1
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Zhao L, Cheng N, Sun B, Wang S, Li A, Wang Z, Wang Y, Qi F. Regulatory effects of Ningdong granule on microglia-mediated neuroinflammation in a rat model of Tourette's syndrome. Biosci Trends 2020; 14:271-278. [PMID: 32741856 DOI: 10.5582/bst.2020.03262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tourette's syndrome (TS) is an inherited neurologic disorder characterized by involuntary stereotyped motor and vocal tics. Its pathogenesis is still unclear and its treatment remains limited. Recent research has suggested the involvement of immune mechanisms in the pathophysiology of TS. Microglia are the brain's resident innate immune cells. They can mediate neuroinflammation and regulate brain development and homeostasis. A traditional Chinese medicine (TCM), Ningdong granule (NDG), has been found to be efficacious in the treatment of TS while causing few adverse reactions. In the current study, a rat model of 3,3'-iminodipropionitrile (IDPN)-induced TS was used to explore the regulating effects and mechanisms of NDG on microglia-mediated neuroinflammation. IDNP led to robust pathological changes and neurobehavioral complications, with activation of microglia in the striatum of rats with TS. After activation by IDNP, microglia strongly responded to this specific injury, and TNF-α, IL-6, and MCP-1 were released in the striatum and/or serum of rats with TS. Interestingly, NDG inhibited the activation of microglia and decreased the abnormal expression of TNF-α, IL-6, and MCP-1 in the striatum and/or serum of rats with TS, thus controlling tics. However, there were no significant changes in the striatum and/or serum of rats with TS after treatment with haloperidol. The anti-TS action of haloperidol might occur not through microglial activation and neuroinflammation but through the DAT system, thus controlling tics. In conclusion, microglia might play key roles in mediating neuroinflammatory responses in TS, triggering the release of TNF-α, IL-6, and MCP-1.NDG inhibited tics in rats with TS, and this mechanism may be associated with a reduction in the increased number of activated microglia and a decrease in the expression of pro-inflammatory cytokines and chemokines in the striatum and/or serum.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | - Nan Cheng
- Department of Intensive Care Unit, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | - Bo Sun
- Shandong Medical Imaging Research Institute affiliated to Shandong University, Ji'nan, China
| | - Shuzhen Wang
- Department of Pediatry, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, China
| | - Anyuan Li
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | - Yuan Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University, Ji'nan, China
| |
Collapse
|
4
|
Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase. Proc Natl Acad Sci U S A 2017; 114:E8165-E8173. [PMID: 28894000 DOI: 10.1073/pnas.1709588114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogen Staphylococcus aureus and most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of the S. aureus 100S ribosome. The expression levels hpf and hflX are coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.
Collapse
|
5
|
Yeon SM, Lee JH, Kang D, Bae H, Lee KY, Jin S, Kim JR, Jung YW, Park TW. A cytokine study of pediatric Tourette's disorder without obsessive compulsive disorder. Psychiatry Res 2017; 247:90-96. [PMID: 27886579 DOI: 10.1016/j.psychres.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/07/2016] [Accepted: 11/06/2016] [Indexed: 12/18/2022]
Abstract
It has been suggested that post-infectious inflammation in central nervous system is a cause of tic disorder including Tourette's disorder (TD). Since pro-inflammatory cytokines are important mediators inducing inflammation, the cytokine levels are regarded as one of the important indicators of inflammation. Several studies have investigated the relationship of autoimmunity and the pathogenesis of TD by measuring the inflammatory cytokine levels of blood. However, when using human samples, the experimental results can be affected by the factors like size of sample, comorbidity, medication that patients take and the severity of the diseases. Thus, it is important to exclude the possibility that comorbidity and medication affects the level of inflammatory cytokines in the serum of TD patients. In our experiment, we recruited 29 patients without obsessive compulsive disorder (OCD) comorbidity and the majority of these patients did not take medication. The six pro-inflammatory cytokine levels of blood between patient and healthy groups were compared, considering the factors above, to determine more accurate results. Of the cytokines we investigated, the interleukin 12 p70 (IL-12p70) and tumor necrosis factor α (TNFα) levels increased in patient group compared to healthy controls and the patient group which have anti-streptolysin O (ASO) score under the 200 or YTGSS score from 10 to 19 also showed higher IL-12p70 or TNFα levels. In addition, the patients who did not take medication showed higher TNFα levels compared to healthy controls. In conclusion, we suggest that inflammatory pathways that involve IL-12p70 or TNFα are important to the pathogenesis of TD.
