1
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Bose A, Khalighinejad F, Hoaglin DC, Hemond CC. Evaluating the Clinical Utility of Epstein-Barr Virus Antibodies as Biomarkers in Multiple Sclerosis: A Systematic Review. Mult Scler Relat Disord 2024; 84:105410. [PMID: 38401201 DOI: 10.1016/j.msard.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND EBV is a necessary but not sufficient factor in the pathophysiology of multiple sclerosis (MS). EBV antibodies to the nuclear antigen (EBNA1) and viral capsid antigen (VCA) rise rapidly prior to MS disease manifestations, and their absence has clinical utility with a high negative predictive value. It remains unclear whether EBV levels act as prognostic, monitoring, or pharmacodynamic/response biomarkers. Substantial literature on this topic exists but has not been systematically reviewed. We hypothesized that EBV levels against EBNA1 and VCA are potential prognostic and monitoring biomarkers in MS, and that patient population, MS clinical phenotype, and EBV assay method may play important roles in explaining variation among study outcomes. METHODS We systematically searched PubMed and EMBASE from inception to April 1, 2022. After removal of duplicates, records were screened by abstract. Remaining full-text articles were reviewed. Clinical and MRI data were extracted from full-text articles for comparison and synthesis. RESULTS Searches yielded 696 unique results; 285 were reviewed in full, and 36 met criteria for data extraction. Heterogeneity in sample population, clinical outcome measures, assay methods and statistical analyses precluded a meta-analysis. EBV levels were not consistently associated with clinical disease markers including conversion from CIS to RRMS, neurological disability, or disease phenotype. Studies using repeated-measures design suggest that EBNA1 levels may temporarily reflect inflammatory disease activity as assessed by gadolinium-enhancing Magnetic Resonance Imaging (MRI) lesions. Limited data also suggest a decrease in EBV levels following initiation of certain disease-modifying therapies. CONCLUSION Heterogeneous methodology limited generalization and meta-analysis. EBV antibody levels are unlikely to represent prognostic biomarkers in MS. The areas of highest ongoing promise relate to diagnostic exclusion and pharmacodynamic/disease response. Use of EBV antibodies as biomarkers in clinical practice remains additionally limited by lack of methodological precision, reliability, and validation.
Collapse
Affiliation(s)
- Abigail Bose
- University of Massachusetts Chan Medical School.
| | | | | | | |
Collapse
|
3
|
Benavides D, Ebrahim A, Ravell JC, Lenardo M, Gahl WA, Toro C. Adult-onset neurodegeneration in XMEN disease. J Neuroimmunol 2024; 386:578251. [PMID: 38041964 PMCID: PMC10842803 DOI: 10.1016/j.jneuroim.2023.578251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND XMEN (X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV), and N-linked glycosylation defect) disease results from loss-of-function mutations in MAGT1, a protein that serves as a magnesium transporter and a subunit of the oligosaccharyltransferase (OST) complex. MAGT1 deficiency disrupts N-linked glycosylation, a critical regulator of immune function. XMEN results in recurrent EBV infections and a propensity for EBV-driven malignancies. Although XMEN is recognized as a systemic congenital disorder of glycosylation (CDG), its neurological involvement is rare and poorly characterized. CASES Two young men, ages 32 and 33, are described here with truncating mutations in MAGT1, progressive behavioral changes, and neurodegenerative symptoms. These features manifested well into adulthood. Both patients still presented with many of the molecular and clinical hallmarks of the typical XMEN patient, including chronic EBV viremia and decreased expression of NKG2D. CONCLUSION While previously unrecognized, XMEN may include prominent and disabling CNS manifestations. How MAGT1 deficiency directly or indirectly contributes to neurodegeneration remains unclear. Elucidating this mechanism may contribute to the understanding of neurodegeneration more broadly.
