1
|
Nawar AA, Farid AM, Wally R, Tharwat EK, Sameh A, Elkaramany Y, Asla MM, Kamel WA. Efficacy and safety of stem cell transplantation for multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2024; 14:12545. [PMID: 38822024 PMCID: PMC11143245 DOI: 10.1038/s41598-024-62726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune neurological disease affecting patients' motor, sensory, and visual performance. Stem Cell Transplantation (SCT) is a medical intervention where a patient is infused with healthy stem cells with the purpose of resetting their immune system. SCT shows remyelinating and immunomodulatory functions in MS patients, representing a potential therapeutic option. We conducted this systematic review and meta-analysis that included randomized control trials (RCTs) of SCT in MS patients to investigate its clinical efficacy and safety, excluding observational and non-English studies. After systematically searching PubMed, Web of Science, Scopus, and Cochrane Library until January 7, 2024, nine RCTs, including 422 patients, were eligible. We assessed the risk of bias (ROB) in these RCTs using Cochrane ROB Tool 1. Data were synthesized using Review Manager version 5.4 and OpenMeta Analyst software. We also conducted subgroup and sensitivity analyses. SCT significantly improved patients expanded disability status scale after 2 months (N = 39, MD = - 0.57, 95% CI [- 1.08, - 0.06], p = 0.03). SCT also reduced brain lesion volume (N = 136, MD = - 7.05, 95% CI [- 10.69, - 3.4], p = 0.0002). The effect on EDSS at 6 and 12 months, timed 25-foot walk (T25-FW), and brain lesions number was nonsignificant. Significant adverse events (AEs) included local reactions at MSCs infusion site (N = 25, RR = 2.55, 95% CI [1.08, 6.03], p = 0.034) and hematological disorders in patients received immunosuppression and autologous hematopoietic SCT (AHSCT) (N = 16, RR = 2.33, 95% CI [1.23, 4.39], p = 0.009). SCT can improve the disability of MS patients and reduce their brain lesion volume. The transplantation was generally safe and tolerated, with no mortality or significant serious AEs, except for infusion site reactions after mesenchymal SCT and hematological AEs after AHSCT. However, generalizing our results is limited by the sparse number of RCTs conducted on AHSCT. Our protocol was registered on PROSPERO with a registration number: CRD42022324141.
Collapse
Affiliation(s)
| | | | - Rim Wally
- Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Engy K Tharwat
- Bioinformatics Group, Centre for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Ahmed Sameh
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Walaa A Kamel
- Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
3
|
Frid K, Usmann A, Markovits-Pachter T, Binyamin O, Petrou P, Kassis I, Karussis D, Gabizon R. Granagard administration prolongs the survival of human mesenchymal stem cells transplanted into a mouse model of multiple sclerosis. J Neuroimmunol 2024; 389:578313. [PMID: 38401393 DOI: 10.1016/j.jneuroim.2024.578313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
The clinical effect of human Mesenchymal stem cells (hMSCs) transplanted into EAE mice/MS patients is short lived due to poor survival of the transplanted cells. Since Granagard, a nanoformulation of pomegranate seed oil, extended the presence of Neuronal Stem cells transplanted into CJD mice brains, we tested whether this safe food supplement can also elongate the survival of hMSCs transplanted into EAE mice. Indeed, pathological studies 60 days post transplantation identified human cells only in brains of Granagard treated mice, concomitant with increased clinical activity. We conclude that Granagard may prolong the activity of stem cell transplantation in neurological diseases.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Areen Usmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Tsipora Markovits-Pachter
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Panayota Petrou
- Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Ibrahim Kassis
- Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Dimitri Karussis
- Medical School, The Hebrew University, Jerusalem, Israel; Unit of Neuroimmunology and Cell therapies and Multiple Sclerosis Center, Hadassah-Hebrew University Hospital, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Israel; Medical School, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
4
|
Qin D, Wang C, Li D, Guo S. Exosomal miR-23a-3p derived from human umbilical cord mesenchymal stem cells promotes remyelination in central nervous system demyelinating diseases by targeting Tbr1/Wnt pathway. J Biol Chem 2024; 300:105487. [PMID: 37995941 PMCID: PMC10716775 DOI: 10.1016/j.jbc.