur following vaccination. ADEM typically resolves following medical treatment, whereas MS follows a more relapsing and remitting course. The pathogenesis of MS remains unclear, but it is thought that a combination of infectious and non-infectious environmental factors and host genetics act synergistically to cause disease. A variety of viruses, including Epstein Barr virus, cytomegalovirus, herpes simplex virus and varicella zoster virus, have been implicated as possible infectious triggers. The similar clinical and pathological presentation of ADEM and MS presents a diagnostic challenge for distinguishing ADEM from a first episode of MS. Some cases of ADEM progress to MS for reasons that are not currently clear. This review examines the evidence for infectious agents as triggers for ADEM progressing to MS and suggests potential methods that may facilitate identification of infectious agents that may be responsible for the pathogenesis of ADEM to MS.
Collapse
|
8
|
Dhama K, Saminathan M, Jacob SS, Singh M, Karthik K, . A, Tiwari R, Sunkara LT, Malik YS, Singh RK. Effect of Immunomodulation and Immunomodulatory Agents on Health with some Bioactive Principles, Modes of Action and Potent Biomedical Applications. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.253.290] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Afifi MA, Jiman-Fatani AA, El Saadany S, Fouad MA. Parasites-allergy paradox: Disease mediators or therapeutic modulators. J Microsc Ultrastruct 2015; 3:53-61. [PMID: 30023182 PMCID: PMC6014186 DOI: 10.1016/j.jmau.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
The noticeable phenomenon of an increased frequency of immune-inflammatory disorders, in the industrialized world, has led to the implication of parasitic infections in the pathophysiology of these diseases. Most of the studies investigated the infection connection to allergy have centered on helminthes. Parasitic helminthes are a group of metazoans that are evolutionary diverse, yet converge to evolve common modes of immunomodulation. Helminth immunoregulation is mainly mediated by a regulatory response including Treg and Breg cells with alternatively-activated macrophages. There is increasing evidence for a causal relationship between helminth infection and allergic hyporesponsiveness, however, conflicting data are still generating. The helminth immunoregulation seems to be species-specific and phase-specific. It depends on the stage of the clinical disease which correlates with a corresponding parasitic stage (egg, larva or mature adult). Here, we review the cellular and molecular mechanisms utilized by helminthes to manipulate the immune system and the consequent bystander immunomodulatory responses toward environmental allergens. We especially focus on parasitic species and molecules involved in the modulation of allergic disorders and summarize the experimental and clinical trials using them as therapeutic agents. We also discuss the potentials and obstacles, for helminthes and/or their derived molecules, to emerge as novel therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding author at: Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia. Tel.: +966 569722590. E-mail address: (M.A. Afifi)
| | - Asif A. Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Saadany
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Fouad
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
|
11
|
Alvarado R, O'Brien B, Tanaka A, Dalton JP, Donnelly S. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease. Immunobiology 2014; 220:262-9. [PMID: 25466586 DOI: 10.1016/j.imbio.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/24/2022]
Abstract
Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues.
Collapse
Affiliation(s)
- Raquel Alvarado
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Bronwyn O'Brien
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - Akane Tanaka
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University, Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Sydney, NSW, Australia; The i3 Institute, University of Technology, Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-67. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Abstract
We recently introduced the concept of the infectome as a means of studying all infectious factors which contribute to the development of autoimmune disease. It forms the infectious part of the exposome, which collates all environmental factors contributing to the development of disease and studies the sum total of burden which leads to the loss of adaptive mechanisms in the body. These studies complement genome-wide association studies, which establish the genetic predisposition to disease. The infectome is a component which spans the whole life and may begin at the earliest stages right up to the time when the first symptoms manifest, and may thus contribute to the understanding of the pathogenesis of autoimmunity at the prodromal/asymptomatic stages. We provide practical examples and research tools as to how we can investigate disease-specific infectomes, using laboratory approaches employed from projects studying the “immunome” and “microbiome”. It is envisioned that an understanding of the infectome and the environmental factors that affect it will allow for earlier patient-specific intervention by clinicians, through the possible treatment of infectious agents as well as other compounding factors, and hence slowing or preventing disease development.
