1
|
Katewongsa KP, Manohong P, Trangan Y, Palakai R, Mysook S, Mantim T, Saonuam P, Katewongsa P. Determination of 3-hydroxyanthranilic acid in the sweat of healthy older adults. Sci Rep 2024; 14:25396. [PMID: 39455712 PMCID: PMC11511813 DOI: 10.1038/s41598-024-76956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
3-Hydroxyanthranillic acid (3HAA) is one of the key metabolites from the tryptophan (TRP) metabolism pathway and is associated with aging, age-associated diseases, and healthy lifespan extension. This study aims to detect 3HAA in the sweat of healthy older adults using simple, high-performance liquid chromatography (HPLC) method. Chromatographic separation using 20 mmol/L sodium acetate, 3 mmol/L zinc acetate, and 7% (v/v) acetonitrile as mobile phase is possible to simultaneous detect 3HAA, KYN, and TRP with UV and fluorescence detection, respectively, under 6 min. This method demonstrated excellent linearity with coefficient of determination (r2) greater than 0.998 for all analytes. The linear range were 0.05-6 µg/mL for TRP, 0.1-6 µg/mL for KYN and 0.2-6 µg/mL for 3HAA. Percentage recoveries from spiked in human sweat ranged from 90 ± 7-101 ± 3 for TRP, 86 ± 1-92 ± 3 for KYN, and 96 ± 1-103 ± 4 for 3HAA. The precision (%RSD) of repeatability and reproducibility is less than 3% and 6%, respectively. This method was used in a cross-sectional study with 81 participants aged 50-79 years, selected randomly from a local primary healthcare hospital's sampling frame. A detectable amount of 3HAA was observed in all sweat samples, marking the first report of 3HAA presence in human sweat. Additionally, the results revealed that the 3HAA sweat levels increased with age analyzed in three different age groups ranging from 50-59, 60-69, and 70-79. These findings enhance our understanding of sweat profiles and their correlation with aging, potentially further improving early diagnosis, disease monitoring, and development of customized treatment programs for older adults.
Collapse
Affiliation(s)
| | - Preeyanuch Manohong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yaowapa Trangan
- Thailand Physical Activity Knowledge Development Centre (TPAK), Institute for Population and Social Research, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Rungrat Palakai
- Thailand Physical Activity Knowledge Development Centre (TPAK), Institute for Population and Social Research, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
- Ubon Ratchathani Provincial Health Office, Muang district, Ubon Ratchathani, 34000, Thailand
| | - Sirinapa Mysook
- Sisaket Provincial Public Health Office, Muang district, Sisaket, 33000, Thailand
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Thitirat Mantim
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit23, Bangkok, 10110, Thailand
| | - Pairoj Saonuam
- Thai Health Promotion Foundation, Thung Maha Mek, Sathon, Bangkok, 10120, Thailand
| | - Piyawat Katewongsa
- Thailand Physical Activity Knowledge Development Centre (TPAK), Institute for Population and Social Research, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
- Institute for Population and Social Research, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Guo J, Cheng H, Wang Z, Qiao M, Li J, Lyu J. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database. Front Neurol 2023; 14:1290117. [PMID: 38162445 PMCID: PMC10755941 DOI: 10.3389/fneur.2023.1290117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Sepsis-associated encephalopathy (SAE) is strongly linked to a high mortality risk, and frequently occurs in conjunction with the acute and late phases of sepsis. The objective of this study was to construct and verify a predictive model for mortality in ICU-dwelling patients with SAE. Methods The study selected 7,576 patients with SAE from the MIMIC-IV database according to the inclusion criteria