1
|
Tunç A, Danisan G, Taydas O, Kara AB, Öncel S, Özdemir M. Differential Analysis of Venous Sinus Diameters: Unveiling Vascular Alterations in Patients with Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1760. [PMID: 39202247 PMCID: PMC11353770 DOI: 10.3390/diagnostics14161760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Alterations in the cerebral venous system have been increasingly recognized as a significant component of the pathophysiology of multiple sclerosis (MS). This study aimed to explore the relationship between venous sinus diameter and MS to understand potential vascular alterations in MS patients compared with controls. We sought to determine whether these alterations were correlated with disease characteristics such as duration, lesion type, and disability score. METHODS This study included 79 MS patients diagnosed according to the 2017 McDonald criteria and 67 healthy individuals. Magnetic resonance imaging (MRI) scans via a 1.5 Tesla system provided measurements of the superior sagittal sinus, right and left transverse sinus, sinus rectus, and venous structures. Statistical analysis was conducted via SPSS, employing independent sample t tests, ANOVA, chi-square tests, and Pearson correlation analysis, with the significance level set at p < 0.05. RESULTS This study revealed significant differences in venous sinus diameter between MS patients and controls, with MS patients exhibiting larger diameters. Specifically, patients with brainstem and spinal lesions had larger diameters in certain sinus regions. No significant correlations were found between venous sinus diameter and demographic factors, expanded disability status scale scores, or lesion counts. However, a significant increase in perivenular lesions was noted in patients with longer disease durations. CONCLUSIONS The findings indicate notable vascular alterations in MS patients, particularly in venous sinus diameters, suggesting a potential vascular component in MS pathology. The lack of correlation with conventional clinical and MRI metrics highlights the complexity of MS pathology. These insights underscore the need for further research, particularly longitudinal studies, to elucidate the role of venous changes in MS progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Department of Neurology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey
| | - Gurkan Danisan
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Onur Taydas
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Ahmet Burak Kara
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| | - Samet Öncel
- Department of Neurology, Sakarya University Training and Research Hospital, 54100 Sakarya, Turkey;
| | - Mustafa Özdemir
- Department of Radiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey; (G.D.); (O.T.); (M.Ö.)
| |
Collapse
|
2
|
Abdelgawad MA, Hayallah AM, Bukhari SNA, Musa A, Elmowafy M, Abdel-Rahman HM, Abd El-Gaber MK. Design, Synthesis, Molecular Modeling, and Anticancer Evaluation of New VEGFR-2 Inhibitors Based on the Indolin-2-One Scaffold. Pharmaceuticals (Basel) 2022; 15:1416. [PMID: 36422546 PMCID: PMC9698773 DOI: 10.3390/ph15111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 08/30/2023] Open
Abstract
A new series of indoline-2-one derivatives was designed and synthesized based on the essential pharmacophoric features of VEGFR-2 inhibitors. Anti-proliferative activities were assessed for all derivatives against breast (MCF-7) and liver (HepG2) cancer cell lines, using sunitinib as a reference agent. The most potent anti-proliferative derivatives were evaluated for their VEGFR-2 inhibition activity. The effects of the most potent inhibitor, 17a, on cell cycle, apoptosis, and expression of apoptotic markers (caspase-3&-9, BAX, and Bcl-2) were studied. Molecular modeling studies, such as docking simulations, physicochemical properties prediction, and pharmacokinetic profiling were performed. The results revealed that derivatives 5b, 10e, 10g, 15a, and 17a exhibited potent anticancer activities with IC50 values from 0.74-4.62 µM against MCF-7 cell line (sunitinib IC50 = 4.77 µM) and from 1.13-8.81 µM against HepG2 cell line (sunitinib IC50 = 2.23 µM). Furthermore, these compounds displayed potent VEGFR-2 inhibitory activities with IC50 values of 0.160, 0.358, 0.087, 0.180, and 0.078 µM, respectively (sunitinib IC50 = 0.139 µM). Cell cycle analysis demonstrated the ability of 17a to induce a cell cycle arrest of the HepG2 cells at the S phase and increase the total apoptosis by 3.5-fold. Moreover, 17a upregulated the expression levels of apoptotic markers caspase-3 and -9 by 6.9-fold and 3.7-fold, respectively. In addition, 17a increased the expression level of BAX by 2.7-fold while decreasing the expression level of Bcl-2 by 1.9-fold. The molecular docking simulations displayed enhanced binding interactions and similar placement as sunitinib inside the active pocket of VEGFR-2. The molecular modeling calculations showed that all the test compounds were in accordance with Lipinski and Veber rules for oral bioavailability and had promising drug-likeness behavior.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut 71515, Egypt
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Hamdy M. Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Assiut 2014101, Egypt
| | | |
Collapse
|
3
|
Microvascular changes in the macular and parafoveal areas of multiple sclerosis patients without optic neuritis. Sci Rep 2022; 12:13366. [PMID: 35922463 PMCID: PMC9349324 DOI: 10.1038/s41598-022-17344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
Retinal imaging has been proposed as a biomarker for neurological diseases such as multiple sclerosis (MS). Recently, a technique for non-invasive assessment of the retinal microvasculature called optical coherence tomography angiography (OCTA) was introduced. We investigated retinal microvasculature alterations in participants with relapsing–remitting MS (RRMS) without history of optic neuritis (ON) and compared them to a healthy control group. The study was performed in a prospective, case–control design, including 58 participants (n = 100 eyes) with RRMS without ON and 78 age- and sex-matched control participants (n = 136 eyes). OCTA images of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris (CC) were obtained using a commercial OCTA system (Zeiss Cirrus HD-5000 Spectral-Domain OCT with AngioPlex OCTA, Carl Zeiss Meditec, Dublin, CA). The outcome variables were perfusion density (PD) and foveal avascular zone (FAZ) features (area and circularity) in both the SCP and DCP, and flow deficit in the CC. MS group had on average higher intraocular pressure (IOP) than controls (P < 0.001). After adjusting for confounders, MS participants showed significantly increased PD in SCP (P = 0.003) and decreased PD in DCP (P < 0.001) as compared to controls. A significant difference was still noted when large vessels (LV) in the SCP were removed from the PD calculation (P = 0.004). Deep FAZ was significantly larger (P = 0.005) and less circular (P < 0.001) in the eyes of MS participants compared to the control ones. Neither LV, PD or FAZ features in the SCP, nor flow deficits in the CC showed any statistically significant differences between the MS group and control group (P > 0.186). Our study indicates that there are microvascular changes in the macular parafoveal retina of RRMS patients without ON, showing increased PD in SCP and decreased PD in DCP. Further studies with a larger cohort of MS patients and MRI correlations are necessary to validate retinal microvascular changes as imaging biomarkers for diagnosis and screening of MS.
Collapse
|
4
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Talha Bin Emran, ; Abubakr M. Idris, ; Bonglee Kim,
| |
Collapse
|
5
|
Amini Harandi A, Siavoshi F, Shirzadeh Barough S, Amini Harandi A, Pakdaman H, Sahraian MA, Fathtabar Z, Mohammadi F, Karamiani F, Ardehali SH. Vascular Endothelial Growth Factor as a Predictive and Prognostic Biomarker for Multiple Sclerosis. Neuroimmunomodulation 2022; 29:476-485. [PMID: 35981507 DOI: 10.1159/000525600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Growing bodies of evidence suggest that angiogenesis plays a crucial role in the development and progression of multiple sclerosis (MS). Vascular endothelial growth factor (VEGF) is one of the key factors involved in angiogenesis. Because of this importance, we investigated the serum levels of VEGF in MS patients according to their clinical phase and subtype of MS in this study. MATERIAL AND METHODS This case-control study was done on 47 definite MS patients with the first clinical attack and 47 randomly selected individuals without any underlying inflammatory and autoimmune disease as the control group. The total serum VEGF level was measured from the subject's peripheral blood sample by ELISA during the first and second attacks of MS and 6 months after the first attack in the remission phase as well as the control group. In addition, the correlation between these variables and the influence of gender, age, and duration of the remission phase on such associations was evaluated by using the independent t test and Pearson's correlation coefficient. RESULTS There was an increase in the serum level of VEGF in all phases of MS compared with non-MS individuals (p value <0.0001) and a significant correlation between the serum level of VEGF and the interval between first and second attacks (r = -720, p < 0.0001). A higher serum level of VEGF in the first attack leads to higher VEGF levels in the second and sixth mount of remission phases. CONCLUSION Rise in the serum VEGF level may be involved in MS's relapsing phases and a shorter remission phase. Therefore, it could be used as a prognostic and predictive biomarker for MS disease.