Collapse
|
14
|
Abstract
In the last 50 years, environmental factors such as helminth infections have been proposed to explain why autoimmunity is less prevalent in the developing world; this proposal has been termed the hygiene or old friends hypothesis. The epidemiology of MS shows an inverse correlation with helminth infections. Positive effects of helminths in animal models of MS and observational studies in people with MS naturally infected with helminths suggest that those organisms can act as immune regulators and led to clinical trials of helminth therapy. The goal of helminth therapy is to introduce parasitic organisms into people with MS in a controlled and predictable fashion, and to prevent immune-mediated disease without increasing the risk of pathology with high parasite load. This chapter focuses on intestinal worms as they are the current choice as a therapeutic strategy in a number of autoimmune diseases, including MS. Here we review current data regarding the rationale and the current state of research in the field of helminth therapies in MS.
Collapse
|
15
|
Fleming J. Helminth therapy and multiple sclerosis. Int J Parasitol 2013; 43:259-74. [DOI: 10.1016/j.ijpara.2012.10.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
|
16
|
McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 2013; 43:301-10. [PMID: 23291463 DOI: 10.1016/j.ijpara.2012.11.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epidemiological and interventional human studies, as well as experiments in animal models, strongly indicate that helminth parasitic infections can confer protection from immune dysregulatory diseases such as allergy, autoimmunity and colitis. Here, we review the immunological pathways that helminths exploit to downregulate immune responses, both against bystander specificities such as allergens and against antigens from the parasites themselves. In particular, we focus on a highly informative laboratory system, the mouse intestinal nematode, Heligmosomoides polygyrus, as a tractable model of host-parasite interaction at the cellular and molecular levels. Analysis of the molecules released in vitro (as excretory-secretory products) and their cellular targets is identifying individual parasite molecules and gene families implicated in immunomodulation, and which hold potential for future human therapy of immunopathological conditions.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
17
|
Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2012; 12:726-40. [PMID: 23266520 PMCID: PMC7105216 DOI: 10.1016/j.autrev.2012.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 02/06/2023]
Abstract
The "exposome" is a term recently used to describe all environmental factors, both exogenous and endogenous, which we are exposed to in a lifetime. It represents an important tool in the study of autoimmunity, complementing classical immunological research tools and cutting-edge genome wide association studies (GWAS). Recently, environmental wide association studies (EWAS) investigated the effect of environment in the development of diseases. Environmental triggers are largely subdivided into infectious and non-infectious agents. In this review, we introduce the concept of the "infectome", which is the part of the exposome referring to the collection of an individual's exposures to infectious agents. The infectome directly relates to geoepidemiological, serological and molecular evidence of the co-occurrence of several infectious agents associated with autoimmune diseases that may provide hints for the triggering factors responsible for the pathogenesis of autoimmunity. We discuss the implications that the investigation of the infectome may have for the understanding of microbial/host interactions in autoimmune diseases with long, pre-clinical phases. It may also contribute to the concept of the human body as a superorganism where the microbiome is part of the whole organism, as can be seen with mitochondria which existed as microbes prior to becoming organelles in eukaryotic cells of multicellular organisms over time. A similar argument can now be made in regard to normal intestinal flora, living in symbiosis within the host. We also provide practical examples as to how we can characterise and measure the totality of a disease-specific infectome, based on the experimental approaches employed from the "immunome" and "microbiome" projects.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
The hookworm pharmacopoeia for inflammatory diseases. Int J Parasitol 2012; 43:225-31. [PMID: 23220091 DOI: 10.1016/j.ijpara.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 01/18/2023]
Abstract
In the developed world, declining prevalence of parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Current treatments for these chronic inflammatory conditions have little to no effect on their prevalence and are referred to as "controllers" rather than cures. There has been limited success in therapeutically targeting allergic and autoimmune pathways, leaving an unmet need for development of effective anti-inflammatories. We discuss the benefit of hookworm infections and the parasite's ability to condition the immune system to prevent allergic asthma and inflammatory bowel diseases. We then examine the immunomodulatory properties of selected hookworm-derived proteins in these two models of inflammation. While hookworm protein therapy has yet to be fully exploited, the identification of these proteins and the mechanisms by which they skew the immune system will provide new avenues for controlling and optimally reversing key pathological processes important in allergic and inflammatory bowel diseases.