Collapse
Affiliation(s)
- Seung-Min Yeon
- Department of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ju Hyung Lee
- Department of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Daewon Kang
- Department of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hyuna Bae
- Department of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ki Yong Lee
- Department of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Seohoon Jin
- Department of Applied Statistics, Korea University, Sejong, Republic of Korea
| | - Jung Ryul Kim
- Department of Orthopedic Surgery, Chonbuk National University School of Medicine, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Tae Won Park
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea; Department of Psychiatry, Chonbuk National University School of Medicine, Jeonju, Republic of Korea.
| |
Collapse
|
6
|
Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun 2016; 57:326-337. [PMID: 27381299 PMCID: PMC5012904 DOI: 10.1016/j.bbi.2016.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/08/2016] [Accepted: 07/02/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia mediate neuroinflammation and regulate brain development and homeostasis. Microglial abnormalities are implicated in a range of neuropsychiatric pathology, including Tourette syndrome (TS) and autism. Histamine (HA) is both a neurotransmitter and an immune modulator. HA deficiency has been implicated as a rare cause of TS and may contribute to other neuropsychiatric conditions. In vitro studies suggest that HA can regulate microglia, but this has never been explored in vivo. We used immunohistochemistry to examine the effects of HA deficiency in histidine decarboxylase (Hdc) knockout mice and of HA receptor stimulation in wild-type animals. We find HA to regulate microglia in vivo, via the H4 receptor. Chronic HA deficiency in Hdc knockout mice reduces ramifications of microglia in the striatum and (at trend level) in the hypothalamus, but not elsewhere in the brain. Depletion of histaminergic neurons in the hypothalamus has a similar effect. Microglia expressing IGF-1 are particularly reduced, However, the microglial response to challenge with lipopolysacchariade (LPS) is potentiated in Hdc knockout mice. Genetic abnormalities in histaminergic signaling may produce a vulnerability to inflammatory challenge, setting the state for pathogenically dysregulated neuroimmune responses.
Collapse
Affiliation(s)
- Luciana Frick
- Department of Psychiatry, Yale University, New Haven, CT
| | | | - Eeman Abbasi
- Department of Psychiatry, Yale University, New Haven, CT
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Janpan
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Child Study Center, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
7
|
Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biol Psychiatry 2016; 79:372-382. [PMID: 25199956 PMCID: PMC4305353 DOI: 10.1016/j.biopsych.2014.07.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genome-wide association studies have not revealed any risk-conferring common genetic variants in Tourette syndrome (TS), requiring the adoption of alternative approaches to investigate the pathophysiology of this disorder. METHODS We obtained the basal ganglia transcriptome by RNA sequencing in the caudate and putamen of nine TS and nine matched normal control subjects. RESULTS We found 309 downregulated and 822 upregulated genes in the caudate and putamen (striatum) of TS individuals. Using data-driven gene network analysis, we identified 17 gene coexpression modules associated with TS. The top-scoring downregulated module in TS was enriched in striatal interneuron transcripts, which was confirmed by decreased numbers of cholinergic and gamma-aminobutyric acidergic interneurons by immunohistochemistry in the same regions. The top-scoring upregulated module was enriched in immune-related genes, consistent with activation of microglia in patients' striatum. Genes implicated by copy number variants in TS were enriched in the interneuron module, as well as in a protocadherin module. Module clustering revealed that the interneuron module was correlated with a neuronal metabolism module. CONCLUSIONS Convergence of differential expression, network analyses, and module clustering, together with copy number variants implicated in TS, strongly implicates disrupted interneuron signaling in the pathophysiology of severe TS and suggests that metabolic alterations may be linked to their death or dysfunction.