Collapse
Affiliation(s)
- Ali Amini Harandi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Siavoshi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Amini Harandi
- Biochemistry Department, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fathtabar
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Mohammadi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Karamiani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ardehali
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Chen Q, Fang M, Miri S, Thakor K, Delgado S, Hernandez J, Alba DE, Gregori G, Porciatti V, Wang J, Jiang H. Retinal microvascular and neuronal function in patients with multiple sclerosis: 2-year follow-up. Mult Scler Relat Disord 2021; 56:103314. [PMID: 34634624 DOI: 10.1016/j.msard.2021.103314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/11/2021] [Accepted: 10/03/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the longitudinal changes in retinal microstructure, microvasculature, microcirculation, and axonal and neuronal functions in patients with relapsing-remitting multiple sclerosis (RRMS) over the time course of about two years. METHODS A total of 30 patients (60 eyes) with RRMS were followed for a period of 27 ± 6 months and evaluated with a battery of clinical tests including low contrast letter acuity (LCLA), intraretinal layer thicknesses by optical coherence tomography (OCT), ganglion cell function by steady-state pattern electroretinography (PERG), axonal function by polarization-sensitive OCT, volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by retinal function imager. RESULTS Axonal function measured as retinal nerve fiber layer birefringence in the temporal quadrant and vessel density in the deep vascular plexus were significantly decreased at 2-year follow-up (P < 0.05). Subgroup analyses showed that the increased retinal blood flow volume occurred in patients with no evidence of disease activity (NEDA), and with stable or improved visual function (P < 0.05). There was no significant difference in the expanded disability state scale, LCLA, RTP, VVD, or PERG measures between the two visits (P > 0.05). CONCLUSION To our best knowledge, this is the first 2-year prospective comprehensive study with a detailed assessment of retinal microstructure and neuronal functions in patients with RRMS. The recovery of retinal microcirculation occurred in patients with NEDA, and stable or improved visual function, suggesting these measurements as potential imaging biomarkers for monitoring disease progression.
Collapse
Affiliation(s)
- Qi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Min Fang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Shahnaz Miri
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kinjal Thakor
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Diego Eduardo Alba
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vittorio Porciatti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
7
|
Chen Q, Jiang H, Delgado S, Hernandez J, Alba DE, Gregori G, Rammohan KW, Porciatti V, Wang J. Longitudinal Study of Retinal Structure, Vascular, and Neuronal Function in Patients With Relapsing-Remitting Multiple Sclerosis: 1-Year Follow-Up. Transl Vis Sci Technol 2021; 10:6. [PMID: 34111252 PMCID: PMC8107487 DOI: 10.1167/tvst.10.6.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objective The purpose of this study was to quantify retinal structural, vascular, and functional changes in patients with relapsing-remitting multiple sclerosis (RRMS) over 1 year. Methods Eighty-eight eyes of 44 patients with RRMS underwent assessments of low contrast letter acuity (LCLA), retinal ganglion cell function detected by the steady-state pattern electroretinogram (PERG), axonal microstructural integrity measured as birefringence, intraretinal layer thicknesses by ultra-high-resolution optical coherence tomography (OCT), volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by the Retinal Function Imager (RFI). All measurements were performed at baseline and 1-year follow-up. The impacts of disease activities and a history of optic neuritis (ON) were analyzed. Results Compared to baseline, there were no significant differences in all variables (P > 0.05), except for the axonal birefringence and RTP. The birefringence's of the retinal fiber layer at the temporal and superior quadrants was significantly decreased (P < 0.05), whereas RTP was significantly increased (P < 0.05). In the subgroup with ON, significantly longer PERG latency and decreased VVD were observed at follow-up (P < 0.05). In patients with improved LCLA, significantly increased RTP and decreased VVD (P < 0.05) were also observed. Conclusions This is the first longitudinal study that assessed the RTP and VVD, along with other retinal structural and functional parameters in MS. The recovery of retinal vascular function occurred with the improved LCLA, suggesting that these measurements may be associated with disease progression. Translational Relevance The retinal microvascular changes could be potential biomarkers for monitoring therapeutic efficacy in MS.
Collapse
Affiliation(s)
- Qi Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey Hernandez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Eduardo Alba
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kottil W. Rammohan
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vittorio Porciatti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Wang Z, Lu A. Cartilage type IIB procollagen NH<sub>2</sub>-propeptide, PIIBNP, inhibits angiogenesis. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Cartilage tissue is avascular and resistant to tumor invasion, but the basis for these properties is still unclear. Here we report that the NH<sub>2</sub>-propeptide of type IIB procollagen (PIIBNP), a product of collagen biosynthesis, is capable of inhibiting angiogenesis both <italic>in vitro</italic> and <italic>in vivo</italic>. PIIBNP inhibits tube formation in human umbilical vein cells (HUVEC), inhibits endogenous endothelial cell outgrowth in mouse aortic ring angiogenesis bioassay and is anti-angiogenic in the mouse cornea angiogenesis assay. As α<sub>V</sub>ß<sub>3</sub> and α<sub>V</sub>ß<sub>5</sub> integrins are expressed primarily in endothelial cells, cancer cells and osteoclasts, but not in normal chondrocytes and PIIBNP binds to cell surface integrin α<sub>V</sub>ß<sub>3</sub> and αVß<sub>5</sub>, we propose that natural occurring PIIBNP protects cartilage by targeting endothelial cells during chondrogenesis, thus inhibiting angiogenesis, and rendering the tissue avascular.</p>
</abstract>
Collapse
|
9
|
Jeong JH, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues. Arch Pharm Res 2020; 44:1-15. [PMID: 33230600 PMCID: PMC7682773 DOI: 10.1007/s12272-020-01287-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
The role of angiogenesis in the growth of organs and tumors is widely recognized. Vascular-organ interaction is a key mechanism and a concept that enables an understanding of all biological phenomena and normal physiology that is essential for human survival under pathological conditions. Recently, vascular endothelial cells have been classified as a type of innate immune cells that are dependent on the pathological situations. Moreover, inflammatory cytokines and signaling regulators activated upon exposure to infection or various stresses play crucial roles in the pathological function of parenchymal cells, peripheral immune cells, stromal cells, and cancer cells in tissues. Therefore, vascular-organ interactions as a vascular microenvironment or tissue microenvironment under physiological and pathological conditions are gaining popularity as an interesting research topic. Here, we review vascular contribution as a major factor in microenvironment homeostasis in the pathogenesis of normal as well as cancerous tissues. Furthermore, we suggest that the normalization strategy of pathological angiogenesis could be a promising therapeutic target for various diseases, including cancer.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Uttam Ojha
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea
| | - You Mie Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea. .,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Jiang H, Gameiro GR, Liu Y, Lin Y, Hernandez J, Deng Y, Gregori G, Delgado S, Wang J. Visual Function and Disability Are Associated with Increased Retinal Volumetric Vessel Density in Patients with Multiple Sclerosis. Am J Ophthalmol 2020; 213:34-45. [PMID: 31926161 DOI: 10.1016/j.ajo.2019.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The goal of this study was to determine the volumetric vessel density (VVD) in the intraretinal layers and its relationship with visual function and disability in patients with multiple sclerosis (MS). DESIGN Cross-sectional study. METHODS A total of 80 patients with relapsing-remitting MS and 99 age- and sex-matched healthy controls (HC) were recruited. The retinal microvascular network in the macular area was imaged using optical coherence tomography angiography in 123 eyes without a history of optic neuritis (ON) (MSNON) and 36 eyes with a history of ON (MSON). The VVD was calculated as the vessel densities in the retinal vascular network (RVN), superficial vascular plexus (SVP), or deep vascular plexus (DVP) of an annulus (0.6-2.5 mm in diameter), divided by the corresponding tissue volume of the intraretinal layers respectively. RESULTS The VVD of RVN and DVP in MSNON were significantly higher than in HC (P < .05). The VVD of RVN, SVP, and DVP in MSON were significantly higher than in MSNON and HC (P < .05). The VVD in both RVN and SVP were positively related to EDSS and disease duration, but negatively related to low-contrast letter acuity (P < .05). The VVD measurements were also negatively and strongly related to the corresponding tissue volumes (P < .05). CONCLUSIONS This is the first study to reveal increased retinal VVD in patients with relapsing-remitting MS. The measurements of VVD in the RVN and SVP were related to disability and visual function, which may be developed as image markers for tracking disease progression.
