1
|
Farid MF, Yasin NAE, Al-Mokaddem AK, Ibrahim MA, Abouelela YS, Rizk H. Combined laser-activated SVF and PRP remodeled spinal sclerosis via activation of Olig-2, MBP, and neurotrophic factors and inhibition of BAX and GFAP. Sci Rep 2024; 14:3096. [PMID: 38326395 PMCID: PMC10850074 DOI: 10.1038/s41598-024-52962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
A single injection of platelet-rich plasma (PRP) or stromal vascular fraction (SVF) in treating neurological ailments suggests promise; however, there is limited evidence of the efficacy of combination therapy. This trial aimed to determine whether combining SVF and PRP could provide further therapeutic effects in treating multiple sclerosis (MS). Fifteen Persian cats were separated into three groups (n = 5): group I (control negative), and group II (control positive); EB was injected intrathecally into the spinal cord and then treated 14 days later with intrathecal phosphate buffered saline injection, and group III (SVF + PRP), cats were injected intrathecally with EB through the spinal cord, followed by a combination of SVF and PRP 14 days after induction. Therapeutic effects were evaluated using the Basso-Beattie-Bresnahan scale throughout the treatment timeline and at the end. Together with morphological, MRI scan, immunohistochemical, transmission electron microscopy, and gene expression investigations. The results demonstrated that combining SVF and PRP successfully reduced lesion intensity on gross inspection and MRI. In addition to increased immunoreactivity to Olig2 and MBP and decreased immunoreactivity to Bax and GFAP, there was a significant improvement in BBB scores and an increase in neurotrophic factor (BDNF, NGF, and SDF) expression when compared to the positive control group. Finally, intrathecal SVF + PRP is the most promising and safe therapy for multiple sclerosis, resulting in clinical advantages such as functional recovery, MRI enhancement, and axonal remyelination.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
2
|
Siwek T, Zwiernik B, Jezierska-Woźniak K, Jezierska K, Mycko MP, Selmaj KW. Intrathecal administration of mesenchymal stem cells in patients with adrenomyeloneuropathy. Front Neurol 2024; 15:1345503. [PMID: 38370525 PMCID: PMC10869536 DOI: 10.3389/fneur.2024.1345503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background and objectives X-linked adrenomyeloneuropathy (AMN) is an inherited neurodegenerative disorder associated with mutations in the ABCD1 gene and the accumulation of very long-chain fatty acids (VLFCAs) in plasma and tissues. Currently, there is no effective treatment for AMN. We have aimed to evaluate the therapeutic effects of mesenchymal stem cell (MSC) transplantation in patients with AMN. Methods This is a small cohort open-label study with patients with AMN diagnosed and treated at the University Hospital in Olsztyn, Poland. All patients met clinical, biochemical, MRI, and neuropsychological criteria for AMN. MSCs derived from Wharton jelly, 20 × 106 cells, were administered intrathecally three times every 2 months, and patients were followed up for an additional 3 months. The primary outcome measures included a blinded assessment of lower limb muscle strength with the Medical Research Council Manual Muscle Testing scale at baseline and on every month visits until the end of the study. Additional outcomes included measurements of the timed 25-feet walk (T25FW) and VLFCA serum ratio. Results Three male patients with AMN with an age range of 26-37 years participated in this study. All patients experienced increased muscle strength in the lower limbs at the end of the study versus baseline. The power grade increased by 25-43% at the baseline. In addition, all patients showed an improvement trend in walking speed measured with the T25FW test. Treatment with MSCs in patients with AMN appeared to be safe and well tolerated. Discussion The results of this study demonstrated that intrathecal administration of WJ-MSC improves motor symptoms in patients with AMN. The current findings lend support to the safety and feasibility of MSC therapy as a potentially viable treatment option for patients with AMN.