Collapse
Affiliation(s)
- Daniel Benavides
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| | - Anusha Ebrahim
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| | - Juan C Ravell
- Center for Allergy, Asthma, & Immune Disorders, Hackensack University Medical Center, Hackensack, NJ, USA; Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| | - Michael Lenardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| | - William A Gahl
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Comabella M, Tintore M, Sao Avilés A, Carbonell-Mirabent P, Malhotra S, Rovira A, Fissolo N, Lünemann JD, Montalban X. Increased cytomegalovirus immune responses at disease onset are protective in the long-term prognosis of patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:173-180. [PMID: 36344261 DOI: 10.1136/jnnp-2022-330205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE It remains unclear whether viral infections interfere with multiple sclerosis (MS) disease progression. We evaluated the prognostic role of antibody responses toward viruses determined at disease onset on long-term disease outcomes. METHODS Humoral immune responses against Epstein-Barr virus (EBV)-encoded nuclear antigen EBNA1, viral capsid antigen (VCA) and early antigen, and toward cytomegalovirus (HCMV), human herpesvirus 6 and measles were investigated in a cohort of 143 patients with MS for their association with long-term disability and inflammation disease outcomes. RESULTS Median (IQR) follow-up was 20 (17.2-22.8) years. In univariable analysis, increased HCMV levels were associated with a lower risk to Expanded Disability Status Scale 4.0 (HR 0.95; 95% CI 0.91 to 0.99; p=0.03), to develop a secondary progressive MS (HR 0.94; 95% CI 0.90 to 0.99; p=0.02) and to first-line treatment (HR 0.98; 95% CI 0.96 to 0.99; p=0.04). High HCMV IgG levels were associated with a longer time to first-line treatment (p=0.01). Increased immune responses against EBV-VCA were associated with higher risk for first-line (HR 1.45; 95% CI 1.12 to 1.88; p=0.005) and second-line treatments (HR 2.03; 95% CI 1.18 to 3.49; p=0.01), and high VCA IgG levels were associated with shorter time to first-line (p=0.004) and second-line (p=0.02) therapies. EBNA1-specific IgG levels correlated with disease severity (0.17; p=0.04) and with an increased relapse rate during follow-up (relapse rate 1.26; 95% CI 1.03 to 1.56; p=0.02) that remained stable in multivariable analysis. CONCLUSIONS These results indicate that elevated immune responses against HCMV at disease onset have protective effects on long-term disability and inflammation disease outcomes. Our data also indicate that increased immune responses against EBV in early phases may influence long-term disease prognosis.
Collapse
Affiliation(s)
- Manuel Comabella
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mar Tintore
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Augusto Sao Avilés
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pere Carbonell-Mirabent
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sunny Malhotra
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alex Rovira
- Servei de Neuroradiología, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Nicolás Fissolo
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jan D Lünemann
- Neurology, Faculty of Medicine, University of Münster, Munster, Germany
| | - Xavier Montalban
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
5
|
A hidden menace? Cytomegalovirus infection is associated with reduced cortical gray matter volume in major depressive disorder. Mol Psychiatry 2021; 26:4234-4244. [PMID: 33223520 PMCID: PMC8140068 DOI: 10.1038/s41380-020-00932-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with neuropathology in patients with impaired immunity and/or inflammatory diseases. However, the association between gray matter volume (GMV) and HCMV has never been examined in major depressive disorder (MDD) despite the presence of inflammation and impaired viral immunity in a subset of patients. We tested this relationship in two independent samples consisting of 179 individuals with MDD and 41 healthy controls (HC) (sample 1) and 124 MDD participants and 148 HCs (sample 2). HCMV positive (HCMV+) and HCMV negative (HCMV-) groups within each sample were balanced on up to 11 different clinical/demographic variables using inverse probability of treatment weighting. GMV of 87 regions was measured with FreeSurfer. There was a main effect of HCMV serostatus but not diagnosis that replicated across samples. Relative to HCMV- subjects, HCMV+ subjects in sample 1 showed a significant reduction of volume in six regions (puncorrected < 0.05). The reductions in GMV of the right supramarginal gyrus (standardized beta coefficient (SBC) = -0.26) and left fusiform gyrus (SBC = -0.25) in sample 1 were replicated in sample 2: right supramarginal gyrus (puncorrected < 0.05, SBC = -0.32), left fusiform gyrus (PFDR < 0.01, SBC = -0.51). Posthoc tests revealed that the effect of HCMV was driven by differences between the HCMV+ and HCMV- MDD subgroups. HCMV IgG level, a surrogate marker of viral activity, was correlated with GMV in the left fusiform gyrus (r = -0.19, Puncorrected = 0.049) and right supramarginal gyrus (r = -0.19, puncorrected = 0.043) in the HCMV+ group of sample 1. Conceivably, HCMV infection may be a treatable source of neuropathology in vulnerable MDD patients.