and randomly divided them into training (n = 5,303, 70%) and internal validation (n = 2,273, 30%) sets. According to the same criteria, 1,573 patients from the eICU-CRD database were included as an external test set. Independent risk factors for ICU mortality were identified using Extreme Gradient Boosting (XGBoost) software, and prediction models were constructed and verified using the validation set. The receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were used to evaluate the discrimination ability of the model. The SHapley Additive exPlanations (SHAP) approach was applied to determine the Shapley values for specific patients, account for the effects of factors attributed to the model, and examine how specific traits affect the output of the model. Results The survival rate of patients with SAE in the MIMIC-IV database was 88.6% and that of 1,573 patients in the eICU-CRD database was 89.1%. The ROC of the XGBoost model indicated good discrimination. The AUCs for the training, test, and validation sets were 0.908, 0.898, and 0.778, respectively. The impact of each parameter on the XGBoost model was depicted using a SHAP plot, covering both positive (acute physiology score III, vasopressin, age, red blood cell distribution width, partial thromboplastin time, and norepinephrine) and negative (Glasgow Coma Scale) ones. Conclusion A prediction model developed using XGBoost can accurately predict the ICU mortality of patients with SAE. The SHAP approach can enhance the interpretability of the machine-learning model and support clinical decision-making.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Hongtao Cheng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Zicheng Wang
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengmeng Qiao
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Jing Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H. Altered Tryptophan-Kynurenine Pathway in Delirium: A Review of the Current Literature. Int J Mol Sci 2023; 24:5580. [PMID: 36982655 PMCID: PMC10056900 DOI: 10.3390/ijms24065580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
Collapse
Affiliation(s)
- Ang Hui Phing
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Anti- E. coli Immunoglobulin Yolk (IgY): Reduction of pathogen receptors and inflammation factors could be caused by decrease in E. coli load. Heliyon 2023; 9:e13876. [PMID: 36873547 PMCID: PMC9982617 DOI: 10.1016/j.heliyon.2023.e13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Graft versus host disease (GVHD) remains the major cause of morbidity and mortality after allogeneic stem cell transplantation, especially for intestinal GVHD, as steroid resistant GVHD results in high mortality. For this reason, new treatments of GVHD are needed. One approach is the reduction of pathogenic bacteria using anti-E. coli Immunoglobulin Yolk (IgY). In a haploidentical murine model, B6D2F1 mice conditioned with total body irradiation (TBI), received bone marrow cells (BM) and splenocytes (SC) from either syngeneic (Syn = B6D2F1) or allogeneic (Allo = C57BL/6) donors. Following this, animals received from day -2 until day +28 chow contained IgY or control chow. Thereafter the incidence and severity of aGVHD, the cytokines, chemokines, IDO1 and different pathogen-recognition receptors (PRR) were analyzed and compared to control animals (received chow without IgY). We found that animals receiving chow with IgY antibody showed reduced GVHD severity compared to control animals. On day28 after alloBMT, IDO, NOD2, TLR2, TLR4 and the inflammatory chemokine CCL3, were reduced in the colon and correlated with a significant decrease in E. coli bacteria. In summary chow containing chicken antibodies (IgY) improved GVHD via decrease in bacterial load of E coli conducting to reduction of pathogen receptors (NOD2, TLR2 and 4), IDO, chemokines and cytokines.