Collapse
Affiliation(s)
- Tomasz Siwek
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Beata Zwiernik
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamila Jezierska
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marcin P. Mycko
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof W. Selmaj
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Center of Neurology, Lodz, Poland
| |
Collapse
|
3
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
4
|
Panegyres PK, Russell J, Chen H, Panegyres M. A global online study of haematopoietic stem cell transplantation in multiple sclerosis and other neurodegenerative disorders. Chronic Dis Transl Med 2023; 9:39-43. [PMID: 36926249 PMCID: PMC10011666 DOI: 10.1002/cdt3.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
Background The objective of this study was to understand the uptake of hemopoietic stem cell transplantation (HSCT) in neuroimmunological disorders like multiple sclerosis (MS). Method An independent University affiliated research organization conducted a global online survey of people having had HSCT, examining demographics, treatment protocol, and effectiveness. Results Of 271 participants, useful data were available in 223; women aged 35-54 accounted for 73.5%. Most had a household income greater than US$50,000, and the majority of participants were from Australia and the United States. Nearly 94.6% of people suffer from MS. Most had their treatment in Russia (38.7%) and 78.1% had nonmyeloablative transplants. Nearly half of the participants spent between US$50,000 to US$74,999. There were 54.5% of neurologists who did not support their patients having HSCT. Around 85.5% of participants believed HSCT helped them manage their disease from weeks to years after transplantation, and treatment was recommended by 9.5% of participants. The average reduction in Expanded Disability Status Score after transplantation was 1.2 (95% CI: 0.97-1.41; N = 197; p < 0.01; t: 10.7, df: 196). Conclusion Participants were supportive of HSCT despite the costs and would recommend it to others. The data suggest some benefit in minimizing disability in MS and provides justification for large randomized controlled trials.
Collapse
Affiliation(s)
- Peter K. Panegyres
- Neurodegenerative Disorders Research Pty LtdWest PerthWestern AustraliaAustralia
- The University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Jodi Russell
- Neurodegenerative Disorders Research Pty LtdWest PerthWestern AustraliaAustralia
| | - Huei‐Yang Chen
- Neurodegenerative Disorders Research Pty LtdWest PerthWestern AustraliaAustralia
| | - Mariella Panegyres
- Neurodegenerative Disorders Research Pty LtdWest PerthWestern AustraliaAustralia
| |
Collapse
|
5
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Bone marrow-derived mesenchymal stem cells overexpressed with miR-182-5p protects against brain injury in a mouse model of cerebral ischemia. J Stroke Cerebrovasc Dis 2022; 31:106748. [PMID: 36087376 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a critical role in ischemic brain injury by mediating the inflammatory response. The microRNA miR-185-5p suppresses inflammatory signaling by targeting TLR4. This study investigates whether overexpressing miR-182-5p in bone marrow-derived mesenchymal stem cells (BM-MSCs) could potentiate the neuroprotective effects of BM-MSCs in a mouse model of ischemic brain injury. METHODS We isolated BM-MSCs from mice, transfected the cells with miR-182-5p mimic, determined their MSC lineage through flow cytometry analysis of surface markers, examined miR-182-5p and TLR4 expression levels, and injected them into mice undergone middle cerebral artery occlusion (MCAO). MSC transplanted mice were subjected to behavior assays to determine cognitive and motor functions and biochemical analysis to determine neuroinflammation and TLR4/NF-κB in the ischemic hemisphere. RESULTS We found that BM-MSCs overexpressing miR-182-5p showed reduced TLR4 expression without affecting their MSC lineage. Mice transplanted with miR-182-5p overexpressing BM-MSCs after MCAO showed significantly improved cognitive and motor functions and reduced neuroinflammation, including suppressed microglial M1 polarization, reduced inflammatory cytokines, and inhibited TLR4/ NF-κB signaling. CONCLUSION Our findings suggest that overexpressing miR-182-5p in BM-MSCs can enhance the neuroprotective effects of BM-MSCs against ischemic brain injury by suppressing TLR4-mediated inflammatory response.