Collapse
|
6
|
Schnittman SR, Hunt PW. Clinical consequences of asymptomatic cytomegalovirus in treated human immunodeficency virus infection. Curr Opin HIV AIDS 2021; 16:168-176. [PMID: 33833209 PMCID: PMC8238090 DOI: 10.1097/coh.0000000000000678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Despite antiretroviral therapy (ART)-mediated viral suppression, people with human immunodeficiency virus (HIV) (PWH) have increased morbidity and mortality. Immune activation and inflammation persist on ART and predict these complications. Over 90% of PWH have cytomegalovirus (CMV) co-infection, and CMV is considered a plausible contributor to this persistent immune activation. RECENT FINDINGS A detailed understanding of the link between CMV and multimorbidity is needed, particularly as research moves toward identifying potential targeted therapeutics to attenuate inflammation-mediated morbidity and mortality in treated HIV. We review the literature on the association between CMV and immune activation as well as multiple end-organ complications including cardiovascular disease, venous thromboembolic disease, metabolic complications, gastrointestinal dysfunction, central nervous system involvement, birth sex-related differences, and the relation to the HIV reservoir. We conclude with a discussion of ongoing therapeutic efforts to target CMV. SUMMARY As CMV is a plausible driver of multiple comorbidities through persistent immune activation in treated HIV, future research is needed and planned to address its causal role as well as to test novel therapeutics in this setting.
Collapse
Affiliation(s)
- Samuel R Schnittman
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
7
|
Zheng H, Bergamino M, Ford BN, Kuplicki R, Yeh FC, Bodurka J, Burrows K, Hunt PW, Teague TK, Irwin MR, Yolken RH, Paulus MP, Savitz J. Replicable association between human cytomegalovirus infection and reduced white matter fractional anisotropy in major depressive disorder. Neuropsychopharmacology 2021; 46:928-938. [PMID: 33500556 PMCID: PMC8115597 DOI: 10.1038/s41386-021-00971-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Major depressive disorder (MDD) is associated with reductions in white matter microstructural integrity as measured by fractional anisotropy (FA), an index derived from diffusion tensor imaging (DTI). The neurotropic herpesvirus, human cytomegalovirus (HCMV), is a major cause of white matter pathology in immunosuppressed populations but its relationship with FA has never been tested in MDD despite the presence of inflammation and weakened antiviral immunity in a subset of depressed patients. We tested the relationship between FA and HCMV infection in two independent samples consisting of 176 individuals with MDD and 44 healthy controls (HC) (Discovery sample) and 88 participants with MDD and 48 HCs (Replication sample). Equal numbers of HCMV positive (HCMV+) and HCMV negative (HCMV-) groups within each sample were balanced on ten different clinical/demographic variables using propensity score matching. Anti-HCMV IgG antibodies were measured using a solid-phase ELISA. In the Discovery sample, significantly lower FA was observed in the right inferior fronto-occipital fasciculus (IFOF) in HCMV+ participants with MDD compared to HCMV- participants with MDD (cluster size 1316 mm3; pFWE < 0.05, d = -0.58). This association was confirmed in the replication sample by extracting the mean FA from this exact cluster and applying the identical statistical model (p < 0.05, d = -0.45). There was no significant effect of diagnosis or interaction between diagnosis and HCMV in either sample. The effect of chronic HCMV infection on white matter integrity may-in at-risk individuals-contribute to the psychopathology of depression. These findings may provide a novel target of intervention for a subgroup of patients with MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Maurizio Bergamino
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bart N Ford
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Peter W Hunt
- Department of Medicine, School of Medicine, The University of California, San Francisco, San Francisco, CA, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience at UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
8
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
9
|
Maple PA, Tanasescu R, Gran B, Constantinescu CS. A different response to cytomegalovirus (CMV) and Epstein–Barr virus (EBV) infection in UK people with multiple sclerosis (PwMS) compared to controls. J Infect 2020; 80:320-325. [DOI: 10.1016/j.jinf.2019.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023]
|
10
|