Collapse
|
6
|
Zhong X, Wang Y, Liu D, Liang Y, Liu W, Huang Y, Xie L, Cao W, Xu Y, Chen L. HC067047 Ameliorates Sepsis-associated Encephalopathy by Suppressing Endoplasmic Reticulum Stress and Oxidative Stress-Induced Pyroptosis in the Hippocampi of Mice. Neuroscience 2023; 517:117-127. [PMID: 36805006 DOI: 10.1016/j.neuroscience.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis and is characterized by hyperneuroinflammation. NLRP3 inflammasome-mediated pyroptosis can induce an inflammatory cascade response and plays a key role in SAE. TRPV4 is involved in the hyperinflammatory response associated with inflammation; however, whether TRPV4 inhibition might alleviate SAE-related brain damage is still unknown. Therefore, we aimed to investigate the role and mechanism of HC067047, a potent inhibitor of TRPV4, in hyperneuroinflammation and blood-brain barrier (BBB) dysfunction in a lipopolysaccharide (LPS)-induced SAE mouse model. We found that HC067047 administration significantly inhibited the expression of TRPV4 and p-CamkIIα in the hippocampi of SAE mice. Furthermore, HC067047 treatment attenuated LPS-induced endoplasmic reticulum (ER) stress and oxidative stress (OS), thus remarkably preventing NLRP3 inflammasome-mediated pyroptosis, as well as the expression of proinflammatory factors (IL-1β and IL-18). Additionally, we found that HC067047 selectively prevented pyroptosis in hippocampal cells, mainly the neurons, oligodendrocytes and the resident microglia. The disruption of BBB integrity in SAE mice was also rescued by HC067047 intervention. Thus, we can conclude that the TRPV4 inhibitor HC067047 could protect against hippocampal cell pyroptosis, which might be due to the attenuation of the NLRP3 inflammasome-mediated pyroptosis pathway caused by ER stress and OS. Our findings suggest a potential preventive role for HC067047 in SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yajuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Dandan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yue Liang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - WenJia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yanmei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lihua Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Watne LO, Pollmann CT, Neerland BE, Quist-Paulsen E, Halaas NB, Idland AV, Hassel B, Henjum K, Knapskog AB, Frihagen F, Raeder J, Godø A, Ueland PM, McCann A, Figved W, Selbæk G, Zetterberg H, Fang EF, Myrstad M, Giil LM. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J Clin Invest 2023; 133:163472. [PMID: 36409557 PMCID: PMC9843060 DOI: 10.1172/jci163472] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUNDThe kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.METHODSWe undertook a multicenter observational study with 586 hospitalized patients (248 with delirium) and investigated associations between delirium and KP metabolites measured in cerebrospinal fluid (CSF) and serum by targeted metabolomics. We also explored associations between KP metabolites and markers of neuronal damage and 1-year mortality.RESULTSIn delirium, we found concentrations of the neurotoxic metabolite quinolinic acid in CSF (CSF-QA) (OR 2.26 [1.78, 2.87], P < 0.001) to be increased and also found increases in several other KP metabolites in serum and CSF. In addition, CSF-QA was associated with the neuronal damage marker neurofilament light chain (NfL) (β 0.43, P < 0.001) and was a strong predictor of 1-year mortality (HR 4.35 [2.93, 6.45] for CSF-QA ≥ 100 nmol/L, P < 0.001). The associations between CSF-QA and delirium, neuronal damage, and mortality remained highly significant following adjustment for confounders and multiple comparisons.CONCLUSIONOur data identified how systemic inflammation, neurotoxicity, and delirium are strongly linked via the KP and should inform future delirium prevention and treatment clinical trials that target enzymes of the KP.FUNDINGNorwegian Health Association and South-Eastern Norway Regional Health Authorities.
Collapse
Affiliation(s)
- Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine and
| | | | | | | | | | - Ane-Victoria Idland
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Department of Anesthesiology, Akershus University Hospital, Lørenskog, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Kristi Henjum
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Frede Frihagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Orthopaedic Surgery, Østfold Hospital Trust, Grålum, Norway
| | - Johan Raeder
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Aasmund Godø
- Department of Anesthesiology, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Wender Figved
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Orthopaedic Department, Bærum Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Geir Selbæk
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lasse M. Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Heimberger AB, Lukas RV. The kynurenine pathway implicated in patient delirium: possible indications for indoleamine 2,3 dioxygenase inhibitors. J Clin Invest 2023; 133:164577. [PMID: 36647830 PMCID: PMC9843043 DOI: 10.1172/jci164577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tryptophan (Trp) metabolism plays a central role in sleep, mood, and immune system regulation. The kynurenine pathway (KP), which is regulated by the enzymes tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO), which catalyze the conversion of Trp to kynurenine (Kyn), facilitates immune regulation and influences neurocognition. Notably, Kyn metabolites bind the N-methyl-d-aspartate receptor (NMDAR), essential for memory encoding, and in turn, cognition. Aberrant NMDAR activity through agonist binding influences excitability and cell death. In this issue of the JCI, Watne and authors demonstrate that KP pathway end products were elevated in the serum and the cerebrospinal fluid (CSF) of subjects with delirium. This observation provides insight regarding the basis of a variety of commonly observed clinical conditions including sundowning, abnormal sleep-wake cycles in hospitalized patients, neurodegenerative cognitive impairment, radiation-induced cognitive impairment, neurocognitive symptomatology related to COVID-19, and clinical outcomes observed in patients with CNS tumors, such as gliomas.