Collapse
|
7
|
Fu Z, Chu Y, Geng X, Ma Y, Chi K, Song C, Liao S, Hong Q, Wu D, Wang Y. Artificial Kidney Capsule Packed with Mesenchymal Stem Cell-Laden Hydrogel for the Treatment of Rhabdomyolysis-Induced Acute Kidney Injury. ACS Biomater Sci Eng 2022; 8:1726-1734. [PMID: 35302761 DOI: 10.1021/acsbiomaterials.1c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) has emerged as a major public health problem affecting millions of people worldwide without specific and satisfactory therapies due to the lack of an effective delivery approach. In the past few decades, hydrogels present infinite potential in localized drug delivery, while their poor adhesion to moist tissue and isotropic diffusion character always restrict the therapeutic efficiency and may lead to unwanted side effects. Herein, we proposed a novel therapeutic strategy for AKI via a customizable artificial kidney capsule (AKC) together with a mesenchymal stem cell (MSC)-laden hydrogel. Specifically, an elastic capsule owning an inner chamber with the same size and shape as the kidney is designed and fabricated through three-dimensional (3D) modeling and printing, serving as an outer wrap for kidney and cell-laden hydrogels. According to the in vitro experiment, the excellent biocompatibility of gelatin-based hydrogel ensures viability and proliferation of MSCs. In vivo mice experiments proved that this concept of AKC-assisted kidney drug delivery could efficiently reduce epithelial cell apoptosis and minimize the damage of the renal tubular structure for mice suffering AKI. Such a strategy not only provides a promising alternative in the treatment of AKI but also offers a feasible and versatile approach for the repair and recovery of other organs.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaodong Geng
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.,Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao 066100, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chengcheng Song
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Quan Hong
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Di Wu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
8
|
Jiang F, Zhou H, Cheng Y, He Z, Meng P, Sun K, Wang P, Han X, Wang L, Yang M, Jiang N, Liu Y, Yuan C, Yang Q, An Y. Various detailed characteristics of a new enhanced neurotrophic factor secreting rat derived bone marrow mesenchymal stem cells and its preliminary application in rat models of ischemic stroke. Exp Cell Res 2022; 416:113140. [DOI: 10.1016/j.yexcr.2022.113140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
|
9
|
Wang Y, Han T, Guo R, Song P, Liu Y, Wu Z, Ai J, Shen C. Micro-RNA let-7a-5p Derived From Mesenchymal Stem Cell-Derived Extracellular Vesicles Promotes the Regrowth of Neurons in Spinal-Cord-Injured Rats by Targeting the HMGA2/SMAD2 Axis. Front Mol Neurosci 2022; 15:850364. [PMID: 35401112 PMCID: PMC8990843 DOI: 10.3389/fnmol.2022.850364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) often causes neuronal and axonal damage, resulting in permanent neurological impairments. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising treatments for SCI. However, the underlying mechanisms remain unclear. Herein, we demonstrated that EVs from bone marrow-derived MSCs promoted the differentiation of neural stem cells (NSCs) into the neurons and outgrowth of neurites that are extending into astrocytic scars in SCI rats. Further study found that let-7a-5p exerted a similar biological effect as MSC-EVs in regulating the differentiation of NSCs and leading to neurological improvement in SCI rats. Moreover, these MSC-EV-induced effects were attenuated by let-7a-5p inhibitors/antagomirs. When investigating the mechanism, bioinformatics predictions combined with western blot and RT-PCR analyses showed that both MSC-EVs and let-7a-5p were able to downregulate the expression of SMAD2 by inhibiting HMGA2. In conclusion, MSC-EV-secreted let-7a-5p promoted the regrowth of neurons and improved neurological recovery in SCI rats by targeting the HMGA2/SMAD2 axis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruocheng Guo
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlei Liu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory, No. 2 People’s Hospital of Fuyang, Fuyang, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Ai
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopedics, No. 2 People’s Hospital of Fuyang, Fuyang, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Cailiang Shen,
| |
Collapse
|
10
|
Lindsay SL, Molęda AM, MacLellan LM, Keh SM, McElroy DE, Linington C, Goodyear CS, Barnett SC. Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathol Commun 2022; 10:12. [PMID: 35093166 PMCID: PMC8800340 DOI: 10.1186/s40478-022-01316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood–brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.
Collapse
|
11
|
González LM, Ospina LN, Sperling LE, Chaparro O, Cucarián JD. Therapeutic Effects of Physical Exercise and the Mesenchymal Stem Cell Secretome by Modulating Neuroinflammatory Response in Multiple Sclerosis. Curr Stem Cell Res Ther 2021; 17:621-632. [PMID: 34886779 DOI: 10.2174/1574888x16666211209155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative, demyelinating, and chronic inflammatory disease characterized by central nervous system (CNS) lesions that lead to high levels of disability and severe physical and cognitive disturbances. Conventional therapies are not enough to control the neuroinflammatory process in MS and are not able to inhibit ongoing damage to the CNS. Thus, the secretome of mesenchymal stem cells (MSC-S) has been postulated as a potential therapy that could mitigate symptoms and disease progression. We considered that its combination with physical exercise (EX) could induce superior effects and increase the MSC-S effectiveness in this condition. Recent studies have revealed that both EX and MSC-S share similar mechanisms of action that mitigate auto-reactive T cell infiltration, regulate the local inflammatory response, modulate the proinflammatory profile of glial cells, and reduce neuronal damage. Clinical and experimental studies have reported that these treatments in an isolated way also improve myelination, regeneration, promote the release of neurotrophic factors, and increase the recruitment of endogenous stem cells. Together, these effects reduce disease progression and improve patient functionality. Despite these results, the combination of these methods has not yet been studied in MS. In this review, we focus on molecular elements and cellular responses induced by these treatments in a separate way, showing their beneficial effects in the control of symptoms and disease progression in MS, as well as indicating their contribution in clinical fields. In addition, we propose the combined use of EX and MSC-S as a strategy to boost their reparative and immunomodulatory effects in this condition, combining their benefits on synaptogenesis, neurogenesis, remyelination, and neuroinflammatory response. The findings here reported are based on the scientific evidence and our professional experience that will bring significant progress to regenerative medicine to deal with this condition.
