1
|
Sparaco M, Bonavita S. Vitamin D Supplementation: Effect on Cytokine Profile in Multiple Sclerosis. J Clin Med 2024; 13:835. [PMID: 38337529 PMCID: PMC10856360 DOI: 10.3390/jcm13030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Vitamin D is known for its role in modulating calcium and phosphate homeostasis and is implicated both in bone mineralization and immune system regulation. The immune-modulatory role of vitamin D and its impact on multiple sclerosis (MS) courses are still debated. The aim of this review was to check the effect of vitamin D supplementation on cytokine profile regulation in people with MS. A significant increase in serum concentrations of interleukin (IL)-10 and Transforming growth factor (TGF)-β1 after vitamin D supplementation was demonstrated in most studies, with some of them reporting a reduction in disability scores after vitamin D supplementation and an inverse correlation between IL-10 levels and disability. The effect of vitamin D on the serum levels of IL-17 and IL-6 was controversial; different results across studies could be explained by a variability in the treatment duration, route, and frequency of administration, as well as the dosage of vitamin D supplementation, responses to vitamin D treatment and the serum levels reached with supplementation, including the methods used for cytokine analysis and the different cell types investigated, the MS phenotype, the disease phase (active vs. non-active) and duration, and concomitant treatment with disease-modifying therapies. Nevertheless, the significant increase in the serum concentrations of IL-10 and TGF-β1, demonstrated in most studies, suggests an anti-inflammatory effect of vitamin D supplementation.
Collapse
Affiliation(s)
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| |
Collapse
|
2
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
3
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Peerlings D, Mimpen M, Damoiseaux J. The IL-2 - IL-2 receptor pathway: Key to understanding multiple sclerosis. J Transl Autoimmun 2022; 4:100123. [PMID: 35005590 PMCID: PMC8716671 DOI: 10.1016/j.jtauto.2021.100123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The development, progression, diagnosis and treatment of autoimmune diseases, such as multiple sclerosis (MS), are convoluted processes which remain incompletely understood. Multiple studies demonstrated that the interleukin (IL)-2 – IL-2 receptor (IL-2R) pathway plays a pivotal role within these processes. The most striking functions of the IL-2 – IL-2R pathway are the differential induction of autoimmune responses and tolerance. This paradoxical function of the IL-2 – IL-2R pathway may be an attractive therapeutic target for autoimmune diseases such as MS. However, the exact mechanisms that lead to autoimmunity or tolerance remain to be elucidated. Furthermore, another factor of this pathway, the soluble form of the IL-2R (sIL-2R), further complicates understanding the role of the IL-2 – IL-2R pathway in MS. The challenge is to unravel these mechanisms to prevent, diagnose and recover MS. In this review, first, the current knowledge of MS and the IL-2 – IL-2R pathway are summarized. Second, the key findings of the relation between the IL-2 – IL-2R pathway and MS have been highlighted. Eventually, this review may launch broad interest in the IL-2 – IL-2R pathway propelling further research in autoimmune diseases, including MS. The IL-2 – IL-2R pathway determines the balance between immunity and tolerance. The IL-2 – IL-2R pathway is involved in the pathogenesis of multiple sclerosis. The role of soluble IL-2R is controversial and requires further investigation.
