1
|
Johnson HM, Ahmed CM. Disparate viral pandemics from COVID19 to monkeypox and beyond: a simple, effective and universal therapeutic approach hiding in plain sight. Front Immunol 2023; 14:1208828. [PMID: 38106428 PMCID: PMC10722180 DOI: 10.3389/fimmu.2023.1208828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The field of antiviral therapeutics is fixated on COVID19 and rightly so as the fatalities at the height of the pandemic in the United States were almost 1,000,000 in a twelve month period spanning parts of 2020/2021. A coronavirus called SARS-CoV2 is the causative virus. Development of a vaccine through molecular biology approaches with mRNA as the inducer of virus spike protein has played a major role in driving down mortality and morbidity. Antivirals have been of marginal value in established infections at the level of hospitalization. Thus, the current focus is on early symptomatic infection of about the first five days. The Pfizer drug paxlovid which is composed of nirmatrelvir, a peptidomimetic protease inhibitor of SARS-CoV2 Mpro enzyme, and ritonavir to retard degradation of nirmatrelvir, is the current FDA recommended treatment of early COVID19. There is no evidence of broad antiviral activity of paxlovid against other diverse viruses such as the influenza virus, poxviruses, as well as a host of respiratory viruses. Although type I interferons (IFNs) are effective against SARS-CoV2 in cell cultures and in early COVID19 infections, they have not been broadly recommended as therapeutics for COVID19. We have developed stable peptidomimetics of both types I and II IFNs based on our noncanonical model of IFN signaling involving the C-terminus of the IFNs. We have also identified two members of intracellular checkpoint inhibitors called suppressors of cytokine signaling (SOCS), SOCS1 and SOCS3 (SOCS1/3), and shown that they are virus induced intrinsic virulence proteins with activity against IFN signaling enzymes JAK2 and TYK2. We developed a peptidomimetic antagonist, based on JAK2 activation loop, against SOCS1/3 and showed that it synergizes with the IFN mimetics for potent broad spectrum antiviral activity without the toxicity of intact IFN molecules. IFN mimetics and the SOCS1/3 antagonist should have an advantage over currently used antivirals in terms of safety and potency against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
2
|
Bagheri M, Lee MK, Muller KE, Miller TW, Pattabiraman DR, Christensen BC. Alteration of DNMT1/DNMT3A by eribulin elicits global DNA methylation changes with potential therapeutic implications for triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544426. [PMID: 37333096 PMCID: PMC10274899 DOI: 10.1101/2023.06.09.544426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease subtype with limited treatment options. Eribulin is a chemotherapeutic approved for the treatment of advanced breast cancer that has been shown to elicit epigenetic changes. We investigated the effect of eribulin treatment on genome-scale DNA methylation patterns in TNBC cells. Following repeated treatment, The results showed that eribulin-induced changes in DNA methylation patterns evident in persister cells. Eribulin also affected the binding of transcription factors to genomic ZEB1 binding sites and regulated several cellular pathways, including ERBB and VEGF signaling and cell adhesion. Eribulin also altered the expression of epigenetic modifiers including DNMT1, TET1, and DNMT3A/B in persister cells. Data from primary human TNBC tumors supported these findings: DNMT1 and DNMT3A levels were altered by eribulin treatment in human primary TNBC tumors. Our results suggest that eribulin modulates DNA methylation patterns in TNBC cells by altering the expression of epigenetic modifiers. These findings have clinical implications for using eribulin as a therapeutic agent.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
- Dartmouth Cancer Center, Lebanon, NH, 03756
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - Kristen E. Muller
- Dartmouth Cancer Center, Lebanon, NH, 03756
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Todd W. Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
- Dartmouth Cancer Center, Lebanon, NH, 03756
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
- Dartmouth Cancer Center, Lebanon, NH, 03756
| | - Brock C. Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| |
Collapse
|
3
|
JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers (Basel) 2021; 13:cancers13020280. [PMID: 33466582 PMCID: PMC7828698 DOI: 10.3390/cancers13020280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary JAK3 plays an important role in the pathogenesis of cutaneous T cell lymphoma. JAK3 belongs to the Janus kinase family of receptor-associated tyrosine kinases located in cytoplasm adjacent to the plasma membrane. In this study, we show that JAK3 can also be ectopically expressed in the nucleus in CTCL cell lines and primary cells from CTCL patients. Importantly, JAK3 interacts with the nuclear protein RNA polymerase II and phosphorylates Histone H3. Thus, our data provide first evidence for nuclear expression of JAK3 and interactions with key nuclear proteins in malignant T cells suggesting a novel non-canonical role in CTCL. Abstract Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro—an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL.