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Oligodendrocyte precursor cells are present in the adult central nervous system, and their impaired ability to differentiate into myelinating oligodendrocytes can lead to demyelination in patients with multiple sclerosis, accompanied by neurological deficits and cognitive impairment. Exosomes, small vesicles released by cells, are known to facilitate intercellular communication by carrying bioactive molecules. In this study, we utilized exosomes derived from human umbilical cord mesenchymal stem cells (HUMSCs-Exos). We performed sequencing and bioinformatics analysis of exosome-treated cells to demonstrate that HUMSCs-Exos can stimulate myelin gene expression in oigodendrocyte precursor cells. Functional investigations revealed that HUMSCs-Exos activate the Pi3k/Akt pathway and regulate the Tbr1/Wnt signaling molecules through the transfer of miR-23a-3p, promoting oligodendrocytes differentiation and enhancing the expression of myelin-related proteins. In an experimental autoimmune encephalomyelitis model, treatment with HUMSCs-Exos significantly improved neurological function and facilitated remyelination. This study provides cellular and molecular insights into the use of cell-free exosome therapy for central nervous system demyelination associated with multiple sclerosis, demonstrating its great potential for treating demyelinating and neurodegenerative diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
6
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
7
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
9
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
10
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
12
|
Mesenchymal Stem Cell-Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clin Rev Allergy Immunol 2022; 64:284-320. [PMID: 35031958 DOI: 10.1007/s12016-021-08892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a "cell-free" therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.
Collapse
|
13
|
He J, Huang Y, Liu J, Lan Z, Tang X, Hu Z. The Efficacy of Mesenchymal Stem Cell Therapies in Rodent Models of Multiple Sclerosis: An Updated Systematic Review and Meta-Analysis. Front Immunol 2021; 12:711362. [PMID: 34512632 PMCID: PMC8427822 DOI: 10.3389/fimmu.2021.711362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Studies have demonstrated the potential of mesenchymal stem cell (MSC) administration to promote functional recovery in preclinical studies of multiple sclerosis (MS), yet the effects of MSCs on remyelination are poorly understood. We wished to evaluate the therapeutic effects of MSCs on functional and histopathological outcomes in MS; therefore, we undertook an updated systematic review and meta-analysis of preclinical data on MSC therapy for MS. We searched mainstream databases from inception to July 15, 2021. Interventional studies of therapy using naïve MSCs in in vivo rodent models of MS were included. From each study, the clinical score was extracted as the functional outcome, and remyelination was measured as the histopathological outcome. Eighty-eight studies published from 2005 to 2021 met the inclusion criteria. Our results revealed an overall positive effect of MSCs on the functional outcome with a standardized mean difference (SMD) of −1.99 (95% confidence interval (CI): −2.32, −1.65; p = 0.000). MSCs promoted remyelination by an SMD of −2.31 (95% CI: −2.84, −1.79; p = 0.000). Significant heterogeneity among studies was observed. Altogether, our meta-analysis indicated that MSC administration improved functional recovery and promoted remyelination prominently in rodent models of MS.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Afsharzadeh N, Lavi Arab F, Sankian M, Samiei L, Tabasi NS, Afsharzadeh D, Nikkhah K, Mahmoudi M. Comparative assessment of proliferation and immunomodulatory potential of Hypericum perforatum plant and callus extracts on mesenchymal stem cells derived adipose tissue from multiple sclerosis patients. Inflammopharmacology 2021; 29:1399-1412. [PMID: 34510276 DOI: 10.1007/s10787-021-00838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells-derived adipose tissue (AT-MSCs) are recognized for the treatment of inflammatory diseases including multiple sclerosis (MS). Hypericum perforatum (HP) is an anti-inflammatory pharmaceutical plant with bioactive compounds. Plant tissue culture is a technique to improve desired pharmacological potential. The aim of this study was to compare the anti-inflammatory and proliferative effects of callus with field-growing plant extracts of HP on AT-MSCs derived from MS patients. MATERIALS AND METHODS AT-MSCs were isolated and characterized. HP callus was prepared and exposure to light spectrum (blue, red, blue-red, and control). Total phenols, flavonoids, and hypericin of HP callus and plant extracts were measured. The effects of HP extracts concentrations on proliferation were evaluated by MTT assay. Co-culture of AT-MSCs: PBMCs were challenged by HP plant and callus extracts, and Tregs percentage was assessed by flow cytometry. RESULTS Identification of MSCs was performed. Data showed that blue light could stimulate total phenols, flavonoids, and hypericin. MTT test demonstrated that plant extract in concentrations (0.03, 1.2, 2.5 and 10 μg/ml) and HP callus extract in 10 μg/ml significantly increased. Both HP extracts lead to an increase in Tregs percentage in all concentrations. In particular, a comparison between HP plant and callus extracts revealed that Tregs enhanced 3-fold more than control groups in the concentration of 10 μg/ml callus. CONCLUSIONS High concentrations of HP extracts showed effectiveness on AT-MSCs proliferation and immunomodulatory properties with a certain consequence in callus extract. HP extracts may be considered as supplementary treatments for the patients who receiving MSCs transplantation.