Collapse
|
8
|
|
9
|
Leckman JF, Vaccarino FM. Editorial commentary: "What does immunology have to do with brain development and neuropsychiatric disorders?". Brain Res 2014; 1617:1-6. [PMID: 25283746 DOI: 10.1016/j.brainres.2014.09.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Affiliation(s)
- James F Leckman
- Child Study Center and the Departments of Psychiatry, Pediatrics, and Psychology, Yale University, New Haven, CT, USA
| | - Flora M Vaccarino
- Program in Neurodevelopment and Regeneration, Yale Kavli Institute for Neuroscience, Child Study Center and Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Abstract
BACKGROUND Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics--rapid, repetitive, stereotyped movements or vocalizations lasting at least one year in duration. The goal of this article was to review the long-term clinical course of tics and frequently co-occurring conditions in children with TS. METHODS We conducted a traditional literature search to locate relevant articles regarding long-term outcome and prognosis in TS and tic disorders. RESULTS Tics typically have an onset between the ages of 4 and 6 years and reach their worst-ever severity between the ages of 10 and 12 years. By age 10 years, most children are aware of nearly irresistible somatosensory urges that precede the tics. A momentary sense of relief typically follows the completion of a tic. Over the course of hours, tics occur in bouts, with a regular inter-tic interval. Tics increase during periods of psychosocial stress, emotional excitement and fatigue. Tics can become "complex" in nature and appear to be purposeful. Tics can be willfully suppressed for brief intervals and can be evoked by the mere mention of them. Tics typically diminish during periods of goal-directed behavior. Over the course of months, tics wax and wane. By early adulthood, roughly three-quarters of children with TS will have greatly diminished tic symptoms and more than one-third will be virtually tic free. CONCLUSION Although tics are the defining aspect of TS, they are often not the most enduring or impairing symptoms in children with TS. Indeed in TS tics rarely occur in isolation, and other coexisting conditions--such as behavioral disinhibition, hypersensitivity to a broad range of sensory stimuli, problems with visual motor integration, procedural learning difficulties, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, depression, anxiety, and emotional instability--are often a greater source of impairment than the tics themselves. Measures used to enhance self-esteem, such as encouraging independence, strong friendships and the exploration of interests, are crucial to ensuring positive adulthood outcome.
Collapse
Affiliation(s)
- James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Robert A King
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Martino D, Zis P, Buttiglione M. The role of immune mechanisms in Tourette syndrome. Brain Res 2014; 1617:126-43. [PMID: 24845720 DOI: 10.1016/j.brainres.2014.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/11/2023]
Abstract
Tourette syndrome (TS) is a childhood-onset tic disorder associated with abnormal development of brain networks involved in the sensory and motor processing. An involvement of immune mechanisms in its pathophysiology has been proposed. Animal models based on active immunization with bacterial or viral mimics, direct injection of cytokines or patients' serum anti-neuronal antibodies, and transgenic approaches replicated stereotyped behaviors observed in human TS. A crucial role of microglia in the neural-immune crosstalk within TS and related disorders has been proposed by animal models and confirmed by recent post mortem studies. With analogy to autism, genetic and early life environmental factors could foster the involvement of immune mechanisms to the abnormal developmental trajectories postulated in TS, as well as lead to systemic immune dysregulation in this condition. Clinical studies demonstrate an association between TS and immune responses to pathogens like group A Streptococcus (GAS), although their role as risk-modifiers is still undefined. Overactivity of immune responses at a systemic level is suggested by clinical studies exploring cytokine and immunoglobulin levels, immune cell subpopulations, and gene expression profiling of peripheral lymphocytes. The involvement of autoantibodies, on the other hand, remains uncertain and warrants more work using live cell-based approaches. Overall, a body of evidence supports the hypothesis that disease mechanisms in TS, like other neurodevelopmental illnesses (e.g. autism), may involve dysfunctional neural-immune cross-talk, ultimately leading to altered maturation of brain pathways controlling different behavioral domains and, possibly, differences in organising immune and stress responses. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Davide Martino
- Neurology Department, King's College Hospital, London, UK; Queen Elizabeth Hospital, Woolwich, London, UK; Centre for Neuroscience and Trauma, Queen Mary University of London, London, UK.