Collapse
|
9
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
10
|
Browne CA, Clarke G, Fitzgerald P, O'Sullivan J, Dinan TG, Cryan JF. Distinct post-sepsis induced neurochemical alterations in two mouse strains. Brain Behav Immun 2022; 104:39-53. [PMID: 35569797 DOI: 10.1016/j.bbi.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis associated encephalopathy, occurs in 70% of severe septic cases, following which survivors exhibit long-term cognitive impairment or global loss of cognitive function. Currently there is no clearly defined neurochemical basis of septic encephalopathy. Moreover, the lingering neurological complications associated with the severe acute respiratory syndrome CoV 2 (SARS-CoV-2) and the significant worsening in outcomes for those individuals with SARS-Cov-2 following sepsis underscore the need to define factors underlying the susceptibility to acute toxic encephalitis. In this study, differential neurochemical sequelae in response to sepsis (lipopolysaccharide (LPS)-induced endotoxemia and caecal ligation and puncture (CLP)), were evaluated in two inbred mouse strains, known to differ in behaviour, immune profile, and neurotransmitter levels, namely BALB/c and C57BL/6J. It was hypothesized that these strains would differ in sepsis severity, cytokine profile, peripheral tryptophan metabolism and central monoamine turnover. BALB/c mice exhibited more pronounced sickness behavioural scores, hypothermia, and significant upregulation of cytokines in the LPS model relative to C57BL/6J mice. Increased plasma kynurenine/tryptophan ratio, hippocampal serotonin and brainstem dopamine turnover were evident in both strains, but the magnitude was greater in BALB/c mice. In addition, CLP significantly enhanced kynurenine levels and hippocampal serotonergic and dopaminergic neurotransmission in C57BL/6J mice. Overall, these studies depict consistent changes in kynurenine, serotonin, and dopamine post sepsis. Further evaluation of these monoamines in the context of septic encephalopathy and cognitive decline is warranted. Moreover, these data suggest the continued evaluation of altered peripheral kynurenine metabolism as a potential blood-based biomarker of sepsis.
Collapse
Affiliation(s)
- Caroline A Browne
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Neuropharmacology Research Group, Department of Pharmacology & Therapeutics, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| |
Collapse
|
11
|
Bourhy L, Mazeraud A, Costa LHA, Levy J, Rei D, Hecquet E, Gabanyi I, Bozza FA, Chrétien F, Lledo PM, Sharshar T, Lepousez G. OUP accepted manuscript. Brain 2022; 145:1391-1409. [PMID: 35441215 PMCID: PMC9128826 DOI: 10.1093/brain/awab475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lena Bourhy
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Université Paris Cité, Collège doctoral, F-75005 Paris, France
| | - Aurélien Mazeraud
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Université Paris Cité, Collège doctoral, F-75005 Paris, France
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuro-anesthésie réanimation, Paris, France
| | - Luis H. A. Costa
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jarod Levy
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Damien Rei
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Estéban Hecquet
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Ilana Gabanyi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Microenvironment and Immunity Unit, F-75015 Paris, France
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas (INI), OswaldoCruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Fabrice Chrétien
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuropathologie, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Correspondence may also be addressed to: Pierre-Marie Lledo E-mail:
| | - Tarek Sharshar
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuro-anesthésie réanimation, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Correspondence to: Gabriel Lepousez Laboratory for Perception and Memory Institut Pasteur 25 rue du Docteur Roux, 75724 Paris Cedex 15, France E-mail:
| |
Collapse
|
12
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
13
|