Collapse
|
19
|
Abstract
The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host's immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease--such as experimental autoimmune encephalomyelitis.
Collapse
|
20
|
Abstract
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.
Collapse
Affiliation(s)
- Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA.
| |
Collapse
|
21
|
Schistosomes induce regulatory features in human and mouse CD1d(hi) B cells: inhibition of allergic inflammation by IL-10 and regulatory T cells. PLoS One 2012; 7:e30883. [PMID: 22347409 PMCID: PMC3275567 DOI: 10.1371/journal.pone.0030883] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/27/2011] [Indexed: 11/20/2022] Open
Abstract
Chronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically dependent on IL-10-producing B cells. To study the organs involved, we transferred B cells from lungs, mesenteric lymph nodes or spleen of OVA-infected mice to recipient OVA-sensitized mice, and showed that both lung and splenic B cells reduced AAI, but only splenic B cells in an IL-10-dependent manner. Although splenic B cell protection was accompanied by elevated levels of pulmonary FoxP3(+) regulatory T cells, in vivo ablation of FoxP3(+) T cells only moderately restored AAI, indicating an important role for the direct suppressory effect of regulatory B cells. Splenic marginal zone CD1d(+) B cells proved to be the responsible splenic B cell subset as they produced high levels of IL-10 and induced FoxP3(+) T cells in vitro. Indeed, transfer of CD1d(+) MZ-depleted splenic B cells from infected mice restored AAI. Markedly, we found a similarly elevated population of CD1d(hi) B cells in peripheral blood of Schistosoma haematobium-infected Gabonese children compared to uninfected children and these cells produced elevated levels of IL-10. Importantly, the number of IL-10-producing CD1d(hi) B cells was reduced after anti-schistosome treatment. This study points out that in both mice and men schistosomes have the capacity to drive the development of IL-10-producing regulatory CD1d(hi) B cells and furthermore, these are instrumental in reducing experimental allergic inflammation in mice.
Collapse
|
22
|
Helminth parasites in pigs: New challenges in pig production and current research highlights. Vet Parasitol 2011; 180:72-81. [DOI: 10.1016/j.vetpar.2011.05.029] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
CAM Interventions for Multiple Sclerosis: Part 1—Diet and Supplements for Relieving Symptoms. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Environmental triggers of multiple sclerosis. FEBS Lett 2011; 585:3724-9. [PMID: 21486562 DOI: 10.1016/j.febslet.2011.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis is a chronic immune-mediated disease of the central nervous system that develops in young adults with a complex genetic predisposition. Similar to other autoimmune disease, HLA-DR and -DQ alleles within the HLA class II region on chromosome 6p21 are by far the strongest risk-conferring genes. Less robust susceptibility effects have been reported for non-MHC related genetic variants. Improvements in the design of epidemiological studies helped to identify consistent environmental risk-associations such as the increased susceptibility for MS in individuals with a history of infectious mononucleosis, a symptomatic primary infection with the human γ-herpesvirus Epstein-Barr virus (EBV). Sun exposure and serum vitamin D levels are emerging non-infectious environmental risk factors that may have independent roles. The analysis of environmental effects will likely expand in the next few years and will allow for the generation of testable hypotheses as to how environmental insults interact with genetic factors to jointly determine the susceptibility to MS. Insights gained from these studies might facilitate the development of prevention strategies and more effective treatments for MS.
Collapse
|