| | - Panagiotis Zis
- Neurology Department, King's College Hospital, London, UK
| | - Maura Buttiglione
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| |
Collapse
|
12
|
Gunther J, Tian Y, Stamova B, Lit L, Corbett B, Ander B, Zhan X, Jickling G, Bos-Veneman N, Liu D, Hoekstra P, Sharp F. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Res 2012; 200:593-601. [PMID: 22648010 DOI: 10.1016/j.psychres.2012.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 12/24/2022]
Abstract
Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS diagnosis was confirmed using Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria and tic severity measured using the Yale Global Tic Severity Scale (YGTSS) for 26 un-medicated subjects with TS. Whole blood was collected and Ribonucleic acid (RNA) processed on Affymetrix Human Exon 1.0 ST arrays. An Analysis of Covariance (ANCOVA) identified 3627 genes correlated with tic severity (p<0.05). Searches of Medical Subject Headings, Gene Ontology, Allen Mouse Brain Atlas, and PubMed determined genes associated with catecholamines and located in the basal ganglia. Using GeneCards, PubMed, and manual curation, seven genes associated with TS were further examined: DRD2, HRH3, MAOB, BDNF, SNAP25, SLC6A4, and SLC22A3. These genes are highly associated with TS and have also been implicated in other movement disorders, Attention Deficit Hyperactivity Disorder (ADHD), and Obsessive-Compulsive Disorder (OCD). Correlation of gene expression in peripheral blood with tic severity may allow inferences about catecholamine pathway dysfunction in TS subjects. Findings built on previous work suggest that at least some genes expressed peripherally are relevant for central nervous system (CNS) pathology in the brain of individuals with TS.
Collapse
Affiliation(s)
- Joan Gunther
- Department of Neurology and MIND Institute, University of California at Davis, 2805 50th Street, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tian Y, Gunther JR, Liao IH, Liu D, Ander BP, Stamova BS, Lit L, Jickling GC, Xu H, Zhan X, Sharp FR. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res 2011; 1381:228-36. [PMID: 21241679 DOI: 10.1016/j.brainres.2011.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Tourette syndrome (TS) is a complex childhood neurodevelopmental disorder characterized by motor and vocal tics. Recently, altered numbers of GABAergic-parvalbumin (PV) and cholinergic interneurons were observed in the basal ganglia of individuals with TS. Thus, we postulated that gamma-amino butyric acid (GABA)- and acetylcholine (ACh)-related genes might be associated with the pathophysiology of TS. Total RNA isolated from whole blood of 26 un-medicated TS subjects and 23 healthy controls (HC) was processed on Affymetrix Human Exon 1.0 ST arrays. Data were analyzed to identify genes whose expression correlated with tic severity in TS, and to identify genes differentially spliced in TS compared to HC subjects. Many genes (3627) correlated with tic severity in TS (p < 0.05) among which GABA- (p = 2.1 × 10⁻³) and ACh- (p = 4.25 × 10⁻⁸) related genes were significantly over-represented. Moreover, several GABA and ACh-related genes were predicted to be alternatively spliced in TS compared to HC including GABA receptors GABRA4 and GABRG1, the nicotinic ACh receptor CHRNA4 and cholinergic differentiation factor (CDF). This pilot study suggests that at least some of these GABA- and ACh-related genes observed in blood that correlate with tics or are alternatively spliced are involved in the pathophysiology of TS and tics.