Gu M, Mei XL, Zhao YN. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotox Res 2020; 39:489-503. [PMID: 32876918 DOI: 10.1007/s12640-020-00270-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Sepsis-associated cerebral dysfunction is complex pathophysiology, generated from primary infections that are developed elsewhere in the body. The neonates, elderly population and chronically ill and long-term hospitalized patients are predominantly vulnerable to sepsis and related cerebral damage. Generally, electrophysiological recordings, severity and sedation scales, computerized imaging and spectroscopy techniques are used for its detection and diagnosis. About the underlying mechanisms, enhanced blood-brain barrier permeability and metalloprotease activity, tight junction protein loss and endothelial cell degeneration promote the influx of inflammatory and toxic mediators into the brain, triggering cerebrovascular damage. An altered neutrophil count and phenotype further dysregulate the normal neuroimmune responses and neuroendocrine stability via modulated activation of protein kinase C-delta, nuclear factor kappa-B and sphingolipid signaling. Glial activation, together with pro-inflammatory cytokines and chemokines and the Toll-like receptor, destabilize the immune system. Moreover, superoxides and hydroperoxides generate oxidative stress and perturb mitochondrial dynamics and ATP synthesis, propagating neuronal injury cycle. Activated mitochondrial apoptotic pathway, characterized by increased caspase-3 and caspase-9 cleavage and Bax/Bcl2 ratio in the hippocampal and cortical neurons, stimulate neurocognitive impairments. Additionally, altered LC3-II/I and P62/SQSTM1, p-mTOR, p-AMPK1 and p-ULK1 levels and dysregulated autophagosome-lysosome fusion decrease neuronal and glial energy homeostasis. The therapies and procedures for attenuating sepsis-induced brain damage include early resuscitation, cerebral blood flow autoregulation, implantable electric vagus nerve stimulation, antioxidants, statins, glucocorticoids, neuroimmune axis modulators and PKCδ inhibitors. The current review enumerates the pathophysiology of sepsis-induced brain damage, its diagnosis, the role of critical inducers and mediators and, ultimately, therapeutic measures attenuating cerebrovascular degeneration.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xiang-Lin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Ya-Nan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
14
|
Phan DH, Shin EJ, Jeong JH, Tran HQ, Sharma N, Nguyen BT, Jung TW, Nah SY, Saito K, Nabeshima T, Kim HC. Lithium attenuates d-amphetamine-induced hyperlocomotor activity in mice via inhibition of interaction between cyclooxygenase-2 and indoleamine-2,3-dioxygenase. Clin Exp Pharmacol Physiol 2020; 47:790-797. [PMID: 31883280 DOI: 10.1111/1440-1681.13243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated whether mood stabilizer lithium (Li) protects against d-amphetamine (AMP)-induced mania-like behaviours via modulating the novel proinflammatory potential. Repeated treatment with AMP resulted in significant increases in proinflammatory cyclooxygenase-2 (COX-2) and indolemaine-2,3-dioxygenase-1 (IDO)-1 expression in the prefrontal cortex (PFC) of mice. However, AMP treatment did not significantly change IDO-2 and 5-lipoxygenase (5-LOX) expression, suggesting that proinflammatory parameters such as COX-2 and IDO-1 are specific for AMP-induced behaviours. AMP-induced initial expression of COX-2 (15 minutes post-AMP) was earlier than that of IDO-1 (1 hour post-AMP). Mood stabilizer Li and COX-2 inhibitor meloxicam significantly attenuated COX-2 expression 15 minutes post-AMP, whereas IDO-1 inhibitor 1-methyl-DL-tryptophan (1-MT) did not affect COX-2 expression. However, AMP-induced IDO-1 expression was significantly attenuated by Li, meloxicam or 1-MT, suggesting that COX-2 is an upstream molecule for the induction of IDO-1 caused by AMP. Consistently, co-immunoprecipitation between COX-2 and IDO-1 was observed at 30 minutes, 1, 3, and 6 hours after the final AMP treatment. This interaction was also significantly inhibited by Li, meloxicam or 1-MT. Furthermore, AMP-induced hyperlocomotion was significantly attenuated by Li, meloxicam or 1-MT. We report, for the first time, that mood stabilizer Li attenuates AMP-induced mania-like behaviour via attenuation of interaction between COX-2 and IDO-1, and that the interaction of COX-2 and IDO-1 may be critical for the therapeutic intervention mediated by mood stabilizer.