Collapse
|
11
|
Garcia-Diaz B, Baron-Van Evercooren A. Schwann cells: Rescuers of central demyelination. Glia 2020; 68:1945-1956. [PMID: 32027054 DOI: 10.1002/glia.23788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
The presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship.
Collapse
Affiliation(s)
- Beatriz Garcia-Diaz
- Unidad de Gestión Clínica de Neurociencias, IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| |
Collapse
|
12
|
Kant R, Halder SK, Bix GJ, Milner R. Absence of endothelial α5β1 integrin triggers early onset of experimental autoimmune encephalomyelitis due to reduced vascular remodeling and compromised vascular integrity. Acta Neuropathol Commun 2019; 7:11. [PMID: 30678721 PMCID: PMC6346510 DOI: 10.1186/s40478-019-0659-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/21/2023] Open
Abstract
Early in the development of multiple sclerosis (MS) and its mouse model experimental autoimmune encephalomyelitis (EAE), vascular integrity is compromised. This is accompanied by a marked vascular remodeling response, though it is currently unclear whether this is an adaptive vascular repair mechanism or is part of the pathogenic process. In light of the well-described angiogenic role for the α5β1 integrin, the goal of this study was to evaluate how genetic deletion of endothelial α5 integrin (α5-EC-KO mice) impacts vascular remodeling and repair following vascular disruption during EAE pathogenesis, and how this subsequently influences clinical progression and inflammatory demyelination. Immunofluorescence staining revealed that fibronectin and α5 integrin expression were strongly upregulated on spinal cord blood vessels during the pre-symptomatic phase of EAE. Interestingly, α5-EC-KO mice showed much earlier onset and faster progression of EAE, though peak disease severity and chronic disease activity were no different from wild-type mice. At the histological level, earlier disease onset in α5-EC-KO mice correlated with accelerated vascular disruption and increased leukocyte infiltration into the spinal cord. Significantly, spinal cord blood vessels in α5-EC-KO mice showed attenuated endothelial proliferation during the pre-symptomatic phase of EAE which resulted in reduced vascular density at later time-points. Under pro-inflammatory conditions, primary cultures of α5KO brain endothelial cells showed reduced proliferation potential. These findings suggest that α5β1 integrin-mediated angiogenic remodeling represents an important repair mechanism that counteracts vascular disruption during the early stages of EAE development.
Collapse
|
13
|
Lanzillo R, Cennamo G, Moccia M, Criscuolo C, Carotenuto A, Frattaruolo N, Sparnelli F, Melenzane A, Lamberti A, Servillo G, Tranfa F, De Crecchio G, Brescia Morra V. Retinal vascular density in multiple sclerosis: a 1‐year follow‐up. Eur J Neurol 2018; 26:198-201. [DOI: 10.1111/ene.13770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- R. Lanzillo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| | - G. Cennamo
- Department of Public Health Federico II University Naples Italy
| | - M. Moccia
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
- NMR Research Unit Department of Neuroinflammation Queen Square MS Centre UCL Institute of Neurology Faculty of Brain Sciences University College London London UK
| | - C. Criscuolo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| | - A. Carotenuto
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| | - N. Frattaruolo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| | - F. Sparnelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Federico II University Naples Italy
| | - A. Melenzane
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Federico II University Naples Italy
| | - A. Lamberti
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| | - G. Servillo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Federico II University Naples Italy
| | - F. Tranfa
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Federico II University Naples Italy
| | - G. De Crecchio
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Federico II University Naples Italy
| | - V. Brescia Morra
- Department of Neuroscience, Reproductive Sciences and Odontostomatology Multiple Sclerosis Clinical Care and Research Centre Federico II University Naples
| |
Collapse
|
14
|
Sathasivam R, Ki JS. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar Drugs 2018; 16:E26. [PMID: 29329235 PMCID: PMC5793074 DOI: 10.3390/md16010026] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea.
| |
Collapse
|
15
|
Distinct NG2 proteoglycan-dependent roles of resident microglia and bone marrow-derived macrophages during myelin damage and repair. PLoS One 2017; 12:e0187530. [PMID: 29095924 PMCID: PMC5667885 DOI: 10.1371/journal.pone.0187530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
We used a bone marrow transplantation approach to distinguish the activities of bone marrow-derived macrophages from the activities of central nervous system-resident microglia in phenomena associated with axon demyelination and remyelination. We transplanted wild type or germline NG2 null beta-actin-EGFP expressing bone marrow into irradiated wild type or NG2 null recipient mice, followed by analysis of lysolecithin-induced spinal cord demyelination and remyelination and quantification of Iba-1+/ F4/80+/ EGFP+ macrophages and Iba-1+/ F4/80+/ EGFP- microglia. One week after microinjection of 1% lysolecithin into the spinal cord, wild type recipients receiving NG2 null bone marrow exhibit greatly reduced infiltration of macrophages into lesions, compared to wild type recipients receiving wild type bone marrow. Wild type bone marrow recipients also exhibit larger numbers of demyelinated axons than NG2 null recipients, indicative of macrophage participation in the initial myelin damage. However, wild type bone marrow recipients also exhibit superior myelin repair at 6 weeks post-injury, compared to NG2 null bone marrow recipients, demonstrating the additional importance of macrophages in remyelination. Incompletely repaired lesions in NG2 null bone marrow recipients at 6 weeks post-injury retain elevated numbers of macrophages, in contrast to lower numbers of macrophages in more completely repaired lesions in wild type bone marrow recipients. This suggests that NG2 expression renders macrophages more effective in myelin repair and less likely to promote chronic inflammation. Effective macrophage involvement in myelin repair is due in part to effects on the proliferation and/or recruitment of oligodendrocyte progenitor cells. Reduced numbers of oligodendrocyte progenitors are seen in lesions in NG2 null bone marrow recipients, likely due to deficits in macrophage production of oligodendrocyte progenitor-relevant mitogens and in phagocytosis of inhibitory myelin debris. Microglia also appear to be important for clearance of myelin debris, as indicated by reduced phagocytosis in NG2 null recipients receiving wild type bone marrow.
Collapse
|
16
|
X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Sci Rep 2017; 7:5890. [PMID: 28724999 PMCID: PMC5517657 DOI: 10.1038/s41598-017-06251-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 01/08/2023] Open
Abstract
The degenerative effects of multiple sclerosis at the level of the vascular and neuronal networks in the central nervous system are currently the object of intensive investigation. Preclinical studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapy in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis, but the neuropathology of specific lesions in EAE and the effects of MSC treatment are under debate. Because conventional imaging techniques entail protocols that alter the tissues, limiting the reliability of the results, we have used non-invasive X-ray phase-contrast tomography to obtain an unprecedented direct 3D characterization of EAE lesions at micro-to-nano scales, with simultaneous imaging of the vascular and neuronal networks. We reveal EAE-mediated alterations down to the capillary network. Our findings shed light on how the disease and MSC treatment affect the tissues, and promote X-ray phase-contrast tomography as a powerful tool for studying neurovascular diseases and monitoring advanced therapies.