Collapse
Affiliation(s)
- Yingfang Tian
- University of California at Davis, M.I.N.D., Institute and Department of Neurology, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tian Y, Liao IH, Zhan X, Gunther JR, Ander BP, Liu D, Lit L, Jickling GC, Corbett BA, Bos-Veneman NGP, Hoekstra PJ, Sharp FR. Exon expression and alternatively spliced genes in Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:72-8. [PMID: 21184586 PMCID: PMC3070201 DOI: 10.1002/ajmg.b.31140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of individuals with TS compared to healthy controls (HC), RNA was isolated from the blood of 26 un-medicated TS subjects and 23 HC. Each sample was run on Affymetrix Human Exon 1.0 ST (HuExon) arrays and on 3' biased U133 Plus 2.0 (HuU133) arrays. To investigate the differentially expressed exons and transcripts, analyses of covariance (ANCOVA) were performed, controlling for age, gender, and batch. Differential alternative splicing patterns between TS and HC were identified using analyses of variance (ANOVA) models in Partek. Three hundred and seventy-six exon probe sets were differentially expressed between TS and HC (raw P < 0.005, fold change >|1.2|) that separated TS and HC subjects using hierarchical clustering and Principal Components Analysis. The probe sets predicted TS compared to HC with a >90% sensitivity and specificity using a 10-fold cross-validation. Ninety genes (transcripts) had differential expression of a single exon (raw P < 0.005) and were predicted to be alternatively spliced (raw P < 0.05) in TS compared to HC. These preliminary findings might provide insight into the pathophysiology of TS and potentially provide prognostic and diagnostic biomarkers. However, the findings are tempered by the small sample size and multiple comparisons and require confirmation using PCR or deep RNA sequencing and a much larger patient population.
Collapse
Affiliation(s)
- Yingfang Tian
- M.I.N.D. Institute, Department of Neurology, University of California at Davis, Sacramento, 95817, USA.
| | - Isaac H. Liao
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Xinhua Zhan
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Joan R. Gunther
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Bradley P. Ander
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Dazhi Liu
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Lisa Lit
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Glen C. Jickling
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| | - Blythe A. Corbett
- M.I.N.D. Institute and Department of Psychiatry, University of California at Davis, Sacramento, California. USA
| | - Netty GP. Bos-Veneman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Netherlands
| | - Frank R. Sharp
- M.I.N.D. Institute and Department of Neurology, University of California at Davis, Sacramento, California. USA
| |
Collapse
|
15
|
Morer A, Chae W, Henegariu O, Bothwell ALM, Leckman JF, Kawikova I. Elevated expression of MCP-1, IL-2 and PTPR-N in basal ganglia of Tourette syndrome cases. Brain Behav Immun 2010; 24:1069-73. [PMID: 20193755 DOI: 10.1016/j.bbi.2010.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Post-infectious autoimmunity has been implicated in pathogenesis of Tourette's syndrome (TS) but no evidence of inflammation in central nervous system has been reported yet. We evaluated the expression of genes encoding selected inflammatory factors in post-mortem specimen of adult TS patients: interferon-γ (a cytokine released from CD8 and Thelper 1 CD4 subset of T lymphocytes), interleukin-2 (IL-2, a growth factor derived from T lymphocytes), interleukin-1 β (a cytokine involved in initiation of inflammation), monocyte chemotactic factor -1 (MCP-1, a marker of chronic inflammation) and CD45 (pan-leukocytic marker). For validation purposes, we determined expression of three genes that were previously reported to be elevated in post-mortem specimen of other TS cases: protein tyrosine phosphatase receptor-N (PTPR-N), PTPR-U and recoverin. METHODS Total RNA was isolated from formalin fixed brain tissue sections of basal ganglia area from four patients with TS and four control subjects, and real-time reverse transcription-polymerase chain reaction analysis was employed to quantitatively evaluate gene expression of the selected genes. RESULTS Significantly increased expression of MCP-1, IL-2 and PTPR-N was observed in TS cases (6.5-fold, 2.3-fold and 16.1-fold increase, respectively, p<0.05). CONCLUSIONS Elevated expression of MCP-1 and IL-2 supports the possibility of chronic inflammatory processes in the basal ganglia. Replication of elevated expression of PTPR-N in TS specimen suggests that pathway(s) involving this molecule may be important in TS pathogenesis.