Collapse
Affiliation(s)
- Lina María González
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Natalia Ospina
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Elena Sperling
- Faculty of Pharmacy & Fundamental Health Science Institute, Federal University of Rio Grande do Sul Rua Ramiro Barcelos, 2600-Prédio Anexo - Floresta, Porto Alegre. Brazil
| | - Orlando Chaparro
- Physiology Department, Faculty of Medicine, Universidad Nacional de Colombia Ak 30 #45-03, Bogotá. Colombia
| | - Jaison Daniel Cucarián
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| |
Collapse
|
12
|
Gupta A, Singh S. Potential Role of Growth Factors Controlled Release in Achieving Enhanced Neuronal Trans-differentiation from Mesenchymal Stem Cells for Neural Tissue Repair and Regeneration. Mol Neurobiol 2021; 59:983-1001. [PMID: 34816381 DOI: 10.1007/s12035-021-02646-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
With an increase in the incidence of neurodegenerative diseases, a need to replace incapable conventional methods has arisen. To overcome this burden, stem cells therapy has emerged as an efficient treatment option. Endeavours to accomplish this have paved the path to neural regeneration through efficient neuronal transdifferentiation. Despite their potential, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. The process of neural differentiation through the stem cells is achieved through the use of chemical inducers or growth factors and their direct introduction reduces their bioavailability in the system. To address these limitations, neural regeneration ventures require growth factors to be effectively implemented on stem cells in order to produce functional neuronal precursor cells. An efficient technique to achieve it is through the delivery of growth factors via microcarriers for their sustained release. It ensures the presence of commensurable concentration even at later stages of neuronal transdifferentiation. Nanofibers and nanoparticles, along with liposomes and such, have been used to implement this. The interaction between such carriers and the growth factors is mainly electrostatic. Such interaction enables them to form a stable assembly through immobilisation of the growth factor either onto their surfaces or within the core of their structures. The rate of sustained release depends upon the release kinetics associated with the polymeric structure employed and its interaction with the encapsulated growth factor. The sustained release ensures that the stem cells immerse under the effect of the growth factors for a prolonged period, ultimately aiding in the formation of cells showing ample characteristics of neuron precursors. This review analyses the various carriers that have been employed for the release of growth factors in an orderly fashion and their constituents, along with the advantages and the limitations they pose in delivering the growth factors for facilitating the process of neuronal transdifferentiation.