Collapse
Affiliation(s)
- Negin Afsharzadeh
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Samiei
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Afsharzadeh
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
ArefNezhad R, Motedayyen H, Mohammadi A. Therapeutic Aspects of Mesenchymal Stem Cell-Based Cell Therapy with a Focus on Human Amniotic Epithelial Cells in Multiple Sclerosis: A Mechanistic Review. Int J Stem Cells 2021; 14:241-251. [PMID: 34158417 PMCID: PMC8429946 DOI: 10.15283/ijsc21032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of central nervous system (CNS). The mmune system plays an important role in its pathogenesis. Current treatments are unable to cure patients and prevent the progression of MS lesions. Stem cell-based cell therapy has opened a new window for MS treatment. Stem cells regulate immune responses and improve axonal remyelination. Stem cells can be obtained from different origins such as embryonic, neural, bone marrow, and adipose tissues. But yet there is a challenge for the selection of the best cell source for stem cell therapy. Mesenchymal stem cells (MSCs) are a type of stem cell obtained from different origins and have significant immunomodulatory effects on the immune system. The increasing evidence have suggested that umbilical cord and adipose tissue can be a suitable source for isolation of MSCs. Moreover, human amniotic epithelial cells (hAECs) as novel stem cell origins by having immunoregulatory effects, regenerative effects, and less capacity of antigenicity can be a candidate for MS treatment. This review discussed the mechanistic effects of MSCs with a focus on human amniotic epithelial cells, which can be used to treatment and improvement of outcome in MS disease.
Collapse
Affiliation(s)
- Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Mohammadi
- Cell Biology and Molecular-Genetics Department, Marand Azad University, Marand, Iran
| |
Collapse
|
16
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ahmed N, Gandhi D, Melhem ER, Frenkel V. MRI Guided Focused Ultrasound-Mediated Delivery of Therapeutic Cells to the Brain: A Review of the State-of-the-Art Methodology and Future Applications. Front Neurol 2021; 12:669449. [PMID: 34220679 PMCID: PMC8248790 DOI: 10.3389/fneur.2021.669449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stem cell and immune cell therapies are being investigated as a potential therapeutic modality for CNS disorders, performing functions such as targeted drug or growth factor delivery, tumor cell destruction, or inflammatory regulation. Despite promising preclinical studies, delivery routes for maximizing cell engraftment, such as stereotactic or intrathecal injection, are invasive and carry risks of hemorrhage and infection. Recent developments in MRI-guided focused ultrasound (MRgFUS) technology have significant implications for treating focal CNS pathologies including neurodegenerative, vascular and malignant processes. MRgFUS is currently employed in the clinic for treating essential tremor and Parkinson's Disease by producing precise, incisionless, transcranial lesions. This non-invasive technology can also be modified for non-destructive applications to safely and transiently open the blood-brain barrier (BBB) to deliver a range of therapeutics, including cells. This review is meant to familiarize the neuro-interventionalist with this topic and discusses the use of MRgFUS for facilitating cellular delivery to the brain. A detailed and comprehensive description is provided on routes of cell administration, imaging strategies for targeting and tracking cellular delivery and engraftment, biophysical mechanisms of BBB enhanced permeability, supportive proof-of-concept studies, and potential for clinical translation.