Collapse
Affiliation(s)
- Astrid Morer
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
16
|
Murphy TK, Kurlan R, Leckman J. The immunobiology of Tourette's disorder, pediatric autoimmune neuropsychiatric disorders associated with Streptococcus, and related disorders: a way forward. J Child Adolesc Psychopharmacol 2010; 20:317-31. [PMID: 20807070 PMCID: PMC4003464 DOI: 10.1089/cap.2010.0043] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obsessive-compulsive disorder (OCD) and related conditions including Tourette's disorder (TD) are chronic, relapsing disorders of unknown etiology associated with marked impairment and disability. Associated immune dysfunction has been reported and debated in the literature since the late 80s. The immunologic culprit receiving the most interest has been Group A Streptococcus (GAS), which began to receive attention as a potential cause of neuropsychiatric symptoms, following the investigation of the symptoms reported in Sydenham's chorea (SC) and rheumatic fever, such as motor tics, vocal tics, and both obsessive-compulsive and attention deficit/hyperactivity symptoms. Young children have been described as having a sudden onset of these neuropsychiatric symptoms temporally associated with GAS, but without supporting evidence of rheumatic fever. This presentation of OCD and tics has been termed pediatric autoimmune neuropsychiatric disorders associated with Streptococcus (PANDAS). Of note, SC, OCD, and TD often begin in early childhood and share common anatomic areas--the basal ganglia of the brain and the related cortical and thalamic sites--adding support to the possibility that these disorders might share a common immunologic and/or genetic vulnerability. Relevant manuscripts were identified through searches of the PsycINFO and MedLine databases using the following keywords: OCD, immune, PANDAS, Sydenham chorea, Tourette's disorder Group A Streptococcus. Articles were also identified through reference lists from research articles and other materials on childhood OCD, PANDAS, and TD between 1966 and December 2010. Considering the overlap of clinical and neuroanatomic findings among these disorders, this review explores evidence regarding the immunobiology as well as the relevant clinical and therapeutic aspects of TD, OCD, and PANDAS.
Collapse
Affiliation(s)
- Tanya K Murphy
- Department of Pediatrics and Psychiatry, University of South Florida, St Petersburg, Florida 33701, USA.
| | | | | |
Collapse
|
17
|
Liu X, Wang Y, Li D, Ju X. Transplantation of rat neural stem cells reduces stereotypic behaviors in rats after intrastriatal microinfusion of Tourette syndrome sera. Behav Brain Res 2007; 186:84-90. [PMID: 17850895 DOI: 10.1016/j.bbr.2007.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Tourette syndrome (TS) is a heterogenous neuropsychiatric disorder. In most cases, tics are self-limited or can be treated by behavioral or pharmacological therapy. However, for some individuals, tics can cause lifelong impairment and life-threatening symptoms, which are intractable to traditional treatment. Neural stem cell (NSC) is a potential tool to treat certain neurological diseases. In this study, we proposed to use neural stem cell transplantation as a novel therapy to treat TS and discussed its efficacy. Wistar rats were microinfused with TS sera into the striatum followed by the transplantation of NSCs or vehicle at the infusion site. The sera of the TS patients were identified to have enriched antineural antibodies. Prior to grafting, rat embryonic NSCs were co-cultured with 5-bromodeoxyuridine (Brdu) for 24 h. Stereotypic behaviors were counted at 1, 7, 14 and 21 days after transplantation of NSCs. Morphological analyses revealed that NSCs survived and differentiated into neurons and astrocytes in the striatum 3 weeks after grafting. To sum it up, rat embryonic neural stem cell grafts survived and differentiated in the striatum of TS rat may help relieve stereotypic behaviors of the host. Our results suggest that transplantation of NSCs intrastriatum may have therapeutic potential for TS.