Collapse
|
17
|
Fujita Y, Yamashita T. The roles of RGMa-neogenin signaling in inflammation and angiogenesis. Inflamm Regen 2017; 37:6. [PMID: 29259705 PMCID: PMC5725648 DOI: 10.1186/s41232-017-0037-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
Repulsive guidance molecule (RGM) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein that has diverse functions in the developing and pathological central nervous system (CNS). The binding of RGM to its receptor neogenin regulates axon guidance, neuronal differentiation, and survival during the development of the CNS. In the pathological state, RGM expression is induced after spinal cord injury, and the inhibition of RGM promotes axon growth and functional recovery. Furthermore, RGM expression is also observed in immune cells, and RGM regulates inflammation and neurodegeneration in autoimmune encephalomyelitis. RGMa induces T cell activation in experimental autoimmune encephalomyelitis (EAE), which is the animal model of multiple sclerosis (MS). RGM is expressed in pathogenic Th17 cells and induces neurodegeneration by binding to neogenin. Angiogenesis is an additional key factor involved in the pathophysiology of EAE. Via neogenin, treatment with RGMa can suppress endothelial tube formation; this finding indicates that RGMa inhibits neovascularization. These observations suggest the feasibility of utilizing the RGMa-neogenin signaling pathway as a therapeutic target to overcome inflammation and neurodegeneration. This review focuses on the molecular mechanisms of inflammation and angiogenesis via RGM-neogenin signaling.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
18
|
Rao A, Manyam G, Rao G, Jain R. Integrative Analysis of mRNA, microRNA, and Protein Correlates of Relative Cerebral Blood Volume Values in GBM Reveals the Role for Modulators of Angiogenesis and Tumor Proliferation. Cancer Inform 2016; 15:29-33. [PMID: 27053917 PMCID: PMC4814129 DOI: 10.4137/cin.s33014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/29/2016] [Accepted: 12/07/2015] [Indexed: 12/12/2022] Open
Abstract
Dynamic susceptibility contrast-enhanced magnetic resonance imaging is routinely used to provide hemodynamic assessment of brain tumors as a diagnostic as well as a prognostic tool. Recently, it was shown that the relative cerebral blood volume (rCBV), obtained from the contrast-enhancing as well as -nonenhancing portion of glioblastoma (GBM), is strongly associated with overall survival. In this study, we aim to characterize the genomic correlates (microRNA, messenger RNA, and protein) of this vascular parameter. This study aims to provide a comprehensive radiogenomic and radioproteomic characterization of the hemodynamic phenotype of GBM using publicly available imaging and genomic data from the Cancer Genome Atlas GBM cohort. Based on this analysis, we identified pathways associated with angiogenesis and tumor proliferation underlying this hemodynamic parameter in GBM.
Collapse
Affiliation(s)
- Arvind Rao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju Manyam
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajan Jain
- Department of Radiology, NY University School of Medicine, New York, NY, USA
| |
Collapse
|
19
|
Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, Zaslavsky E, Nudelman G, Raine CS, John GR. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 2015; 138:1548-67. [PMID: 25805644 DOI: 10.1093/brain/awv077] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown.
Collapse
Affiliation(s)
- Candice Chapouly
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Azeb Tadesse Argaw
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Horng
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kamilah Castro
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jingya Zhang
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Linnea Asp
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Hannah Loo
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benjamin M Laitman
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John N Mariani
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Rebecca Straus Farber
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Elena Zaslavsky
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - German Nudelman
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Cedric S Raine
- 5 Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gareth R John
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
20
|
Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014; 6:23. [PMID: 25473485 PMCID: PMC4253611 DOI: 10.1186/s13221-014-0023-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function. However, the role of angiogenesis in CNS pathologies associated with impaired barrier function remains unclear. Although vessel abnormalities characterized by abnormal barrier function are well documented in multiple sclerosis (MS), a demyelinating disease of the CNS resulting from an immune cell attack on oligodendrocytes, histological analysis of human MS samples has shown that angiogenesis is prevalent in and around the demyelinating plaques. Experiments using an animal model that mimics several features of human MS, Experimental Autoimmune Encephalomyelitis (EAE), have confirmed these human pathological findings and shed new light on the contribution of pre-symptomatic angiogenesis to disease progression. The CNS-infiltrating inflammatory cells that are a hallmark of both MS and EAE secrete several factors that not only contribute to exacerbating the inflammatory process but also promote and stimulate angiogenesis. Moreover, chemical or biological inhibitors that directly or indirectly block angiogenesis provide clinical benefits for disease progression. While the precise mechanism of action for these inhibitors is unknown, preventing pathological angiogenesis during EAE progression holds great promise for developing effective treatment strategies for human MS.
Collapse
Affiliation(s)
- Justin Lengfeld
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Tyler Cutforth
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Dritan Agalliu
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| |
Collapse
|
21
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
22
|
Boroujerdi A, Welser-Alves JV, Milner R. Examining vascular remodeling in the hypoxic central nervous system. Methods Mol Biol 2014; 1135:177-86. [PMID: 24510864 DOI: 10.1007/978-1-4939-0320-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The goal of this chapter is to highlight techniques used to determine the role of molecular mechanisms involved in remodeling of cerebral blood vessels. Enhanced vascularization in the central nervous system (CNS) is seen in many diseases including stroke, cancer, and multiple sclerosis (MS). However, despite the prevalence of this phenomenon in these different pathological conditions, the exact nature of how it occurs still remains unclear. To better understand the process of cerebrovascular remodeling, we use the chronic hypoxia model, in which a vigorous and robust angiogenic remodeling response takes place. In this model, mice are placed in a hypoxic chamber (8 % O2 for up to 14 days), which results in strong vascular remodeling and increased vessel density within the CNS. Using an immunofluorescent (IF)-based approach, different aspects of this vascular remodeling response can be examined. By employing this method, we have shown that chronic mild hypoxia triggers both angiogenic (capillary sprouting) and arteriogenic (widening of arterial vessels) responses. Furthermore, we have used this system to define both the expression pattern and potential role of candidate adhesion molecules in this vascular remodeling process. Thus, the techniques described in this chapter can be used to define the importance of different molecular mechanisms in vascular remodeling in the CNS.
Collapse
Affiliation(s)
- Amin Boroujerdi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
23
|
Boroujerdi A, Welser-Alves JV, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol 2013; 250:43-51. [PMID: 24056042 DOI: 10.1016/j.expneurol.2013.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4-7days post-immunization, but after 14days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease.
Collapse
Affiliation(s)
- Amin Boroujerdi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
24
|
Anisimov SV, Zemelko VI, Grinchuk TM, Nikolsky NN. Menstrual blood stem cells as a potential source for cell therapy. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients' individual gene expression in peripheral blood. Mol Neurobiol 2013; 48:737-56. [PMID: 23636981 DOI: 10.1007/s12035-013-8463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Therapy with interferon-beta (IFN-beta) is a mainstay in the management of relapsing-remitting multiple sclerosis (MS), with proven long-term effectiveness and safety. Much has been learned about the molecular mechanisms of action of IFN-beta in the past years. Previous studies described more than a hundred genes to be modulated in expression in blood cells in response to the therapy. However, for many of these genes, the precise temporal expression pattern and the therapeutic relevance are unclear. We used Affymetrix microarrays to investigate in more detail the gene expression changes in peripheral blood mononuclear cells from MS patients receiving subcutaneous IFN-beta-1a. The blood samples were obtained longitudinally at five different time points up to 2 years after the start of therapy, and the patients were clinically followed up for 5 years. We examined the functions of the genes that were upregulated or downregulated at the transcript level after short-term or long-term treatment. Moreover, we analyzed their mutual interactions and their regulation by transcription factors. Compared to pretreatment levels, 96 genes were identified as highly differentially expressed, many of them already after the first IFN-beta injection. The interactions between these genes form a large network with multiple feedback loops, indicating the complex crosstalk between innate and adaptive immune responses during therapy. We discuss the genes and biological processes that might be important to reduce disease activity by attenuating the proliferation of autoreactive immune cells and their migration into the central nervous system. In summary, we present novel insights that extend the current knowledge on the early and late pharmacodynamic effects of IFN-beta therapy and describe gene expression differences between the individual patients that reflect clinical heterogeneity.