Collapse
Affiliation(s)
- Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
13
|
Jadhav CK, Nipate AS, Chate AV, Kulkarni MV, Dofe VS, Gill CH. Rapid Multicomponent Tandem Annulation in Ionic Liquids: Convergent Access to 3-Amino-1-Alkylpyridin-2(1 H)-One Derivatives as Potential Anticancer Scaffolds. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1994427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Amol S. Nipate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Makrand V. Kulkarni
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Vidya S. Dofe
- Department of Chemistry, Deogiri College of Science, Aurangabad, Maharashtra, India
| | - Charansingh H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
14
|
Weiss JB, Phillips CJ, Malin EW, Gorantla VS, Harding JW, Salgar SK. Stem cell, Granulocyte-Colony Stimulating Factor and/or Dihexa to promote limb function recovery in a rat sciatic nerve damage-repair model: Experimental animal studies. Ann Med Surg (Lond) 2021; 71:102917. [PMID: 34703584 PMCID: PMC8524106 DOI: 10.1016/j.amsu.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Background Optimizing nerve regeneration and re-innervation of target muscle/s is the key for improved functional recovery following peripheral nerve damage. We investigated whether administration of mesenchymal stem cell (MSC), Granulocyte-Colony Stimulating Factor (G-CSF) and/or Dihexa can improve recovery of limb function following peripheral nerve damage in rat sciatic nerve transection-repair model. Materials and methods There were 10 experimental groups (n = 6–8 rats/group). Bone marrow derived syngeneic MSCs (2 × 106; passage≤6), G-CSF (200–400 μg/kg b.wt.), Dihexa (2–4 mg/kg b.wt.) and/or Vehicle were administered to male Lewis rats locally via hydrogel at the site of nerve repair, systemically (i.v./i.p), and/or to gastrocnemius muscle. The limb sensory and motor functions were assessed at 1–2 week intervals post nerve repair until the study endpoint (16 weeks). Results The sensory function in all nerve boundaries (peroneal, tibial, sural) returned to nearly normal by 8 weeks (Grade 2.7 on a scale of Grade 0–3 [0 = No function; 3 = Normal function]) in all groups combined. The peroneal nerve function recovered quickly with return of function at one week (∼2.0) while sural nerve function recovered rather slowly at four weeks (∼1.0). Motor function at 8–16 weeks post-nerve repair as determined by walking foot print grades significantly (P < 0.05) improved with MSC + G-CSF or MSC + Dihexa administrations into gastrocnemius muscle and mitigated foot flexion contractures. Conclusions These findings demonstrate MSC, G-CSF and Dihexa are promising candidates for adjunct therapies to promote limb functional recovery after surgical nerve repair, and have implications in peripheral nerve injury and limb transplantation. IACUC No.215064. G-CSF in combination with MSCs improved limb function recovery in sciatic nerve transection- repair model. Dihexa in combination with MSC improved limb function recovery in sciatic nerve transection- repair model. Foot flexion contractures were reduced with G-CSF & MSC or Dihexa & MSC administration into target muscle gastrocnemius. MSC, G-CSF or Dihexa combination therapy is attractive, feasible & promising in peripheral nerve injury repair and have implications in limb transplantation. The findings warrant further investigation to understand the cellular/molecular mechanisms.
Collapse
Affiliation(s)
- Jessica B Weiss
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Cody J Phillips
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Edward W Malin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph W Harding
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| |
Collapse
|
15
|
Cozene B, Sadanandan N, Farooq J, Kingsbury C, Park YJ, Wang ZJ, Moscatello A, Saft M, Cho J, Gonzales-Portillo B, Borlongan CV. Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury. Cell Transplant 2021; 30:9636897211035715. [PMID: 34559583 PMCID: PMC8485159 DOI: 10.1177/09636897211035715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a pervasive and damaging form of acquired brain injury (ABI). Acute, subacute, and chronic cell death processes, as a result of TBI, contribute to the disease progression and exacerbate outcomes. Extended neuroinflammation can worsen secondary degradation of brain function and structure. Mesenchymal stem cell transplantation has surfaced as a viable approach as a TBI therapeutic due to its immunomodulatory and regenerative features. This article examines the role of inflammation and cell death in ABI as well as the effectiveness of bone marrow-derived mesenchymal stem/stromal cell (BM-MSC) transplants as a treatment for TBI. Furthermore, we analyze new studies featuring transplanted BM-MSCs as a neurorestorative and anti-inflammatory therapy for TBI patients. Although clinical trials support BM-MSC transplants as a viable TBI treatment due to their promising regenerative characteristics, further investigation is imperative to uncover innovative brain repair pathways associated with cell-based therapy as stand-alone or as combination treatments.
Collapse
Affiliation(s)
| | | | - Jeffrey Farooq
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
16
|
Lee DY, Lee SE, Kwon DH, Nithiyanandam S, Lee MH, Hwang JS, Basith S, Ahn JH, Shin TH, Lee G. Strategies to Improve the Quality and Freshness of Human Bone Marrow-Derived Mesenchymal Stem Cells for Neurological Diseases. Stem Cells Int 2021; 2021:8444599. [PMID: 34539792 PMCID: PMC8445711 DOI: 10.1155/2021/8444599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.