Collapse
Affiliation(s)
- Xiumei Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | | | | | | |
Collapse
|
18
|
Girgenti MJ, Newton SS. Customizing microarrays for neuroscience drug discovery. Expert Opin Drug Discov 2007; 2:1139-49. [DOI: 10.1517/17460441.2.8.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matthew J Girgenti
- Yale University School of Medicine, Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, 34 Park Street, New Haven, CT, 06508, USA ;
| | - Samuel S Newton
- Yale University School of Medicine, Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, 34 Park Street, New Haven, CT, 06508, USA ;
| |
Collapse
|
19
|
Swain JE, Scahill L, Lombroso PJ, King RA, Leckman JF. Tourette syndrome and tic disorders: a decade of progress. J Am Acad Child Adolesc Psychiatry 2007; 46:947-968. [PMID: 17667475 DOI: 10.1097/chi.0b013e318068fbcc] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This is a review of progress made in the understanding of Tourette syndrome (TS) during the past decade including models of pathogenesis, state-of-the-art assessment techniques, and treatment. METHOD Computerized literature searches were conducted under the key words "Tourette syndrome," "Tourette disorder," and "tics." Only references from 1996-2006 were included. RESULTS Studies have documented the natural history of TS and the finding that tics usually improve by the end of the second decade of life. It has also become clear that TS frequently co-occurs with attention-deficit/hyperactivity disorder), obsessive-compulsive disorder, and a range of other mood and anxiety disorders. These comorbid conditions are often the major source of impairment for the affected child. Advances have also been made in understanding the underlying neurobiology of TS using in vivo neuroimaging and neurophysiology techniques. Progress on the genetic front has been less rapid. Proper diagnosis and education (involving the affected child and his or her parents, teachers, and peers) are essential prerequisites to the successful management of children with TS. When necessary, modestly effective antitic medications are available, although intervening to treat the comorbid attention-deficit/hyperactivity disorder and/or obsessive-compulsive disorder is usually the place to start. CONCLUSIONS Prospective longitudinal studies and randomized clinical trials have led to the refinement of several models of pathogenesis and advanced our evidence base regarding treatment options. However, fully explanatory models are needed that would allow for more accurate prognosis and the development of targeted and efficacious treatments.
Collapse
Affiliation(s)
- James E Swain
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University..
| | - Lawrence Scahill
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - Paul J Lombroso
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - Robert A King
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| | - James F Leckman
- Drs. Swain, Scahill, Lombroso, King, and Leckman are with the Child Study Center of Yale University, New Haven, CT; and Dr. Scahill is also with the School of Nursing at Yale University
| |
Collapse
|
20
|
Kawada JI, Kimura H, Kamachi Y, Nishikawa K, Taniguchi M, Nagaoka K, Kurahashi H, Kojima S, Morishima T. Analysis of gene-expression profiles by oligonucleotide microarray in children with influenza. J Gen Virol 2006; 87:1677-1683. [PMID: 16690933 DOI: 10.1099/vir.0.81670-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to clarify the mechanism of the host response to influenza virus, gene-expression profiles of peripheral blood obtained from paediatric patients with influenza were investigated by oligonucleotide microarray. In the acute phase of influenza, 200 genes were upregulated and 20 genes were downregulated compared with their expression in the convalescent phase. Interferon-regulated genes, such as interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) and vipirin, were strongly upregulated in the acute phase. Gene ontology analysis showed that immune response genes were highly overrepresented among the upregulated genes. Gene-expression profiles of influenza patients with and without febrile convulsion were also studied. In patients with febrile convulsion, 22 genes were upregulated and five were downregulated compared with their expression in patients without febrile convulsion. These results should help to clarify the pathogenesis of influenza and its neurological complications.