Collapse
|
26
|
Kar RK, Suryadevara P, Sahoo BR, Sahoo GC, Dikhit MR, Das P. Exploring novel KDR inhibitors based on pharmaco-informatics methodology. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:215-234. [PMID: 23437769 DOI: 10.1080/1062936x.2013.765912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Kinase-insert domain-containing receptor (KDR) is one of the important mediators of Vascular endothelial growth factor (VEGF) function in endothelial cells. Inhibition of KDR can be therapeutically advantageous for treatment of a number of diseases. The present study focuses on exploring novel KDR inhibitors by means of pharmaco-informatics methodologies. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis by atom-based pharmacophore mapping over a set of 85 molecules provides a proposition regarding the molecular fingerprint that can be optimized for designing more active inhibitors. The model was statistically validated with Q(2) = 0.865 for training and r(2) = 0.789, Pearson-r = 0.903 for test set molecules; r(2)(0.925) by external validation suggests model robustness and indicates it as a strong query for screening any compound library. Virtual screening shows the importance of active site and hinge region residue for interaction with KDR inhibitors. Remarkably the retrieved hits contain a urea backbone, implicating urea derivatives as promising candidate for designing KDR inhibitors. The hydrophobicity of active site, which has until now been overlooked, has been raised into the picture by this study. This can impact on KDR drug development. The study thus quantifies crucial structural requirements necessary for a favourable interaction with the receptor binding site while the cooperative pattern provides important structural clues to chemists for framing potent medicinal agents in future.
Collapse
Affiliation(s)
- R K Kar
- Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | | | | | | | | | | |
Collapse
|
27
|
Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat Med 2012; 18:1658-64. [PMID: 23042236 DOI: 10.1038/nm.2943] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a prominent feature of central nervous system (CNS) disease and has roles in both the continued promotion of inflammation and the subsequent repair processes. Here we report that prostacyclin (or prostaglandin I(2) (PGI(2))) derived from new vessels promotes axonal remodeling of injured neuronal networks after CNS inflammation. In a localized model of experimental autoimmune encephalomyelitis (EAE), new vessels formed around the inflammatory lesion, followed by sprouting of adjacent corticospinal tract (CST) fibers. These sprouting fibers formed a compensatory motor circuit, leading to recovery of motor function. Capillary endothelial cell-derived prostacyclin bound to its receptor, the type I prostaglandin receptor (IP receptor), on CST neurons, promoting sprouting of CST fibers and contributing to the repair process. Inhibition of prostacyclin receptor signaling impaired motor recovery, whereas the IP receptor agonist iloprost promoted axonal remodeling and motor recovery after the induction of EAE. These findings reveal an important function of angiogenesis in neuronal rewiring and suggest that prostacyclin is a promising molecule for enhancing functional recovery from CNS disease.
Collapse
|
28
|
Bradaric BD, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna) 2012; 119:59-71. [PMID: 21748523 PMCID: PMC3352316 DOI: 10.1007/s00702-011-0684-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
Abstract
Angiogenesis has not been extensively studied in Parkinson's disease (PD) despite being associated with other neurodegenerative disorders. Post-mortem human brain tissues were obtained from subjects with pathologically confirmed Parkinson's disease (PD) and progressive supranuclear palsy (PSP), a rapidly progressing Parkinsonian-like disorder. Tissues were also obtained from subjects with incidental Lewy body disease (iLBD) who had Lewy bodies in the substantia nigra pars compacta (SN(pc)) but had not been diagnosed with PD, and age-matched controls without Lewy body pathology. The SNpc, putamen, locus ceruleus (LC) and midfrontal cortex were examined for integrin αvβ3, a marker for angiogenesis, along with vessel number and activated microglia. All parkinsonian syndromes had greater αvβ3 in the LC and the SN(pc), while only PD and PSP subjects had elevated αvβ3 in the putamen compared to controls. PD and PSP subjects also had increases in microglia number and activation in the SN(pc) suggesting a link between inflammation and clinical disease. Microglia activation in iLBD subjects was limited to the LC, an area involved at an early stage of PD. Likewise, iLBD subjects did not differ from controls in αvβ3 staining in the putamen, a late area of involvement in PD. The presence of αvβ3 reactive vessels in PD and its syndromes is indicative of newly created vessels that have not likely developed the restrictive properties of the blood brain barrier. Such angiogenic vessels could contribute to neuroinflammation by failing to protect the parenchyma from peripheral immune cells and inflammatory or toxic factors in the peripheral circulation.
Collapse
Affiliation(s)
| | - Aditiben Patel
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
- Department of Pathology, Rush University, Chicago, IL 60612, USA
| | - Paul M. Carvey
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| | - Bill Hendey
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Kucharova K, Chang Y, Boor A, Yong VW, Stallcup WB. Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. J Neuroinflammation 2011; 8:158. [PMID: 22078261 PMCID: PMC3229456 DOI: 10.1186/1742-2094-8-158] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/13/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease in which blood-derived immune cells and activated microglia damage myelin in the central nervous system. While oligodendrocyte progenitor cells (OPCs) are essential for generating oligodendrocytes for myelin repair, other cell types also participate in the damage and repair processes. The NG2 proteoglycan is expressed by OPCs, pericytes, and macrophages/microglia. In this report we investigate the effects of NG2 on these cell types during spinal cord demyelination/remyelination. METHODS Demyelinated lesions were created by microinjecting 1% lysolecithin into the lumbar spinal cord. Following demyelination, NG2 expression patterns in wild type mice were studied via immunostaining. Immunolabeling was also used in wild type and NG2 null mice to compare the extent of myelin damage, the kinetics of myelin repair, and the respective responses of OPCs, pericytes, and macrophages/microglia. Cell proliferation was quantified by studies of BrdU incorporation, and cytokine expression levels were evaluated using qRT-PCR. RESULTS The initial volume of spinal cord demyelination in wild type mice is twice as large as in NG2 null mice. However, over the ensuing 5 weeks there is a 6-fold improvement in myelination in wild type mice, versus only a 2-fold improvement in NG2 null mice. NG2 ablation also results in reduced numbers of each of the three affected cell types. BrdU incorporation studies reveal that reduced cell proliferation is an important factor underlying NG2-dependent decreases in each of the three key cell populations. In addition, NG2 ablation reduces macrophage/microglial cell migration and shifts cytokine expression from a pro-inflammatory to anti-inflammatory phenotype. CONCLUSIONS Loss of NG2 expression leads to decreased proliferation of OPCs, pericytes, and macrophages/microglia, reducing the abundance of all three cell types in demyelinated spinal cord lesions. As a result of these NG2-dependent changes, the course of demyelination and remyelination in NG2 null mice differs from that seen in wild type mice, with both myelin damage and repair being reduced in the NG2 null mouse. These studies identify NG2 as an important factor in regulating myelin processing, suggesting that therapeutic targeting of the proteoglycan might offer a means of manipulating cell behavior in demyelinating diseases.