Collapse
|
4
|
Noncanonical IFN Signaling, Steroids, and STATs: A Probable Role of V-ATPase. Mediators Inflamm 2019; 2019:4143604. [PMID: 31275057 PMCID: PMC6558600 DOI: 10.1155/2019/4143604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
A small group of only seven transcription factors known as STATs (signal transducer and activator of transcription) are considered to be canonical determinants of specific gene activation for a plethora of ligand/receptor systems. The activation of STATs involves a family of four tyrosine kinases called JAK kinases. JAK1 and JAK2 activate STAT1 in the cytoplasm at the heterodimeric gamma interferon (IFNγ) receptor, while JAK1 and TYK2 activate STAT1 and STAT2 at the type I IFN heterodimeric receptor. The same STATs and JAKs are also involved in signaling by functionally different cytokines, growth factors, and hormones. Related to this, IFNγ-activated STAT1 binds to the IFNγ-activated sequence (GAS) element, but so do other STATs that are not involved in IFNγ signaling. Activated JAKs such as JAK2 and TYK2 are also involved in the epigenetics of nucleosome unwrapping for exposure of DNA to transcription. Furthermore, activated JAKs and STATs appear to function coordinately for specific gene activation. These complex events have not been addressed in canonical STAT signaling. Additionally, the function of noncoding enhancer RNAs, including their role in enhancer/promoter interaction is not addressed in the canonical STAT signaling model. In this perspective, we show that JAK/STAT signaling, involving membrane receptors, is essentially a variation of cytoplasmic nuclear receptor signaling. Focusing on IFN signaling, we showed that ligand, IFN receptor, the JAKs, and the STATs all undergo endocytosis and ATP-dependent nuclear translocation to promoters of genes specifically activated by IFNs. We argue here that the vacuolar ATPase (V-ATPase) proton pump probably plays a key role in endosomal membrane crossing by IFNs for receptor cytoplasmic binding. Signaling of nuclear receptors such as those of estrogen and dihydrotestosterone provides templates for making sense of the specificity of gene activation by closely related cytokines, which has implications for lymphocyte phenotypes.
Collapse
|
5
|
Hwang MS, Strainic MG, Pohlmann E, Kim H, Pluskota E, Ramirez-Bergeron DL, Plow EF, Medof ME. VEGFR2 survival and mitotic signaling depends on joint activation of associated C3ar1/C5ar1 and IL-6R-gp130. J Cell Sci 2019; 132:jcs.219352. [PMID: 30765465 DOI: 10.1242/jcs.219352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Haesuk Kim
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and University Hospitals, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio 44106, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Wang Z, Xie J, Wu C, Xiao G. Correlation Between Smoking and Passive Smoking with Multiple Sclerosis and the Underlying Molecular Mechanisms. Med Sci Monit 2019; 25:893-902. [PMID: 30703074 PMCID: PMC6367889 DOI: 10.12659/msm.912863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the spinal cord and brain. Many studies have shown that smoking and passive smoking are key environmental risk factors for MS. Here, we provide an overview of the human leukocyte antigen (HLA) gene studies on smoking and MS risk, and we discuss recent studies on between epigenetics and smoking-induced MS. In addition, in this review we also summarize current research advances in biological pathways and smoking-induced MS. This review provides an overview of studies on the association between smoking, passive smoking, and MS susceptibility, and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Zhaowei Wang
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Jianpin Xie
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Guirong Xiao
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Raje V, Derecka M, Cantwell M, Meier J, Szczepanek K, Sisler JD, Strobl B, Gamero A, Harris TE, Larner AC. Kinase Inactive Tyrosine Kinase (Tyk2) Supports Differentiation of Brown Fat Cells. Endocrinology 2017; 158:148-157. [PMID: 27802075 PMCID: PMC5412977 DOI: 10.1210/en.2015-2048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
Abstract