Teriflunomide's effect on humoral response to Epstein-Barr virus and development of cortical gray matter pathology in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101388. [PMID: 31525628 DOI: 10.1016/j.msard.2019.101388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Teriflunomide has been shown to slow cortical gray matter (GM) atrophy in patients with multiple sclerosis (MS). Previous work showed that higher levels of Epstein-Barr virus (EBV) are associated with greater development of cortical pathology in MS. OBJECTIVES To investigate whether the effect of teriflunomide on cortical volume loss in relapsing MS patients may be associated with the change in humoral response to EBV. METHODS This was a prospective, observational, single-blinded, longitudinal study of 30 relapsing MS patients, who started treatment with teriflunomide, and 20 age- and sex-matched healthy controls (HCs). Subjects were assessed at baseline, 6 and 12 months with clinical, MRI and EBV examinations. MRI outcomes included percent changes in cortical, GM, deep GM and whole brain volumes. Serum samples were analyzed for IgG antibodies titers against EBV viral capsid antigen (VCA) and nuclear antigen-1 (EBNA-1). RESULTS There were no significant differences in anti-VCA and anti-EBNA-1 IgG titers between MS patients and HC at baseline. However, over the 12-month follow-up, MS patients experienced a greater decrease in anti-EBNA-1 (-35.1, p = .003) and anti-VCA (-15.9, p = .05) IgG titers, whereas no significant changes were observed in HCs (-3.7 and -1.6, respectively). MS patients who showed the highest decrease in anti-EBV VCA and EBNA-1 IgG titers from baseline to follow-up, developed less cortical (p < .001 and p = .02) and GM volume loss (p = .004 for both), respectively. CONCLUSIONS Teriflunomide's effect on slowing cortical and GM volume loss may be mediated by its effect on altering humoral response to EBV.
Collapse
|
11
|
Zhao L, Wang B, Zhang W, Sun L. Effect of miR-499a-5p on damage of cardiomyocyte induced by hypoxia-reoxygenation via downregulating CD38 protein. J Cell Biochem 2019; 121:996-1004. [PMID: 31452254 DOI: 10.1002/jcb.29334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
The aim is to investigate the mechanism of miR-499a-5p on the damage of cardiomyocyte induced by hypoxia/reoxygenation. The activity of lactate dehydrogenase (LDH), apoptosis rate and the expression of miR-499a-5p and cluster of differentiation 38 (CD38) in hypoxia-reoxygenation model cells were detected by LDH Cytotoxicity Assay Kit, flow cytometry, real-time polymerase chain reaction, and Western blot analysis, respectively. Apoptosis, the activity of LDH was detected after overexpression of miR-499a-5p or silencing of CD38 in H9c2 cells. The target relationship between miR-499a-5p and CD38 was verified by Targetscan online prediction and dual-luciferase assay. Apoptosis, the activity of LDH was detected after overexpression of miR-499a-5p and CD38. Apoptosis, the activity of LDH and the expression of CD38 were increased (P < .05) while expression of miR-499a-5p was decreased (P < .05) in hypoxia/reoxygenation model cells. Apoptosis and the activity of LDH in H9c2 cells after overexpression of miR-499a-5p or silence of CD38 were decreased (P < .05). The results of Targetscan online prediction and dual-luciferase assay indicated that CD38 was a potential target gene of miR-499a-5p. Overexpression of CD38 could reverse the inhibition of miR-499a-5p on LDH activity and apoptosis in H9c2 cells. miR-499a-5p could relief the injury of cardiomyocytes induced by hypoxia/reoxygenation via targeting CD38.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Emergency, North China University of Science Technology of Science Technology Affiliated Hospital, Tangshan, China
| | - BaoHua Wang
- Department of Intensive Care Unit, North China University of Science Technology of Science Technology Affiliated Hospital, Tangshan, China
| | - WeiJia Zhang
- Department of Emergency, North China University of Science Technology of Science Technology Affiliated Hospital, Tangshan, China
| | - LiXia Sun
- Department of Emergency, North China University of Science Technology of Science Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
12
|
Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res 2019; 14:373-386. [PMID: 30539801 PMCID: PMC6334604 DOI: 10.4103/1673-5374.245462] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system characterized by inflammation, demyelination, and neuronal damage. Environmental and genetic factors are associated with the risk of developing MS, but the exact cause still remains unidentified. Epstein-Barr virus (EBV), vitamin D, and smoking are among the most well-established environmental risk factors in MS. Infectious mononucleosis, which is caused by delayed primary EBV infection, increases the risk of developing MS. EBV may also contribute to MS pathogenesis indirectly by activating silent human endogenous retrovirus-W. The emerging B-cell depleting therapies, particularly anti-CD20 agents such as rituximab, ocrelizumab, as well as the fully human ofatumumab, have shown promising clinical and magnetic resonance imaging benefit. One potential effect of these therapies is the depletion of memory B-cells, the primary reservoir site where EBV latency occurs. In addition, EBV potentially interacts with both genetic and other environmental factors to increase susceptibility and disease severity of MS. This review examines the role of EBV in MS pathophysiology and summarizes the recent clinical and radiological findings, with a focus on B-cells and in vivo imaging. Addressing the potential link between EBV and MS allows the better understanding of MS pathogenesis and helps to identify additional disease biomarkers that may be responsive to B-cell depleting intervention.