Collapse
Affiliation(s)
- Daphne Peerlings
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
5
|
Mimpen M, Rolf L, Muris AH, Gerlach O, Poelmans G, Hupperts R, Smolders J, Damoiseaux J. NK/T cell ratios associate with interleukin-2 receptor alpha chain expression and shedding in multiple sclerosis. J Neuroimmunol 2021; 353:577499. [PMID: 33529846 DOI: 10.1016/j.jneuroim.2021.577499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
NK/T-cell ratios predict disease activity in relapsing remitting multiple sclerosis (RRMS). We investigated in 50 RRMS patients whether interleukin-2 receptor alpha-chain (IL-2Rα) expression and shedding associates with NK/T-cell balance, as suggested by daclizumab-trials in RRMS. A subsample (N = 31) was genotyped for IL2RA-associated MS risk SNPs. CD56bright NK-cell/IL-17A+CD4+ T-cell ratios correlated negatively with plasma and PBMC-culture supernatant sIL-2Rα-levels [R = -0.209; p = 0.038 and R = -0.254; p = 0.012, resp.], and with CD4+ T-cell CD25 MFI [R = -0.341; p = 0.001]. Carriers of the rs3118470 risk-allele showed higher sIL-2Rα-levels (P = 0.031) and a lower CD56bright NK-cell/IL-17A+CD4+ T-cell ratio (P = 0.038). Therefore, IL-2Rα may be involved in the interplay between NK-cells and T-cells.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Linda Rolf
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Anne-Hilde Muris
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Oliver Gerlach
- Department of Neurology, Zuyderland Medical Center, Sittard, the Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard, the Netherlands
| | - Joost Smolders
- MS center ErasMS, Departments of Neurology and Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Lin X, Zhang X, Liu Q, Zhao P, Zhong J, Pan P, Wang G, Yi Z. Empathy and Theory of Mind in Multiple Sclerosis: A Meta-Analysis. Front Psychiatry 2021; 12:628110. [PMID: 33897490 PMCID: PMC8062809 DOI: 10.3389/fpsyt.2021.628110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Studies have shown that MS disrupts several social cognitive abilities [including empathy and theory of mind (ToM)]. Overall ToM deficits in MS are well documented, but how the specific ToM subcomponents and empathic capacity are affected remains unclear. For this meta-analysis, we searched PubMed, Web of Science, and Embase from inception to July 2020. Effect sizes were calculated using Hedges g with a random-effects model. Thirty-three studies were included. Relative to healthy controls (HCs), patients with MS were moderately impaired in overall empathy (g = -0.67), overall ToM (g = -74), cognitive ToM (g = -0.72), and the overlapping domains of cognitive empathy/affective ToM (g = -0.79); no group differences were identified for affective empathy (g = -0.19). Compared with HCs, patients with relapsing-remitting MS (RRMS) and progressive MS were impaired in overall empathy, overall ToM, cognitive ToM, and cognitive empathy/affective ToM, without significant RRMS-progressive MS differences in impairment degree. We conducted the first meta-analytic review investigating the empathy and ToM functioning patterns in patients with MS and examined the overlapping and distinct subcomponents of these constructs. The findings suggest differential impairment of the core aspects of social cognitive processing in patients with MS, which may importantly inform the development of structured social cognitive MS interventions.
Collapse
Affiliation(s)
- XiaoGuang Lin
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - XueLing Zhang
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - QinQin Liu
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - PanWen Zhao
- Department of Central Laboratory, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - JianGuo Zhong
- Department of Neurology, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - PingLei Pan
- Department of Neurology and Department of Central Laboratory, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - GenDi Wang
- Department of Neurology, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
7
|
Yeh WZ, Gresle M, Jokubaitis V, Stankovich J, van der Walt A, Butzkueven H. Immunoregulatory effects and therapeutic potential of vitamin D in multiple sclerosis. Br J Pharmacol 2020; 177:4113-4133. [PMID: 32668009 DOI: 10.1111/bph.15201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Initially recognised as an important factor for bone health, vitamin D is now known to have a range of effects on the immune system. Vitamin D deficiency is associated with an increased risk of multiple sclerosis (MS), a chronic immune-mediated demyelinating disease of the CNS. In this review, we explore the links between vitamin D deficiency, MS risk, and disease activity. We also discuss the known immune effects of vitamin D supplementation and the relevance of these observations to the immunopathology of MS. Finally, we review the existing evidence for vitamin D supplementation as an MS therapy, highlighting several recent clinical studies and trials.