It has been known for decades that brown adipose tissue (BAT) plays a central role in maintaining body temperature in hibernating animals and human infants. Recently, it has become evident that there are also depots of brown fat in adult humans, and the mass of brown fat is inversely correlated with body weight. There are a variety of transcription factors implicated in the differentiation of classical Myf5+ brown preadipocytes, one of the most important of which is PRDM16. We have recently identified that in addition to PRDM16, the tyrosine kinase Tyk2 and the STAT3 transcription factor are required for the differentiation of Myf5 positive brown preadipocytes both in cell culture and in mice. Tyk2 is a member of the Jak family of tyrosine kinases, which are activated by exposure of cells to different cytokines and growth factors. In this study we report the surprising observation that a mutated form of Tyk2, which lacks tyrosine kinase activity (Tyk2KD) restores differentiation of brown preadipocytes in vitro as well as in Tyk2-/- mice. Furthermore, expression of the Tyk2KD transgene in brown fat reverses the obese phenotype of Tyk2-/- animals. Treatment of cells with Jak-selective inhibitors suggests that the mechanism by which Tyk2KD functions to restore BAT differentiation is by dimerizing with kinase active Jak1 or Jak2. These results indicate that there are redundant mechanisms by which members of the Jak family can contribute to differentiation of BAT.
Collapse
Affiliation(s)
- Vidisha Raje
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| | - Marta Derecka
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| | - Marc Cantwell
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| | - Jeremy Meier
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| | - Karol Szczepanek
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
- Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia 23249;
| | - Jennifer D. Sisler
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine, University of Vienna, A-1210, Vienna, Austria;
| | - Ana Gamero
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; and
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298;
| |
Collapse
|
8
|
Noncanonical IFN Signaling: Mechanistic Linkage of Genetic and Epigenetic Events. Mediators Inflamm 2016; 2016:9564814. [PMID: 28077919 PMCID: PMC5203919 DOI: 10.1155/2016/9564814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
Abstract
The canonical model of cytokine signaling via the JAK/STAT pathway dominates our view of signal transduction but provides no insight into the significance of the simultaneous presence of activated JAKs and STATs in the nucleus of cells treated with cytokines. Such a mechanistic shortcoming challenges the usefulness of the model in its present form. Focusing on the interferon (IFN) cytokines, we have developed a noncanonical model of IFN signaling that naturally connects activated JAKs and STATs at or near response elements of genes that are activated by the IFNs. Specifically, cells treated with IFNγ showed association of activated STAT1α and JAK2 at the GAS element of genes activated by IFNγ. For IFNα treated cells, the association involved activated STAT1α and TYK2 JAK kinase at the ISRE promoter. The power of the noncanonical model is that it provides mechanistic insight into specific gene activation at the level of the associated epigenetics, akin to that of steroid/steroid receptor signaling.
Collapse
|
9
|
Zimmer J, Weitnauer M, Boutin S, Küblbeck G, Thiele S, Walker P, Lasitschka F, Lunding L, Orinska Z, Vock C, Arnold B, Wegmann M, Dalpke A. Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung. Front Immunol 2016; 7:514. [PMID: 27917175 PMCID: PMC5114302 DOI: 10.3389/fimmu.2016.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative feedback inhibitor of cytoplasmic Janus kinase and signal transducer and activator of transcription (STAT) signaling. SOCS1 also contains a nuclear localization sequence (NLS), yet, the in vivo importance of nuclear translocation is unknown. We generated transgenic mice containing mutated Socs1ΔNLS that fails to translocate in the cell nucleus (MGLtg mice). Whereas mice fully deficient for SOCS1 die within the first 3 weeks due to excessive interferon signaling and multiorgan inflammation, mice expressing only non-nuclear Socs1ΔNLS (Socs1-/-MGLtg mice) were rescued from early lethality. Canonical interferon gamma signaling was still functional in Socs1-/-MGLtg mice as shown by unaltered tyrosine phosphorylation of STAT1 and whole genome expression analysis. However, a subset of NFκB inducible genes was dysregulated. Socs1-/-MGLtg mice spontaneously developed low-grade inflammation in the lung and had elevated Th2-type cytokines. Upon ovalbumin sensitization and challenge, airway eosinophilia was increased in Socs1-/-MGLtg mice. Decreased transepithelial electrical resistance in trachea epithelial cells from Socs1-/-MGLtg mice suggests disrupted epithelial cell barrier. The results indicate that nuclear SOCS1 is a regulator of local immunity in the lung and unravel a so far unrecognized function for SOCS1 in the cell nucleus.