Collapse
Affiliation(s)
- Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Cencioni MT, Magliozzi R, Nicholas R, Ali R, Malik O, Reynolds R, Borsellino G, Battistini L, Muraro PA. Programmed death 1 is highly expressed on CD8 + CD57 + T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein-Barr virus. Immunology 2017; 152:660-676. [PMID: 28767147 DOI: 10.1111/imm.12808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence points to a deregulated response to Epstein-Barr virus (EBV) in the central nervous system of patients with multiple sclerosis (MS) as a possible cause of disease. We have investigated the response of a subpopulation of effector CD8+ T cells to EBV in 36 healthy donors and in 35 patients with MS in active and inactive disease. We have measured the expression of markers of degranulation, the release of cytokines, cytotoxicity and the regulation of effector functions by inhibitory receptors, such as programmed death 1 (PD-1) and human inhibitor receptor immunoglobulin-like transcript 2 (ILT2). We demonstrate that polyfunctional cytotoxic CD8+ CD57+ T cells are able to kill EBV-infected cells in healthy donors. In contrast, an anergic exhaustion-like phenotype of CD8+ CD57+ T cells with high expression of PD-1 was observed in inactive patients with MS compared with active patients with MS or healthy donors. Detection of CD8+ CD57+ T cells in meningeal inflammatory infiltrates from post-mortem MS tissue confirmed the association of this cell phenotype with the disease pathological process. The overall results suggest that ineffective immune control of EBV in patietns with MS during remission may be one factor preceding and enabling the reactivation of the virus in the central nervous system and may cause exacerbation of the disease.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Nicholas
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Rehiana Ali
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Omar Malik
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Reynolds
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo A Muraro
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
14
|
Gieß RM, Pfuhl C, Behrens JR, Rasche L, Freitag E, Khalighy N, Otto C, Wuerfel J, Brandt AU, Hofmann J, Eberspächer B, Bellmann-Strobl J, Paul F, Ruprecht K. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS One 2017; 12:e0175279. [PMID: 28388676 PMCID: PMC5384756 DOI: 10.1371/journal.pone.0175279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate the association of Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1) and viral capsid antigen (VCA) immunoglobulin (Ig)G antibodies in serum as well as EBV DNA load in saliva with radiological and clinical disease activity in patients with clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS). Methods EBNA-1 and VCA immunoglobulin (Ig)G antibodies were determined in serum of 100 patients with CIS/early RRMS and 60 healthy controls. EBV DNA load was measured in saliva of 48 patients and 50 controls. Patients underwent clinical assessment with the Expanded Disability Status Scale (EDSS) and 3 Tesla magnetic resonance imaging at baseline and after a median of 20 months of follow-up (n = 63 for MRI, n = 71 for EDSS). The association of EBV parameters with occurrence of a second relapse, indicating conversion to clinically definite MS (CDMS), was evaluated over a median of 35 months of follow-up after the first clinical event (n = 89). Results EBNA-1 IgG antibody frequency (p = 0.00005) and EBNA-1 and VCA IgG antibody levels (p<0.0001 for both) were higher in patients than in controls. EBV DNA load in saliva did not differ between groups. Neither EBV antibody levels nor DNA load in saliva were associated with baseline or follow-up number or volume of T2-weighted (T2w) or contrast enhancing lesions, number of Barkhof criteria or the EDSS, or with the number of new T2w lesions, T2w lesion volume change or EDSS change on follow-up. Likewise, levels of EBV IgG antibodies in serum and DNA load in saliva were not associated with conversion to CDMS. Conclusions While these findings confirm the association of EBV infection with early MS, neither EBNA-1 nor VCA IgG antibodies in serum nor EBV DNA load in saliva were associated with radiological or clinical disease activity in patients with CIS/early RRMS. These data are compatible with the concept that EBV may be a trigger for MS acting very early during the development of the disease.