Collapse
Affiliation(s)
- Wei Zhen Yeh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Melissa Gresle
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
9
|
Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcif Tissue Int 2020; 106:58-75. [PMID: 31286174 PMCID: PMC6960236 DOI: 10.1007/s00223-019-00577-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Vitamin D has been reported to influence physiological systems that extend far beyond its established functions in calcium and bone homeostasis. Prominent amongst these are the potent immunomodulatory effects of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). The nuclear vitamin D receptor (VDR) for 1,25-(OH)2D3 is expressed by many cells within the immune system and resulting effects include modulation of T cell phenotype to suppress pro-inflammatory Th1 and Th17 CD4+ T cells and promote tolerogenic regulatory T cells. In addition, antigen-presenting cells have been shown to express the enzyme 1α-hydroxylase that converts precursor 25-hydroxyvitamin D3 (25-OHD3) to 1,25-(OH)2D3, so that immune microenvironments are able to both activate and respond to vitamin D. As a consequence of this local, intracrine, system, immune responses may vary according to the availability of 25-OHD3, and vitamin D deficiency has been linked to various autoimmune disorders including rheumatoid arthritis (RA). The aim of this review is to explore the immune activities of vitamin D that impact autoimmune disease, with specific reference to RA. As well as outlining the mechanisms linking vitamin D with autoimmune disease, the review will also describe the different studies that have linked vitamin D status to RA, and the current supplementation studies that have explored the potential benefits of vitamin D for prevention or treatment of RA. The overall aim of the review is to provide a fresh perspective on the potential role of vitamin D in RA pathogenesis and treatment.
Collapse
Affiliation(s)
- Stephanie R Harrison
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK
- Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
| | - Danyang Li
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Louisa E Jeffery
- Institute of Translation Medicine, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Karim Raza
- Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
- Institute of Inflammation and Ageing, Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence and MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Smolders J, Mimpen M, Oechtering J, Damoiseaux J, Ouweland J, Hupperts R, Kuhle J. Vitamin D 3 supplementation and neurofilament light chain in multiple sclerosis. Acta Neurol Scand 2020; 141:77-80. [PMID: 31657006 DOI: 10.1111/ane.13185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Low circulating vitamin D levels are associated with an increased risk of active MRI lesions and relapses in several cohorts with relapsing remitting multiple sclerosis (RRMS). Randomized controlled supplementation trials are, however, negative on their primary endpoints, while secondary MRI endpoints suggest anti-inflammatory effects. Circulating levels of neurofilament light chain (NfL) are a biomarker of disease activity in RRMS. We explored whether 48-week high-dose vitamin D3 supplements were associated with lower circulating NfL levels. MATERIALS & METHODS Of N = 40 Dutch interferon beta-treated participants with RRMS of the SOLAR trial, plasma samples at baseline and 48-week follow-up were available. Of these participants, N = 24 were supplemented with 14 000 IU/d vitamin D3 and N = 16 with placebo. Twenty-five hydroxyvitamin D3 (25(OH)D3 ) levels were measured with LC-MS/MS, and NfL levels were measured in duplicate with Simoa. RESULTS Serum 25(OH)D3 levels at 48 weeks were increased in the vitamin D3 when compared to placebo group (median level 281 [IQR 205-330] vs 72 [39-88] nmol/L; P < .01). NfL levels at 48 weeks did not differ between the treatment groups (median level 25.4 [IQR 19.6-32.2] vs 25.3 [17.9-30.1] pg/mL; P = .74). Higher week 48 NfL level showed a trend toward association with a higher risk of combined unique active lesions on the week 48 MRI scan (OR 2.39 [95% CI 0.93-6.12] for each 10 pg/mL increase; P = .07). CONCLUSIONS Supplementation of high-dose vitamin D3 for 48 weeks was not associated with lower NfL levels. This study does not support an effect of vitamin D3 on this biomarker of neuro-axonal injury.