Collapse
Affiliation(s)
- Jana Zimmer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Michael Weitnauer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany; German Center for Lung Research (DZL), Germany
| | | | - Sabrina Thiele
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Patrick Walker
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg , Heidelberg , Germany
| | - Lars Lunding
- German Center for Lung Research (DZL), Germany; Division of Asthma Mouse Model, Research Center Borstel, Borstel, Germany; Airway Research Center North, Borstel, Germany
| | - Zane Orinska
- German Center for Lung Research (DZL), Germany; Airway Research Center North, Borstel, Germany; Division of Experimental Pneumology, Prority Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Christina Vock
- German Center for Lung Research (DZL), Germany; Airway Research Center North, Borstel, Germany; Division of Experimental Pneumology, Prority Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Bernd Arnold
- German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Michael Wegmann
- German Center for Lung Research (DZL), Germany; Division of Asthma Mouse Model, Research Center Borstel, Borstel, Germany; Airway Research Center North, Borstel, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany; German Center for Lung Research (DZL), Germany
| |
Collapse
|
10
|
Saleiro D, Kosciuczuk EM, Platanias LC. Beyond autophagy: New roles for ULK1 in immune signaling and interferon responses. Cytokine Growth Factor Rev 2016; 29:17-22. [PMID: 27068414 PMCID: PMC4899287 DOI: 10.1016/j.cytogfr.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
The human serine/threonine kinase ULK1 is the human homolog of the Caenorhabditis elegans Unc-51 kinase and of the Saccharomyces cerevisiae autophagy-related protein kinase Atg1. As Unc-51 and Atg1, ULK1 regulates both axon growth and autophagy, respectively, in mammalian cells. However, a novel immunoregulatory role of ULK1 has been recently described. This kinase was shown to be required for regulation of both type I interferon (IFN) production and induction of type I IFN signaling. Optimal regulation of IFN production is crucial for generation of effective IFN-immune responses, and defects in such networks can be detrimental for the host leading to uncontrolled pathogen infection, tumor growth, or autoimmune diseases. Thus, ULK1 plays a central role in IFN-dependent immunity. Here we review the diverse roles of ULK1, with special focus on its importance to type I IFN signaling, and highlight important future study questions.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA.
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Prchal-Murphy M, Witalisz-Siepracka A, Bednarik KT, Putz EM, Gotthardt D, Meissl K, Sexl V, Müller M, Strobl B. In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. Oncoimmunology 2015; 4:e1047579. [PMID: 26451322 PMCID: PMC4589058 DOI: 10.1080/2162402x.2015.1047579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Tyrosine kinase 2 (TYK2) is a Janus kinase (JAK) that is crucially involved in inflammation, carcinogenesis and defense against infection. The cytotoxic activity of natural killer (NK) cells in TYK2-deficient (Tyk2−/−) mice is severely reduced, although the underlying mechanisms are largely unknown. Using Tyk2−/− mice and mice expressing a kinase-inactive version of TYK2 (Tyk2K923E), we show that NK cell function is partly independent of the enzymatic activity of TYK2. Tyk2−/− and Tyk2K923E NK cells develop normally in the bone marrow, but the maturation of splenic Tyk2−/− NK cells (and to a lesser extent of Tyk2K923E NK cells) is impaired. In contrast, the production of interferon γ (IFNγ) in response to interleukin 12 (IL-12) or to stimulation through NK cell-activating receptors strictly depends on the presence of enzymatically active TYK2. The cytotoxic activity of Tyk2K923E NK cells against a range of target cells in vitro is higher than that of Tyk2−/− NK cells. Consistently, Tyk2K923E mice control the growth of NK cell-targeted tumors significantly better than TYK2-deficient mice, showing the physiological relevance of the finding. Inhibitors of TYK2's kinase activity are being developed for the treatment of inflammatory diseases and cancers, but their effects on tumor immune surveillance have not been investigated. Our finding that TYK2 has kinase-independent functions in vivo suggests that such inhibitors will leave NK cell mediated tumor surveillance largely intact and that they will be suitable for use in cancer therapy.