Collapse
|
30
|
Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 2011. [DOI: 10.1016/j.jff.2011.07.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
31
|
Feasibility of imaging myelin lesions in multiple sclerosis. Int J Biomed Imaging 2011; 2011:953806. [PMID: 21860614 PMCID: PMC3157216 DOI: 10.1155/2011/953806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/18/2011] [Accepted: 04/14/2011] [Indexed: 11/24/2022] Open
Abstract
The goal of this study was to provide a feasibility assessment for PET imaging of multiple sclerosis (MS) lesions based on their decreased myelin content relative to the surrounding normal-appearing brain tissue. The imaging agent evaluated for this purpose is a molecule that binds strongly and specifically to myelin basic protein. Physiology-based pharmacokinetic modeling combined with PET image simulation applied to a brain model was used to examine whether such an agent would allow the differentiation of artificial lesions 4–10 mm in diameter from the surrounding normal-looking white and gray matter. Furthermore, we examined how changes in agent properties, model parameters, and experimental conditions can influence imageability, identifying a set of conditions under which imaging of MS lesions might be feasible. Based on our results, we concluded that PET imaging has the potential to become a useful complementary method to MRI for MS diagnosis and therapy monitoring.
Collapse
|
32
|
Patel A, Toia GV, Colletta K, Bradaric BD, Carvey PM, Hendey B. An angiogenic inhibitor, cyclic RGDfV, attenuates MPTP-induced dopamine neuron toxicity. Exp Neurol 2011; 231:160-70. [PMID: 21703263 DOI: 10.1016/j.expneurol.2011.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/23/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that several dopamine (DA) neurotoxins produced punctate areas of FITC-labeled albumin (FITC-LA) leakage in the substantia nigra and striatum suggesting blood brain barrier (BBB) dysfunction. Further, this leakage was co-localized with αvβ3 integrin up-regulation, a marker for angiogenesis. This suggested that the FITC-LA leakage might have been a result of angiogenesis. To assess the possible role of angiogenesis in DA neuron loss, we treated mice with 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) and on the following day treated with cyRGDfV, a cyclic peptide that binds to integrin αvβ3 and prevents angiogenesis. Post-treatment for 3 days (b.i.d.) with cyRGDfV blocked the MPTP-induced upregulation of integrin β3 immunoreactivity (a marker for angiogenesis), leakage of FITC-LA into brain parenchyma (a marker for BBB disruption) as well as the down regulation of Zona Occludin-1 (ZO-1; a marker for tight junction integrity). In addition, cyRGDfV also completely prevented tyrosine hydroxylase immunoreactive cell loss (a marker for DA neurons) and markedly attenuated the up-regulation of activated microglia (Iba1 cell counts and morphology). These data suggest that cyRGDfV, and perhaps other anti-angiogenic drugs, are neuroprotective following acute MPTP treatment and may suggest that compensatory angiogenesis and BBB dysfunction may contribute to inflammation and DA neuron loss.
Collapse
Affiliation(s)
- Aditiben Patel
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kim SK, Pangestuti R. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:111-28. [PMID: 22054942 DOI: 10.1016/b978-0-12-387669-0.00009-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The importance of marine algae as sources of functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and investigation of novel bioactive ingredients with biological activities from marine algae have attracted great attention. Among functional ingredients identified from marine algae, fucoxanthin has received particular interest. Fucoxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases and has considerable potential and promising applications in human health. Fucoxanthin has been reported to exhibit various beneficial biological activities such as antioxidant, anticancer, anti-inflammatory, antiobesity, and neuroprotective activities. In this chapter, the currently available scientific literatures regarding the most significant activities of fucoxanthin are summarized.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|
34
|
Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions. J Neuroinflammation 2010; 7:95. [PMID: 21176212 PMCID: PMC3022818 DOI: 10.1186/1742-2094-7-95] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/22/2010] [Indexed: 12/25/2022] Open
Abstract
Background Angiogenesis is a common finding in chronic inflammatory diseases; however, its role in multiple sclerosis (MS) is unclear. Central nervous system lesions from both MS and experimental autoimmune encephalomyelitis (EAE), the animal model of MS, contain T cells, macrophages and activated glia, which can produce pro-angiogenic factors. Previous EAE studies have demonstrated an increase in blood vessels, but differences between the different phases of disease have not been reported. Therefore we examined angiogenic promoting factors in MS and EAE lesions to determine if there were changes in blood vessel density at different stages of EAE. Methods In this series of experiments we used a combination of vascular casting, VEGF ELISA and immunohistochemistry to examine angiogenesis in experimental autoimmune encephalomyelitis (EAE). Using immunohistochemistry we also examined chronic active MS lesions for angiogenic factors. Results Vascular casting and histological examination of the spinal cord and brain of rats with EAE demonstrated that the density of patent blood vessels increased in the lumbar spinal cord during the relapse phase of the disease (p < 0.05). We found an increased expression of VEGF by inflammatory cells and a decrease in the recently described angiogenesis inhibitor meteorin. Examination of chronic active human MS tissues demonstrated glial expression of VEGF and glial and blood vessel expression of the pro-angiogenic receptor VEGFR2. There was a decreased expression of VEGFR1 in the lesions compared to normal white matter. Conclusions These findings reveal that angiogenesis is intimately involved in the progression of EAE and may have a role in MS.
Collapse
|
35
|
Hauptman JS, Moftakhar P, Dadour A, Malkasian D, Martin NA. Advances in the biology of cerebral cavernous malformations. Surg Neurol Int 2010; 1:63. [PMID: 20975979 PMCID: PMC2958334 DOI: 10.4103/2152-7806.70962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022] Open
Abstract
OBJECT To provide a review of current, high-impact scientific findings pertaining to the biology of cerebral cavernous malformations (CCMs). METHODS A comprehensive literature review was conducted using PubMed to examine the current literature regarding the molecular biology and pathophysiology of CCMs. RESULTS In this literature review, a comprehensive approach is taken to review the current scientific status of CCMs. This includes discussion of molecular biology and animal models, ultrastructure and angioarchitectural features and immunological methods and hypotheses. CONCLUSIONS Studies examining the molecular biology of CCMs have shown that genes involved in angiogenesis, blood-brain barrier formation, cell size regulation, vascular permeability and apoptosis play critical roles in the ontogeny of this disease. In vivo work suggests the likelihood of a "two-hit mechanism" resulting in somatic mosaicism and biallelic loss of angiogenic genes. The etiological effects of angioarchitecture and immune response within these lesions further complicate the pathophysiology. Future treatment endeavors will necessitate exploitation of the multiple facets of CCM formation to maximize success at CCM prevention or obliteration.
Collapse
Affiliation(s)
- Jason S Hauptman
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
36
|
Contino-Pépin C, Parat A, Patinote C, Roscoe WA, Karlik SJ, Pucci B. Thalidomide Derivatives for the Treatment of Neuroinflammation. ChemMedChem 2010; 5:2057-64. [DOI: 10.1002/cmdc.201000326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Loreto C, Almeida LE, Migliore MR, Caltabiano M, Leonardi R. TRAIL, DR5 and caspase 3-dependent apoptosis in vessels of diseased human temporomandibular joint disc. An immunohistochemical study. Eur J Histochem 2010; 54:e40. [PMID: 20839416 PMCID: PMC3167309 DOI: 10.4081/ejh.2010.e40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/05/2010] [Indexed: 01/16/2023] Open
Abstract
To evaluate the apoptosis involvement in the angiogenesis as a self-limiting process in patients with temporomandibular joint (TMJ) degenerated disc vessels, we assessed, by immunohistochemistry, the detection of TRAIL, its death receptor DR5 and caspase 3. TRAIL, its death receptor DR5 and caspase 3 expression were studied by immunohistochemistry in 15 TMJ discs displaced without reduction and in 4 unaffected discs. These apoptosis molecules were detected in the intima and media layers of newly formed vessels affected discs. In conclusion, vessels apoptosis activation in TMJ disc with ID could be regarded as a self-limiting process that try to leads to vessel regression; in this way an inhibition of angiogenic vessels may prove a key strategy in limiting pathological angiogenesis, by cutting off blood supply to tumors, or by reducing harmful inflammation.