Collapse
Affiliation(s)
- Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kimura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiro Kamachi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Nishikawa
- Department of Pediatrics, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Mariko Taniguchi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kayuri Nagaoka
- Development Center for Targeted and Minimally Invasive Diagnosis and Treatment, Fujita Health University, Toyoake, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroki Kurahashi
- Development Center for Targeted and Minimally Invasive Diagnosis and Treatment, Fujita Health University, Toyoake, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuneo Morishima
- Department of Pediatrics, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| |
Collapse
|
21
|
Abstract
Proper education of the patient is the first step in the treatment of Tourette syndrome (TS). Before deciding how to treat the patient, it is important to decide whether to treat the TS-related symptoms. Counselling and behavioural modification may be sufficient for those with mild symptoms. Medications, however, may be considered when symptoms begin to interfere with peer relationships, social interactions, academic or job performance, or with activities of daily living. Therapy must be individualised and the most troublesome symptoms should be targeted first. Antidopaminergic agents are clearly the most effective drugs in the treatment of tics. Although haloperidol and pimozide are the only drugs currently approved by the FDA for the treatment of TS, other dopamine receptor-blocking drugs and tetrabenazine, a dopamine depleting drug, as well as botulinum toxin injections, have been used to treat tics associated with TS. Carefully designed, comparative, longitudinal trials assessing the efficacy and adverse-effect profiles of these drugs, including tardive dyskinesia, are lacking. Selective serotonin reuptake inhibitors are recommended for the treatment of obsessive-compulsive behaviour: a common comorbidity. Psychostimulants, such as methylphenidate, are the treatment of choice for attention deficit hyperactivity disorder. Even though these drugs may transiently increase tics, this does not necessarily constitute a definite contraindication to the use of these drugs in patients with TS. Here, existing and emerging medical treatments in patients with tics and comorbid behavioural disorders associated with TS are reviewed.
Collapse
Affiliation(s)
- Yavuz S Silay
- Parkinson's disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 6550 Fannin Suite 1801, Houston, TX 77030, USA
| | | |
Collapse
|
22
|
Leckman JF, Katsovich L, Kawikova I, Lin H, Zhang H, Krönig H, Morshed S, Parveen S, Grantz H, Lombroso PJ, King RA. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette's syndrome. Biol Psychiatry 2005; 57:667-73. [PMID: 15780855 DOI: 10.1016/j.biopsych.2004.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/23/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND The hypothesis that common infections can modulate the onset and course of tic disorders and early-onset obsessive-compulsive disorder (OCD) in pediatric populations is longstanding. To date, most investigations have focused on the hypothesis of molecular mimicry and humoral immune responses. This study was carried out to investigate whether cytokines associated with the innate immune response or T cell activation were altered under baseline conditions and during periods of symptom exacerbation. METHODS Forty-six patients with Tourette's syndrome and/or early-onset OCD, aged 7-17 years, and 31 age-matched control subjects participated in a prospective longitudinal study. Ratings of clinical severity and serum were collected at regular intervals, and serum concentrations of 10 cytokines were measured repeatedly. RESULTS Interleukin-12 and tumor necrosis factor alpha concentrations at baseline were elevated in patients compared with control subjects. Both of these markers were further increased during periods of symptom exacerbation. CONCLUSIONS These findings suggest that symptom exacerbations are associated with an inflammatory process propagated by systemic and local cytokine synthesis that might involve the central nervous system. We conclude that, in the future, longitudinal studies of children with neuropsychiatric disorders should examine the involvement of innate and T cell immunity.
Collapse
Affiliation(s)
- James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT 06520-7900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|