Collapse
Affiliation(s)
- René M. Gieß
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Catherina Pfuhl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janina R. Behrens
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ludwig Rasche
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erik Freitag
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nima Khalighy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- MIAC AG and Dep. for Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin Charité-Vivantes GmbH, Berlin, Germany
- Institute of Medical Virology, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Eberspächer
- Labor Berlin Charité-Vivantes GmbH, Berlin, Germany
- Vivantes Klinikum Neukölln, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinical and Experimental Multiple Sclerosis Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Vanheusden M, Broux B, Welten SPM, Peeters LM, Panagioti E, Van Wijmeersch B, Somers V, Stinissen P, Arens R, Hellings N. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep 2017; 7:663. [PMID: 28386103 PMCID: PMC5428769 DOI: 10.1038/s41598-017-00645-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Cytomegalovirus (CMV) is a latent virus which causes chronic activation of the immune system. Here, we demonstrate that cytotoxic and pro-inflammatory CD4+CD28null T cells are only present in CMV seropositive donors and that CMV-specific Immunoglobulin (Ig) G titers correlate with the percentage of these cells. In vitro stimulation of peripheral blood mononuclear cells with CMVpp65 peptide resulted in the expansion of pre-existing CD4+CD28null T cells. In vivo, we observed de novo formation, as well as expansion of CD4+CD28null T cells in two different chronic inflammation models, namely the murine CMV (MCMV) model and the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis (MS). In EAE, the percentage of peripheral CD4+CD28null T cells correlated with disease severity. Pre-exposure to MCMV further aggravated EAE symptoms, which was paralleled by peripheral expansion of CD4+CD28null T cells, increased splenocyte MOG reactivity and higher levels of spinal cord demyelination. Cytotoxic CD4+ T cells were identified in demyelinated spinal cord regions, suggesting that peripherally expanded CD4+CD28null T cells migrate towards the central nervous system to inflict damage. Taken together, we demonstrate that CMV drives the expansion of CD4+CD28null T cells, thereby boosting the activation of disease-specific CD4+ T cells and aggravating autoimmune mediated inflammation and demyelination.
Collapse
Affiliation(s)
- Marjan Vanheusden
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bieke Broux
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Suzanne P M Welten
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Liesbet M Peeters
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Eleni Panagioti
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Bart Van Wijmeersch
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.,Rehabilitation and Multiple Sclerosis Centre, Overpelt, Belgium
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Ramon Arens
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Leiden, The Netherlands
| | - Niels Hellings
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
| |
Collapse
|
16
|
Uher T, Havrdova E, Sobisek L, Krasensky J, Vaneckova M, Seidl Z, Tyblova M, Ramasamy D, Zivadinov R, Horakova D. Is no evidence of disease activity an achievable goal in MS patients on intramuscular interferon beta-1a treatment over long-term follow-up? Mult Scler 2016; 23:242-252. [PMID: 27230790 DOI: 10.1177/1352458516650525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND No evidence of disease activity (NEDA) has been proposed as a new treatment goal in multiple sclerosis (MS). NEDA-3 status is defined as the absence of magnetic resonance imaging (MRI; new/enlarging/enhancing lesions and increased whole brain volume loss in NEDA-4) and clinical disease activity. OBJECTIVES To investigate the persistence of NEDA status over long-term follow-up in MS patients treated with weekly intramuscular interferon beta-1a. METHODS We included 192 patients after the first demyelinating event suggestive of MS, that is, clinically isolated syndrome (CIS) and 162 relapsing-remitting MS (RRMS) patients. RESULTS NEDA-3 status was observed in 40.1% of CIS and 20.4% of RRMS patients after 1 year. After 4 years, 10.1% of CIS patients had NEDA-3 status. After 10 years, none of the RRMS patients had NEDA-3 status. Only 4.6% of CIS and 1.0% of RRMS patients maintained NEDA-4 status after 4 years. Loss of NEDA-3 status after the first year was associated with a higher risk of disability progression (hazard ratio (HR) = 2.3-4.0; p = 0.005-0.03) over 6 years. CONCLUSIONS Despite intramuscular interferon beta-1a treatment, loss of NEDA status occurred in the vast majority of individuals. Loss of NEDA status during the first year was associated with disability progression over long-term follow-up; however, specificity for individual patient was low.