Collapse
Affiliation(s)
- Joost Smolders
- Department of Neurology Canisius Wilhelmina Ziekenhuis Nijmegen The Netherlands
- Neuroimmunology Research group Netherlands Institute for Neuroscience Amsterdam The Netherlands
| | - Max Mimpen
- Department of Neurology Zuyderland Medical Center Sittard The Netherlands
| | | | - Jan Damoiseaux
- Central Diagnostic Laboratory Maastricht University Medical Center Maastricht The Netherlands
| | - Jody Ouweland
- Department of Clinical Chemistry Canisius Wilhelmina Ziekenhuis Nijmegen The Netherlands
| | - Raymond Hupperts
- Department of Neurology Zuyderland Medical Center Sittard The Netherlands
| | - Jens Kuhle
- Department of Neurology University Hospital Basel Basel Switzerland
| |
Collapse
|
11
|
Abstract
Vitamin D and its main active metabolite 1,25-dihydroxyvitamin D serve a crucial role in maintenance of a healthy calcium metabolism, yet have additional roles in immune and central nervous system cell homeostasis. Serum levels of 25-hydroxyvitamin D are a biomarker of future disease activity in patients with early relapsing-remitting multiple sclerosis (RRMS), and vitamin D supplementation in patients with low circulating 25-dihydroxyvitamin D levels has been anticipated as a potential efficacious treatment strategy. The results of the first large randomized clinical trials (RCTs), the SOLAR and CHOLINE studies, have now been published. The SOLAR study compared 14,000 IU of vitamin D3 (cholecalciferol) per day with placebo for 48 weeks in 232 randomized patients, whereas CHOLINE compared vitamin D3 100,000 IU every other week with placebo for 96 weeks in 129 randomized patients. All patients in both studies also used interferon-β-1a. None of the studies met their primary endpoints, which were no evidence of disease activity (NEDA-3) at 48 weeks in SOLAR and annualized relapse rate at 96 weeks in CHOLINE. Both studies did, however, suggest modest effects on secondary endpoints. Thus, vitamin D reduced the number of new or enlarging lesions and new T2 lesions in SOLAR, and the annualized relapse rate and number of new T1 lesions, volume of hypointense T1 lesions, and disability progression in the 90 patients who completed 96 weeks' follow-up in CHOLINE. We conclude that none of the RCTs on vitamin supplementation in MS have met their primary clinical endpoint in the intention to treat cohorts. This contrasts the observation studies, where each 25 nmol/l increase in 25-hydroxyvitamin D levels were associated with 14-34% reduced relapse risk and 15-50% reduced risk of new lesions on magnetic resonnance imaging. This discrepancy may have several explanations, including confounding and reverse causality in the observational studies. The power calculations of the RCTs have been based on the observational studies, and the RCTs may have been underpowered to detect less prominent yet important effects of vitamin D supplementation. Although the effect of vitamin D supplementation is uncertain and less pronounced than suggested by observational studies, current evidence still support that people with MS should avoid vitamin D insufficiency, and preferentially aim for vitamin D levels around 100 nmol/L or somewhat higher.
Collapse
Affiliation(s)
- Joost Smolders
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Institute for Clinical Medicine, University of Bergen, Bergen, Norway
| | - William Camu
- Centre de Référence SLA, CHU Gui de Chauliac et Univ Montpellier, Montpellier, France
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Box 1000, 1478, Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Lu M, Taylor BV, Körner H. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Front Immunol 2018; 9:477. [PMID: 29593729 PMCID: PMC5857605 DOI: 10.3389/fimmu.2018.00477] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin D has a plethora of functions that are important for the maintenance of general health and in particular, the functional integrity of the immune system, such as promoting an anti-inflammatory cytokine profile and reducing the Treg/Th17 ratio. Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative central nervous system (CNS) disorder of probable autoimmune origin. MS is characterized by recurring or progressive demyelination and degeneration of the CNS due in part to a misguided immune response to as yet undefined (CNS) antigens, potentially including myelin basic protein and proteolipid protein. MS has also been shown to be associated significantly with environmental factors such as the lack of vitamin D. The role of vitamin D in the pathogenesis and progression of MS is complex. Recent genetic studies have shown that various common MS-associated risk-single-nucleotide polymorphisms (SNPs) are located within or in the vicinity of genes associated with the complex metabolism of vitamin D. The functional aspects of these genetic associations may be explained either by a direct SNP-associated loss- or gain-of-function in a vitamin D-associated gene or due to a change in the regulation of gene expression in certain immune cell types. The development of new genetic tools using next-generation sequencing: e.g., chromatin immunoprecipitation sequencing (ChIP-seq) and the accompanying rapid progress of epigenomics has made it possible to recognize that the association between vitamin D and MS could be based on the extensive and characteristic genomic binding of the vitamin D receptor (VDR). Therefore, it is important to analyze comprehensively the spatiotemporal VDR binding patterns that have been identified using ChIP-seq in multiple immune cell types to reveal an integral profile of genomic VDR interaction. In summary, the aim of this review is to connect genomic effects vitamin D has on immune cells with MS and thus, to contribute to a better understanding of the influence of vitamin D on the etiology and the pathogenesis of this complex autoimmune disease.
Collapse
Affiliation(s)
- Ming Lu
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, China
| |
Collapse
|