Collapse
Affiliation(s)
- C Loreto
- Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, via S. Sofia 87, Catania, Italy.
| | | | | | | | | |
Collapse
|
38
|
Holley JE, Newcombe J, Whatmore JL, Gutowski NJ. Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 2009; 470:65-70. [PMID: 20036712 DOI: 10.1016/j.neulet.2009.12.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is primarily considered an inflammatory demyelinating disease, however the role of vasculature in MS pathogenesis is now receiving much interest. MS lesions often develop along blood vessels and alterations in blood brain barrier structure and function, with associated changes in the basement membrane, are pathological features. Nevertheless, the possibility of angiogenesis occurring in MS has received little attention. In this study we used triple label enzyme immunohistochemistry to investigate blood vessel density and endothelial cell proliferation in MS samples (n=39) compared with control tissue to explore evidence of angiogenesis in MS. The results showed that in all MS samples examined blood vessel density increased compared with controls. The greatest increase was found in subacute lesions where numbers of positively stained vessels increased from 43.9+/-8.5% in controls to 84.2+/-13.3% (P=0.001). Furthermore, using an antibody against endoglin (CD105), a specific marker of proliferating endothelial cells, which are characteristic of angiogenesis, we have shown that vessels containing proliferating endothelial cells were more pronounced in all MS tissue examined (normal-appearing white matter, acute, subacute and chronic lesions, P>or=0.027) compared with control and this was greatest in the MS normal-appearing white matter (68.8+/-19.8% versus 10.58+/-6.4%, P=0.003). These findings suggest that angiogenesis may play a role in lesion progression, failure of repair and scar formation.
Collapse
Affiliation(s)
- Janet E Holley
- Peninsula Medical School, University of Exeter, St Luke's Campus, Magdalen Road, Exeter, EX1 2LU, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Cavaletti G, Cassetti A, Canta A, Galbiati S, Gilardini A, Oggioni N, Rodriguez-Menendez V, Fasano A, Liuzzi GM, Fattler U, Ries S, Nieland J, Riccio P, Haas H. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharm 2009; 6:1363-70. [PMID: 19281192 DOI: 10.1021/mp8001478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding selectivity of charged liposomes to the spinal cord of rats affected by experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, was investigated. Positively and negatively charged liposomes were injected into the tail vein of rats, and blood/brain barrier (BBB) targeting was determined by confocal microscopy as a function of the temporal evolution of the inflammatory response. Accumulation in spinal cord endoneural vessels was observed for cationic, but not for anionic, liposomes, and only in EAE but not in healthy rats. The overall binding efficacy paralleled the severity of the clinical score, but targeting was observed already before clinical manifestation of inflammation. Preferential binding of positively charged liposomes in the course of acute EAE can be ascribed to subtle changes of BBB morphology and charge distribution in a similar way as for the binding of cationic particles to proliferating vasculature in chronic inflammation and angiogenesis. Our findings suggest that vascular changes related to increased binding affinity for cationic particles are very early events within the inflammatory reaction in acute EAE. Investigation of cationic vascular targeting can help to shed further light on these occurrences, and, potentially, new diagnostic and therapeutic options may become available. In neuroinflammatory diseases, cationic colloidal carrier particles may enable intervention at affected BBB by an approach which is independent from permeability increase.
Collapse
Affiliation(s)
- Guido Cavaletti
- Department of Neurosciences, University of Milan "Bicocca", 20052 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis. Biochem Biophys Res Commun 2009; 391:936-41. [PMID: 19962958 DOI: 10.1016/j.bbrc.2009.11.168] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 01/18/2023]
Abstract
Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10(-5) mol/l) and TRAIL increased caspase-3 activity 1h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.
Collapse
|
41
|
Abstract
Recent studies suggest that the function of the blood-brain barrier (BBB) is not static under normal physiologic conditions and is likely altered in neurodegenerative disease. Prevailing thinking about CNS function, and neurodegenerative disease in particular, is neurocentric excluding the impact of factors outside the CNS. This review challenges this perspective and discusses recent reports suggesting the involvement of peripheral factors including toxins and elements of adaptive immunity that may not only play a role in pathogenesis, but also progression of neurodegenerative diseases. Central to this view is neuroinflammation. Several studies indicate that the neuroinflammatory changes that accompany neurodegeneration affect the BBB or its function by altering transport systems, enhancing immune cell entry, or influencing the BBB's role as a signaling interface. Such changes impair the BBB's normal homeostatic function and affect neural activity. Moreover, recent studies reveal that alterations in BBB and its transporters affect the entry of drugs used to treat neurodegenerative diseases. Incorporating BBB compromise and dysfunction into our view of neurodegenerative disease leads to the inclusion of peripheral mediators in its pathogenesis and progression. In addition, this changing view of the BBB raises interesting new therapeutic possibilities for drug delivery as well as treatment strategies designed to reinstate normal barrier function.
Collapse
Affiliation(s)
- Paul M Carvey
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
42
|
Tourdias T, Brochet B, Petry KG, Dousset V. [Magnetic resonance imaging of central nervous system inflammation]. Rev Neurol (Paris) 2009; 165 Suppl 3:S77-87. [PMID: 19524099 DOI: 10.1016/s0035-3787(09)73952-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is widely used to explore central nervous system inflammatory disorders, especially multiple sclerosis (MS). Advanced MRI methods are bringing more sensitive and specific tools for each step of the inflammatory process. In this review, we discuss the different MRI approaches for inflammatory disorders exploration, especially MS. We give particular emphasize on sensibility and specificity of each MRI approach and we also discuss the current knowledge concerning biological and histopathological substratum that could explain MRI signal with each modality.
Collapse
Affiliation(s)
- T Tourdias
- Service de Neuroradiologie diagnostique et thérapeutique, CHU de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
43
|
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89:607-48. [PMID: 19342615 DOI: 10.1152/physrev.00031.2008] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of the nervous and vascular systems constitutes primary events in the evolution of the animal kingdom; the former provides electrical stimuli and coordination, while the latter supplies oxygen and nutrients. Both systems have more in common than originally anticipated. Perhaps the most striking observation is that angiogenic factors, when deregulated, contribute to various neurological disorders, such as neurodegeneration, and might be useful for the treatment of some of these pathologies. The prototypic example of this cross-talk between nerves and vessels is the vascular endothelial growth factor or VEGF. Although originally described as a key angiogenic factor, it is now well established that VEGF also plays a crucial role in the nervous system. We describe the molecular properties of VEGF and its receptors and review the current knowledge of its different functions and therapeutic potential in the nervous system during development, health, disease and in medicine.