Collapse
Affiliation(s)
- Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
15
|
Tran HQ, Shin EJ, Saito K, Tran TV, Phan DH, Sharma N, Kim DW, Choi SY, Jeong JH, Jang CG, Cheong JH, Nabeshima T, Kim HC. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem Toxicol 2019; 136:110986. [PMID: 31760073 DOI: 10.1016/j.fct.2019.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
It is recognized that d-amphetamine (AMPH)-induced hyperactivity is thought to be a valid animal model of mania. In the present study, we investigated whether a proinflammatory oxidative gene indoleamine-2,3-dioxygenase (IDO) is involved in AMPH-induced mitochondrial burden, and whether mood stabilizers (i.e., lithium and valproate) modulate IDO to protect against AMPH-induced mania-like behaviors. AMPH-induced IDO-1 expression was significantly greater than IDO-2 expression in the prefrontal cortex of wild type mice. IDO-1 expression was more pronounced in the mitochondria than in the cytosol. AMPH treatment activated intra-mitochondrial Ca2+ accumulation and mitochondrial oxidative burden, while inhibited mitochondrial membrane potential and activity of the mitochondrial complex (I > II), mitochondrial glutathione peroxidase, and superoxide dismutase, indicating that mitochondrial burden might be contributable to mania-like behaviors induced by AMPH. The behaviors were significantly attenuated by lithium, valproate, or IDO-1 knockout, but not in IDO-2 knockout mice. Lithium, valproate administration, or IDO-1 knockout significantly attenuated mitochondrial burden. Neither lithium nor valproate produced additive effects above the protective effects observed in IDO-1 KO in mice. Collectively, our results suggest that mood stabilizers attenuate AMPH-induced mania-like behaviors via attenuation of IDO-1-dependent mitochondrial stress, highlighting IDO-1 as a novel molecular target for the protective potential of mood stabilizers.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
16
|
Solvang SEH, Nordrehaug JE, Aarsland D, Lange J, Ueland PM, McCann A, Midttun Ø, Tell GS, Giil LM. Kynurenines, Neuropsychiatric Symptoms, and Cognitive Prognosis in Patients with Mild Dementia. Int J Tryptophan Res 2019; 12:1178646919877883. [PMID: 31632053 PMCID: PMC6769202 DOI: 10.1177/1178646919877883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction: Circulating tryptophan (Trp) and its downstream metabolites, the kynurenines,
are potentially neuroactive. Consequently, they could be associated with
neuropsychiatric symptoms and cognitive prognosis in patients with
dementia. Objective: The objective of this study was to assess associations between circulating
kynurenines, cognitive prognosis, and neuropsychiatric symptoms. Methods: We measured baseline serum Trp, neopterin, pyridoxal 5′-phosphate (PLP), and
9 kynurenines in 155 patients with mild dementia (90 with Alzheimer’s
disease, 65 with Lewy body dementia). The ratios between kynurenine and Trp
and kynurenic acid (KA) to kynurenine (KKR) were calculated. The Mini-Mental
State Examination (MMSE) and the Neuropsychiatric Inventory (NPI) were
administered at baseline and annually over 5 years. Associations between
baseline metabolite concentrations with MMSE and the NPI total score were
assessed using a generalized structural equation model (mixed-effects
multiprocess model), adjusted for age, sex, current smoking, glomerular
filtration rate, and PLP. Post hoc associations between KKRs and individual
NPI items were assessed using logistic mixed-effects models. False discovery
rate (0.05)–adjusted P values (Q values)
are reported. Results: Kynurenine had a nonlinear quadratic relationship with the intercept of the
MMSE scores over 5 years (Q < 0.05), but not with the
slope of MMSE decline. Kynurenine was associated with a higher NPI total
score over time (Q < 0.001). Post hoc, both KKR and KA
were associated with more hallucinations (Q < 0.05). Conclusions: Kynurenine has a complex relationship with cognition, where both low and high
levels were associated with poor cognitive performance. A higher KKR
indicated risk for neuropsychiatric symptoms, especially hallucinations.