Collapse
Affiliation(s)
- Michaela Prchal-Murphy
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine ; Vienna, Austria ; Institute of Pharmacology and Toxicology; University of Veterinary Medicine ; Vienna, Austria
| | | | - Karoline T Bednarik
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine ; Vienna, Austria
| | - Eva Maria Putz
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine ; Vienna, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine ; Vienna, Austria
| | - Katrin Meissl
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine ; Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine ; Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine ; Vienna, Austria ; Biomodels Austria; University of Veterinary Medicine ; Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine ; Vienna, Austria
| |
Collapse
|
12
|
Type I interferon mimetics bypass vaccinia virus decoy receptor virulence factor for protection of mice against lethal infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1178-84. [PMID: 24964806 DOI: 10.1128/cvi.00204-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors which, according to the model, are initiated by the singular event of cross-linkage of the receptor extracellular domain by the IFN. The IFN has no further function beyond this. The model thus provides no approach to circumventing poxviruses decoy receptors that compete with the IFN receptors for IFNs. This simple event has allowed smallpox virus to decimate human populations throughout the ages. We have developed a noncanonical model of IFN signaling that has resulted in the development of small peptide mimetics to both types I and II IFNs. In this report, we focus on a type I IFN mimetic at positions 152 to 189, IFN-α1(152-189), which corresponds to the C terminus of human IFN-α1. This mimetic functions intracellularly and is thus not recognized by the B18R vaccinia virus decoy receptor. Mimetic synthesized with an attached palmitate (lipo-) for cell penetration protects mice from a lethal dose of vaccinia virus, while the parent IFN-α1 is ineffective. Unlike IFN-α1, the mimetic does not bind to the B18R decoy receptor. It further differs from the parent IFN in that it lacks the toxicity of weight loss and bone marrow suppression in mice while at the same time possessing a strong adjuvant effect on the immune system. The mimetic is thus an innate and adaptive immune regulator that is evidence of the dynamic nature of the noncanonical model of IFN signaling, in stark contrast to the canonical or classical model of signaling.
Collapse
|
13
|
Ahmed CM, Johnson HM. Short peptide type I interferon mimetics: therapeutics for experimental allergic encephalomyelitis, melanoma, and viral infections. J Interferon Cytokine Res 2014; 34:802-9. [PMID: 24811478 DOI: 10.1089/jir.2014.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The classical canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors, which limits the model in terms of specific gene activation, associated epigenetic events, and IFN mimetic development. Accordingly, we have developed a noncanonical model of IFN signaling and report the development of short type I IFN peptide mimetic peptides based on the model. The mimetics, human IFNα1(152-189), human IFNβ(150-187), and ovine IFNτ(156-195) are derived from the C-terminus of the parent IFNs and function intracellularly based on the noncanonical model. Vaccinia virus produces a decoy IFN receptor (B18R) that inhibits type I IFN, but the IFN mimetics bypass B18R for effective antiviral activity. By contrast, both parent IFNs and mimetics inhibited vesicular stomatitis virus. The mimetics also possessed anti-tumor activity against murine melanoma B16 tumor cells in culture and in mice, including synergizing with suppressor of cytokine signaling 1 antagonist. Finally, the mimetics were potent therapeutics against experimental allergic encephalomyelitis, a mouse model of multiple sclerosis. The mimetics lack toxic side effects of the parent IFNs and, thus, are a potent therapeutic replacement of IFNs as therapeutics.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Microbiology and Cell Science, University of Florida , Gainesville, Florida
| | | |
Collapse
|
14
|
Ahmed CM, Johnson HM. The role of a non-canonical JAK-STAT pathway in IFN therapy of poxvirus infection and multiple sclerosis: An example of Occam's Broom? JAKSTAT 2013; 2:e26227. [PMID: 24416655 PMCID: PMC3876437 DOI: 10.4161/jkst.26227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022] Open
Abstract