Collapse
|
44
|
VEGF and angiogenesis in acute and chronic MOG((35-55)) peptide induced EAE. J Neuroimmunol 2009; 209:6-15. [PMID: 19233483 DOI: 10.1016/j.jneuroim.2009.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/22/2022]
Abstract
An increased expression of vascular endothelial growth factor (VEGF) is associated with demyelinated lesions in both multiple sclerosis (MS) and its model (EAE), implicating changes in vasculature as a potential component of CNS plaque formation. The purpose of this study was to investigate the vascular changes in acute and chronic EAE in C57BL/6 mice induced with myelin oligodendrocyte glycoprotein (MOG ((35-55))) peptide. We investigated the functional contribution of VEGF to acute and chronic EAE by treating immunized mice with SU5416 (Semaxinib), a potent and selective inhibitor of VEGF receptor 2 (VEGFR2). Animals received seven daily injections of SU5416 (50 mg/kg) or vehicle beginning on the day after disease onset (acute study) or on day 45 post-immunization (chronic study). Spinal cord sections were collected on the day of sacrifice. Modulation of angiogenic gene expression was determined using RNA isolated from 4 acute and 4 non-immunized controls. MOG peptide induction produced extensive demyelination, immune cell infiltration, tissue laminin deposits, and axonal loss in lesions. VEGF expression was extensively increased in the acute mice, which correlated positively with clinical score. In the acute study, SU5416 treatment produced a significant clinical improvement versus vehicle controls (p<0.001), with less demyelination (-37%) and cellular infiltration (-23%) in the spinal cord (p<0.05). Treated animals also had significantly fewer blood vessels per section than controls (56.1+/-6.1 v. 81.6+/-11.5, p<0.05), and significantly reduced laminin abnormalities (28.9% of lesion area v. 46.8%, p<0.05). There was no improvement in clinical score or tissue pathology, and no difference in vessel number or lesion laminin expression, when SU5416 was administered during the chronic disease (all p>0.05). In the acute study only, VEGF staining correlated with demyelination and the extent of cellular infiltration in both control (r=0.723, r=0.665) and treated (r=0.681, r=0.487) animals (all p<0.05). Laminin staining in lesion areas was strongly correlated with tissue pathology for all animals in both the acute and chronic study (all p<0.001). Vascular alterations in MOG peptide-induced EAE in the mouse are accompanied by increased lesion-specific levels of VEGF, extensive laminin deposits in the tissue and altered transcription of numerous angiogenic factors. In the microarray studies, acute mice showed a significant increase in several angiogenic RNA transcripts, six of which were verified by RT-PCR, alanyl aminopeptidase, caspase 8, Hif1a, MMP-19, plasminogen activator inhibitor, and thrombospondin1.
Collapse
|
45
|
Snethen H, Love S, Scolding N. Disease-responsive neural precursor cells are present in multiple sclerosis lesions. Regen Med 2009; 3:835-47. [PMID: 18947307 DOI: 10.2217/17460751.3.6.835] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Spontaneous tissue repair occurs in multiple sclerosis (MS), but the origin of remyelinating cells remains obscure. Here we explore the hypothesis that endogenous neural precursors are involved in MS disease processes. MATERIALS & METHODS We studied postmortem brain and spinal cord samples from MS patients using immunocytochemical techniques. RESULTS We show that cells co-positive for nestin and musashi-1 are not merely present in lesions, but found in markedly increased numbers (up to fivefold). Small numbers of nestin-positive cells show direct evidence of proliferation, co-staining for Ki67; some also coexpress glial fibrillary acidic protein or oligodendrocyte progenitor markers (NG-2 or PDGF-alpha receptor), or the early neuronal marker doublecortin, consistent with transition from neural precursors. CONCLUSIONS These findings suggest that endogenous neural precursors react to disease processes in MS.
Collapse
Affiliation(s)
- Heidi Snethen
- Department of Neurology, University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol BS161LE, UK
| | | | | |
Collapse
|
46
|
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5:505-15. [PMID: 18672949 PMCID: PMC2663893 DOI: 10.1021/mp800051m] [Citation(s) in RCA: 2468] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Nanoparticle (NP) drug delivery systems (5−250 nm) have the potential to improve current disease therapies because of their ability to overcome multiple biological barriers and releasing a therapeutic load in the optimal dosage range. Rapid clearance of circulating nanoparticles during systemic delivery is a critical issue for these systems and has made it necessary to understand the factors affecting particle biodistribution and blood circulation half-life. In this review, we discuss the factors which can influence nanoparticle blood residence time and organ specific accumulation. These factors include interactions with biological barriers and tunable nanoparticle parameters, such as composition, size, core properties, surface modifications (pegylation and surface charge), and finally, targeting ligand functionalization. All these factors have been shown to substantially affect the biodistribution and blood circulation half-life of circulating nanoparticles by reducing the level of nonspecific uptake, delaying opsonization, and increasing the extent of tissue specific accumulation.
Collapse
Affiliation(s)
- Frank Alexis
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
47
|
Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 2008; 9:169-81. [DOI: 10.1038/nrn2336] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
|
49
|
Shenkar R, Shi C, Check IJ, Lipton HL, Awad IA. Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery 2007; 61:693-702; discussion 702-3. [PMID: 17986930 DOI: 10.1227/01.neu.0000298897.38979.07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Cerebral cavernous malformations (CCMs) affect more than one million Americans, predisposing them to a lifetime risk of hemorrhagic stroke and epilepsy. A potential role of the immune response in this disease has not been postulated previously but is compelling given the unique antigenic milieu of CCM lesions with sequestered thrombi and a leaky blood-brain barrier and the numerous examples of immune modulation of angiogenesis in other disease states. The objective of this article is to reveal novel observations about apparent immune responses in CCM lesions excised from human patients and to outline the potential pathobiological significance of these observations, specific hypotheses for future research, and potential clinical implications. METHODS We reviewed data from differential gene expression revealing several immunoglobulin and other related genes markedly upregulated within human CCM lesions. Other observations are presented revealing infiltration of antibody-producing B lymphocytes and plasma cells in CCM lesions. We also present recent data demonstrating fivefold enrichment of gamma globulin to albumin ratio in a human lesion compared with serum from the same patient and oligoclonality of IgG in four of five CCM lesions, but not in paired sera from the same patients or in control specimens. RESULTS We describe ongoing research aiming to characterize cellular and humoral components of the immune response in CCMs and initiating investigation into its clonality by isoelectric focusing on the predominant immunoglobulin isotypes isolated from the lesion, in comparison to the patient's serum, and by the distribution of lengths of complementary-determining region 3 of the immunoglobulin heavy chain genes in messenger ribonucleic acid isolated from lesions and from pooled plasma cells and B cells laser captured from CCMs in comparison to peripheral lymphocytes from the blood of the same patients. CONCLUSION Immune response could play a role in or represent a potential marker of CCM lesion proliferation and hemorrhage or could otherwise contribute to lesion phenotype. The ongoing studies will generate preliminary data for future research aimed at comparing the immune response in quiescent versus clinically aggressive CCM lesions. An oligoclonal immune response shown in this research would stimulate future experiments to identify autoimmune or extrinsic antigenic triggers involved in CCM disease.
Collapse
Affiliation(s)
- Robert Shenkar
- Department of Neurological Surgery, Evanston Northwestern Healthcare, Evanston, IL 60201, USA.
| | | | | | | | | |
Collapse
|
50
|
Shi C, Shenkar R, Batjer HH, Check IJ, Awad IA. Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. J Neurosurg 2007; 107:1023-6. [PMID: 17977276 DOI: 10.3171/jns-07/11/1023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECT Mechanisms of cerebral cavernous malformation (CCM) pathogenesis include genetic predisposition in some cases, but other factors are likely to be involved in lesion proliferation and clinical manifestations. Given the unique antigenic milieu of CCMs, there may be a characteristic immune response in these lesions. We hypothesize that the immunoglobulin (Ig) fraction in CCMs reflects an oligoclonal immune response not present in paired sera from the same patients or in other types of cerebrovascular malformations. METHODS Surgically excised lesions from five patients with CCMs, three patients with arteriovenous malformations (AVMs), and four normal brain control specimens obtained at autopsy were homogenized and extract tested for IgG clonality by isoelectric focusing in parallel with each patient's serum. RESULTS The authors detected B cells in all three lesions examined, and plasmacytes in two out of three lesions examined. Four of five extracts of homogenized CCMs showed an oligoclonal pattern of IgG distinct from the polyclonal pattern seen in those patients' sera. Immununoglobulin G oligoclonality was not seen in AVMs or control brain specimens. CONCLUSIONS The results of isoelectric focusing studies showed that CCM lesions had oligoclonal patterns of IgG unrelated to peripheral blood contamination, indicating selective synthesis of IgG within the lesions. This finding probably reflects a clonal expansion of B cells and/or plasmacytes in CCMs, an event that might be antigen-driven or a potential marker of inflammation.
Collapse
Affiliation(s)
- Changbin Shi
- Department of Neurological Surgery, Evanston Northwestern Healthcare, Illinois 60201, USA
| | | | | | | | | |
Collapse
|