Collapse
Affiliation(s)
- Stein-Erik Hafstad Solvang
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Johannes Lange
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research (CORE), University of Stavanger, Stavanger, Norway
| | | | | | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Lasse Melvaer Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Halaris A, Leonard BE. Unraveling the complex interplay of immunometabolic systems that contribute to the neuroprogression of psychiatric disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.npbr.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Solvang SEH, Nordrehaug JE, Tell GS, Nygård O, McCann A, Ueland PM, Midttun Ø, Meyer K, Vedeler CA, Aarsland D, Refsum H, Smith AD, Giil LM. The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav Immun 2019; 75:155-162. [PMID: 30675874 DOI: 10.1016/j.bbi.2018.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Tryptophan, its downstream metabolites in the kynurenine pathway and neopterin have been associated with inflammation and dementia. We aimed to study the associations between plasma levels of these metabolites and cognitive function in community-dwelling, older adults. METHODS This cross-sectional study included 2174 participants aged 70-72 years of the community-based Hordaland Health Study. Tryptophan, kynurenine, neopterin and eight downstream kynurenines were measured in plasma. Kendrick Object Learning Test (KOLT), Digit Symbol Test (DST) and the Controlled Oral Word Association Test (COWAT) were all outcomes in standardized Zellner's regression. The Wald test of a composite linear hypothesis of an association with each metabolite was adjusted by the Bonferroni method. Age, body mass index, C-reactive protein, depressive symptoms, diabetes, education, glomerular filtration rate, hypertension, previous myocardial infarction, prior stroke, pyridoxal 5'phosphate, sex and smoking were considered as potential confounders. RESULTS Higher levels of the kynurenine-to-tryptophan ratio (KTR) and neopterin were significantly associated with poorer, overall cognitive performance (p < 0.002). Specifically, KTR was negatively associated with KOLT (β -0.08, p = 0.001) and COWAT (β -0.08, p = 0.001), but not with DST (β -0.03, p = 0.160). This pattern was also seen for neopterin (KOLT: β -0.07; p = 0.001; COWAT: β -0.06, p = 0.010; DST: β -0.01, p = 0.800). The associations were not confounded by the examined variables. No significant associations were found between the eight downstream kynurenines and cognition. CONCLUSION Higher KTR and neopterin levels, biomarkers of cellular immune activation, were associated with reduced cognitive performance, implying an association between the innate immune system, memory, and language.
Collapse
Affiliation(s)
- Stein-Erik Hafstad Solvang
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway.