Signaling by cytokines such as the interferons (IFNs) involves Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. The beauty of the classical model of JAK-STAT signaling is its simplicity in that JAK-activated STATs in the nucleus are responsible for specific gene activation. The fact that many ligands, growth factors, and hormones use the same STAT transcription factors, but exert different functions at the level of the cell, tissue, and organ would suggest significant shortcomings in the classical model. Our studies have resulted in the development of a non-canonical, more complex model of IFN signaling that bears a striking resemblance to that of steroid hormone (SH)/steroid receptor (SR) signaling. Thus, both types I and II IFN signaling involves nuclear translocation of complexed ligand, receptor, activated JAKs, and activated STATs to the promoters of the genes that are specifically activated by the IFNs, where they are involved in specific gene activation and epigenetic remodeling. Receptor intracellular domains play an important role in binding the C-terminus of the IFNs, which is the basis for our development of IFN mimetics. The IFN mimetics are not recognized by poxvirus decoy receptors, since the decoy receptors compete for extracellular binding and not intracellular binding. Further, the type I IFN mimetics provide therapeutic protection against experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis, without the side effects. Extracellular receptor binding by intact IFN is the primary reason for undesirable side effects of flu-like symptoms, bone-marrow suppression, and weight loss. The non-canonical model of IFN signaling thus provides insight into the specificity of such signaling and a mechanism for development of IFN mimetics. It is our contention that this model applies to other cytokines.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Microbiology and Cell Science; University of Florida; Gainesville, FL USA
| | - Howard M Johnson
- Department of Microbiology and Cell Science; University of Florida; Gainesville, FL USA
| |
Collapse
|
15
|
Muromoto R, Nakajima M, Hirashima K, Hirao T, Kon S, Shimoda K, Oritani K, Matsuda T. Jun activation domain-binding protein 1 (JAB1) is required for the optimal response to interferons. J Biol Chem 2013; 288:30969-79. [PMID: 24043623 DOI: 10.1074/jbc.m113.485847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Degradation of IFN receptor (IFNR) protein is one of the mechanisms to limit the extent of cellular responses to interferons. Tyrosine kinase 2 (TYK2), a JAK family kinase, has been reported to bind to and stabilize IFNR, indicating that TYK2 is a fundamental component of IFNR complex. Herein, we identified Jun activation domain-binding protein 1 (JAB1) as a new TYK2 binding partner and investigated its role in the regulation of IFN responses. siRNA knockdown of JAB1 resulted in suppression of IFN-induced phosphorylation of STAT proteins and their transcriptional activation. Importantly, JAB1 knockdown induced the activation of SCF ubiquitin ligase complex containing Cullin 1 (CUL1), as judged by the enhancement of covalent modification of CUL1 with the ubiquitin-like protein NEDD8, and markedly reduced the basal protein level of IFNR. In contrast, NEDD8 knockdown or inhibition of NEDD8 modification by NEDD8-activating enzyme inhibitor resulted in increased IFNR protein concomitantly with a reduction of NEDD8-modified CUL1. Furthermore, NEDD8-activating enzyme inhibitor treatment enhanced the susceptibility to IFN-α in HeLa cells. These data suggest that the NEDD8 modification pathway is involved in the proteolysis of IFNR and that JAB1 acts as a positive regulator of IFN responses by stabilizing IFNR through antagonizing the NEDD8 pathway.
Collapse
Affiliation(s)
- Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Johnson HM, Noon-Song EN, Dabelic R, Ahmed CM. IFN signaling: how a non-canonical model led to the development of IFN mimetics. Front Immunol 2013; 4:202. [PMID: 23898330 PMCID: PMC3722551 DOI: 10.3389/fimmu.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs). The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH) and insulin, and growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus activated kinase (JAK) family, phosphorylation and dimerization of the signal transducer and activator of transcription (STAT) transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone (SH)/steroid receptor (SR) signaling. We have shown that ligand, receptor, activated JAKs, and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The SH/SR nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and properties.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | | | | | | |
Collapse
|