Collapse
Affiliation(s)
- Nabid Ahmed
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor Frenkel
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorlova A, Veniaminova E, Umriukhin A, Kalueff A, Svistunov A, Kramer BW, Lesch KP, Strekalova T. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther 2019; 26:504-517. [PMID: 31867846 PMCID: PMC7163689 DOI: 10.1111/cns.13280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Aims Mutations in DNA/RNA‐binding factor (fused‐in‐sarcoma) FUS and superoxide dismutase‐1 (SOD‐1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD‐1‐G93A (SOD‐1) and new FUS[1‐359]‐transgenic (FUS‐tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti‐inflammatory treatments were investigated using these mutants. Methods FUS‐tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti‐inflammatory drug a selective blocker of cyclooxygenase‐2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro‐Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti‐inflammatory properties. SOD‐1 mice received i.c.v.‐administration of Neuro‐Cells or vehicle. Results All FUS‐tg‐treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS‐tg‐vehicle‐treated mice. Neuro‐Cell‐treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib‐FUS‐tg‐treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium‐binding adapter molecule‐1 (Iba‐1), and glycogen‐synthase‐kinase‐3ß (GSK‐3ß). The Neuro‐Cells‐treated‐SOD‐1 mice showed better motor functions than vehicle‐treated‐SOD‐1 group. Conclusion The neuropathology in FUS‐tg mice is sensitive to standard ALS treatments and Neuro‐Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.
Collapse
Affiliation(s)
- Johannes P J M de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Igor Shafarevich
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Liundup
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Erik Ch Wolters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Allan Kalueff
- Faculty of Biology, Ural Federal University, Ekaterinburg, Russia.,School of Pharmacy, Southwest University, Chongqing, China
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris W Kramer
- Department of Pediatrics, University Medical Center (MUCM), Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain. Curr Stem Cell Res Ther 2019; 14:644-653. [PMID: 31512998 DOI: 10.2174/1574888x14666190912162504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common condition that seriously affects the quality of human life with
variable etiology and complicated symptoms; people who suffer from chronic pain may experience
anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal
anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and
cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top
priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for
the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit
multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they
have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by
MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we
summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance
the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will
develop from exosomes secreted by MSCs.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Kehan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Liu F, Hu S, Wang S, Cheng K. Cell and biomaterial-based approaches to uterus regeneration. Regen Biomater 2019; 6:141-148. [PMID: 31198582 PMCID: PMC6547309 DOI: 10.1093/rb/rbz021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/16/2023] Open
Abstract
Asherman's syndrome (AS) is an endometrial disorder in which intrauterine adhesions crowd the uterine cavity and wall. The fibrotic adhesions are primarily the result of invasive uterine procedures that usually involve the insertion of surgical equipment into the uterus. This syndrome is accompanied by a number of clinical manifestations, including irregular or painful menstruation and infertility. The most prevalent treatment is hysteroscopy, which involves the physical removal of the fibrous strands. Within the last decade, however, the field has been exploring the use of cell-based therapeutics, in conjunction with biomaterials, to treat AS. This review is a recapitulation of the literature focused on cellular therapies for treating AS.
Collapse
Affiliation(s)
- Feiran Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019; 221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injury (PNI) is a common life-changing disability of peripheral nervous system with significant socioeconomic consequences. Conventional therapeutic approaches for PNI have several drawbacks such as need to autologous nerve scarifying, surplus surgery, and difficult accessibility to donor nerve; therefore, other therapeutic strategies such as mesenchymal stem cells (MSCs) therapy are getting more interesting. MSCs have been proved to be safe and efficient in numerous degenerative diseases of central and peripheral nervous systems. In this paper, we review novel biotechnological advancements in treating PNI using MSCs.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|