| | - Jan Erik Nordrehaug
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Ottar Nygård
- Institute of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Department of Pharmacology, University of Oxford, UK
| | - A David Smith
- Department of Pharmacology, University of Oxford, UK
| | - Lasse Melvaer Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway
| |
Collapse
|
19
|
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J, Dal-Pizzol F. Long-Term Cognitive Outcomes After Sepsis: a Translational Systematic Review. Mol Neurobiol 2018; 56:186-251. [PMID: 29687346 DOI: 10.1007/s12035-018-1048-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | | | - Boomadevi Narendran
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Amanda Della Giustina
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
20
|
The p75 neurotrophin receptor might mediate sepsis-induced synaptic and cognitive impairments. Behav Brain Res 2018; 347:339-349. [PMID: 29604364 DOI: 10.1016/j.bbr.2018.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Systemic inflammation induces cognitive impairment, yet the mechanism involved in this process is unclear. Neurotrophin receptor p75 (p75NTR) signaling is a key pathological factor contributing to neurobehavioral abnormalities in many neurodegenerative diseases. However, the role of p75NTR signaling in the regulation of sepsis-induced cognitive impairment remains largely to be elucidated. In this study, systemic inflammation was induced by cecal ligation and puncture (CLP). Neurobehavioral performances were evaluated by open field, novel object recognition, and fear conditioning tests. The expressions of proinflammatory cytokines (tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10), apoptosis marker cleaved caspase-3, ionized calcium binding adaptor molecule 1 (IBA1), proBDNF, p75NTR, c-Jun N-terminal kinase (JNK), and pJNK in the hippocampus were determined by enzyme-linked immunosorbent assay, western blot analysis, and immunofluorescence. The synaptic marker in the CA1 region of the hippocampus was assessed by Golgi staining. In the present study, we showed that systemic inflammation induced cognitive impairment, which was accompanied by increased expressions of hippocampcal proBDNF and p75NTR. Of note, we found that LM11A-31, an orally available, blood-brain barrier-permeant small-molecule p75NTR signaling modulator significantly reversed the sepsis-induced cognitive impairment and restored most of the abnormal biochemical parameters. Taken together, our study suggests that proBDNF/p75NTR signaling pathway might play a key role in the development of sepsis-induced cognitive impairment, whereas specific p75NTR inhibitor may provide a novel therapeutic approach for this disorder and possible other neurodegenerative diseases.
Collapse
|
21
|
Bellaver B, Dos Santos JP, Leffa DT, Bobermin LD, Roppa PHA, da Silva Torres IL, Gonçalves CA, Souza DO, Quincozes-Santos A. Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player. Mol Neurobiol 2017; 55:2685-2695. [PMID: 28421541 DOI: 10.1007/s12035-017-0526-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
Severe systemic inflammation has strong effects on brain functions, promoting permanent neurocognitive dysfunction and high mortality rates. Additionally, hippocampal damage seems to be directly involved in this process and astrocytes play an important role in neuroinflammation and in the neuroimmune response. However, the contribution of the astrocytes to the pathology of acute brain dysfunction is not well understood. Recently, our group established a protocol for obtaining astrocyte cultures from mature brain to allow the characterization of these cells and their functions under pathologic conditions. The present study was designed to characterize astrocyte function after acute systemic inflammation induced by cecal ligation and perforation (CLP). Hippocampal astrocyte cultures from CLP animals presented increased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cyclooxygenase-2 and decreased levels of IL-10. This proinflammatory profile was accompanied by an increase in Toll-like receptor (TLR)2 mRNA expression levels and no change either in TLR4 or in vascular endothelial growth factor (VEGF) gene expression. These alterations were associated with increased expressions of p21, nuclear factor kappa B (NFκB), and inducible nitric oxide synthase (iNOS) in astrocytes from CLP animals. The same parameters were also evaluated in whole hippocampal tissue, but differences in this profile were found compared to hippocampal astrocyte cultures from CLP, reflecting an interaction between other central nervous system cell types, which may mask specific astrocytic changes. These results improve our understanding of the mechanisms by which astrocytes react against systemic inflammation, and suggest these cells to be potential targets for therapeutic modulation.
Collapse
Affiliation(s)
- Bruna Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - João Paulo Dos Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Douglas Teixeira Leffa
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Paola Haack Amaral Roppa
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Iraci Lucena da Silva Torres
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
22
|
Moon PK, Minhas PS. Reevaluating the role of IDO1: Examining NAD+ metabolism in inflammation. J Neuroimmunol 2017; 307:31-32. [PMID: 28495134 DOI: 10.1016/j.jneuroim.2017.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Peter Kim Moon
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Paras Singh Minhas
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|