Collapse
Affiliation(s)
- Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Lukas Sobisek
- Department of Statistics and Probability, University of Economics in Prague, Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Zdenek Seidl
- Department of Radiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Michaela Tyblova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| | - Deepa Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/MR Imaging Clinical Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
17
|
Zivadinov R, Cerza N, Hagemeier J, Carl E, Badgett D, Ramasamy DP, Weinstock-Guttman B, Ramanathan M. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e190. [PMID: 26770996 PMCID: PMC4708926 DOI: 10.1212/nxi.0000000000000190] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022]
Abstract
Objective: Because dysregulated Epstein-Barr virus (EBV)-infected B cells may induce meningeal inflammation, which contributes to cortical pathology in multiple sclerosis (MS), we investigated associations between antibody responses to EBV and development of cortical pathology in MS. Methods: We included 539 patients with MS (369 with relapsing-remitting MS, 135 with secondary progressive MS, and 35 with primary progressive MS), 66 patients with clinically isolated syndrome (CIS), 63 patients with other neurologic diseases (OND), and 178 age- and sex-matched healthy controls (HC). All participants were scanned on 3T MRI. Serum samples were analyzed for IgG antibodies against EBV viral capsid antigen (VCA) and EBV nuclear antigen-1 (EBNA-1), and their quartiles were determined on the whole study sample. Differences between the study groups were assessed using analysis of covariance adjusted for multiple comparisons. Results: More than 30% of patients with MS and CIS presented with the highest quartile of anti-EBV-VCA and -EBNA-1 status compared to ≤10% of HC (p < 0.001). The figures were 9 (14.3%) and 7 (12.3%) for patients with OND. Patients with MS with the highest quartile of anti-EBV-VCA showed significantly increased T2 lesion volume (p = 0.001), T1 lesion number (p = 0.002), and T1 lesion volume (p = 0.04) and decreased gray matter (p = 0.041) and cortical (p = 0.043) volumes compared to patients with MS with lower quartiles. No significant differences of MRI outcomes in patients with CIS, patients with OND, and HC with lower or highest quartiles of anti-EBV-VCA and -EBNA-1 were detected. Conclusions: Humoral response to anti-EBV-VCA and -EBNA-1 is associated with more advanced cortical atrophy, accumulation of chronic T1 black holes, and focal white matter lesions in patients with MS.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Nicole Cerza
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Ellen Carl
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Darlene Badgett
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Bianca Weinstock-Guttman
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| | - Murali Ramanathan
- Buffalo Neuroimaging Analysis Center (R.Z., D.B., M.R.) and Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology; MR Imaging Clinical Translational Research Center (R.Z., N.C., J.H., E.C., D.P.R., M.R.), School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY; and Department of Pharmaceutical Sciences (M.R.), State University of New York, Buffalo, NY
| |
Collapse
|
18
|
Malyavantham K, Weinstock-Guttman B, Suresh L, Zivadinov R, Shanahan T, Badgett D, Ramanathan M. Humoral Responses to Diverse Autoimmune Disease-Associated Antigens in Multiple Sclerosis. PLoS One 2015; 10:e0129503. [PMID: 26065913 PMCID: PMC4466031 DOI: 10.1371/journal.pone.0129503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/09/2015] [Indexed: 01/18/2023] Open
Abstract
To compare frequencies of autoreactive antibody responses to endogenous disease-associated antigens in healthy controls (HC), relapsing and progressive MS and to assess their associations with clinical and MRI measures of MS disease progression.
Collapse
Affiliation(s)
| | | | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, State University of New York, Buffalo, NY, United States of America
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States of America
| | | | - Darlene Badgett
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States of America
| | - Murali Ramanathan
- Department of Neurology, State University of New York, Buffalo, NY, United States of America
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
19
|
Vanheusden M, Stinissen P, ’t Hart BA, Hellings N. Cytomegalovirus: a culprit or protector in multiple sclerosis? Trends Mol Med 2015; 21:16-23. [DOI: 10.1016/j.molmed.2014.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
|