Collapse
Affiliation(s)
- Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Eun Lee
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Hyeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | - Mi Ha Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Hwan Ahn
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
17
|
Petrou P, Kassis I, Ginzberg A, Halimi M, Yaghmour N, Abramsky O, Karussis D. Long-Term Clinical and Immunological Effects of Repeated Mesenchymal Stem Cell Injections in Patients With Progressive Forms of Multiple Sclerosis. Front Neurol 2021; 12:639315. [PMID: 34135843 PMCID: PMC8202001 DOI: 10.3389/fneur.2021.639315] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stem cells (MSC) were shown to possess immunomodulatory and neurotrophic effects. Our previous trials, have shown that intrathecal (IT) and intravenous (IV) administration of MSCs were safe and provided indications of beneficial clinical effects. Methods: This is an open prospective study to evaluate the safety and the long-term clinical and immunological effects of multiple injections of autologous MSCs in 24 patients with active-progressive MS. At inclusion, the mean age of the patients was 47.0 ± 9.22, and the mean EDSS score was 6.75 ± 0.68 (range: 5.5–7.5). Patients were initially treated with 1 ×106 MSCS/kg of body weight (IT + IV) and subsequently with up to additional eight courses of MSCs, at intervals of 6–12 months. The duration of the trial was 4 years. Results: No serious, treatment-related adverse events were observed during the follow-up period. Twenty-two of the 24 patients were either stable or improved at the last follow-up visit. Ten patients had a lower than baseline EDSS at the last follow-up (nine were among those who received >2 treatments and one in the subgroup of ≤ 2 treatments, p = 0.04). The mean EDSS score reduced from 6.75 ± 0.68 at baseline to 6.42 ± 0.84 at the last visit, during a median follow-up period of 27.8 months (p = 0.028). Immunological follow-up showed a transient upregulation of CD4+CD25+FoxP3+ cells and downregulation of the proliferative ability of lymphocytes. Conclusions: Repeated MSC treatments in patients with progressive MS were shown safe at the short/intermediate term and induced clinical benefits (especially in patients treated with >2 injections) that lasted for up to 4 years, paralleled by short-term immunomodulatory effects. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT04823000.
Collapse
Affiliation(s)
- Panayiota Petrou
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ibrahim Kassis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ariel Ginzberg
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Michel Halimi
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Nour Yaghmour
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Oded Abramsky
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Dimitrios Karussis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
18
|
A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, Oertel FC, Scheel M, Hallimi M, Yaghmour N, Hur TB, Ginzberg A, Levy Y, Abramsky O, Karussis D. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain 2021; 143:3574-3588. [PMID: 33253391 DOI: 10.1093/brain/awaa333] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
In this study (trial registration: NCT02166021), we aimed to evaluate the optimal way of administration, the safety and the clinical efficacy of mesenchymal stem cell (MSC) transplantation in patients with active and progressive multiple sclerosis. Forty-eight patients (28 males and 20 females) with progressive multiple sclerosis (Expanded Disability Status Scale: 3.0-6.5, mean : 5.6 ± 0.8, mean age: 47.5 ± 12.3) and evidence of either clinical worsening or activity during the previous year, were enrolled (between 2015 and 2018). Patients were randomized into three groups and treated intrathecally (IT) or intravenously (IV) with autologous MSCs (1 × 106/kg) or sham injections. After 6 months, half of the patients from the MSC-IT and MSC-IV groups were retreated with MSCs, and the other half with sham injections. Patients initially assigned to sham treatment were divided into two subgroups and treated with either MSC-IT or MSC-IV. The study duration was 14 months. No serious treatment-related safety issues were detected. Significantly fewer patients experienced treatment failure in the MSC-IT and MSC-IV groups compared with those in the sham-treated group (6.7%, 9.7%, and 41.9%, respectively, P = 0.0003 and P = 0.0008). During the 1-year follow-up, 58.6% and 40.6% of patients treated with MSC-IT and MSC-IV, respectively, exhibited no evidence of disease activity compared with 9.7% in the sham-treated group (P < 0.0001 and P < 0.0048, respectively). MSC-IT transplantation induced additional benefits on the relapse rate, on the monthly changes of the T2 lesion load on MRI, and on the timed 25-foot walking test, 9-hole peg test, optical coherence tomography, functional MRI and cognitive tests. Treatment with MSCs was well-tolerated in progressive multiple sclerosis and induced short-term beneficial effects regarding the primary end points, especially in the patients with active disease. The intrathecal administration was more efficacious than the intravenous in several parameters of the disease. A phase III trial is warranted to confirm these findings.
Collapse
Affiliation(s)
- Panayiota Petrou
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Ibrahim Kassis
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Netta Levin
- Department of Neurology and The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yael Backner
- Department of Neurology and The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Tal Benoliel
- Department of Neurology and The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michelle Hallimi
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Nour Yaghmour
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Tamir Ben Hur
- Department of Neurology and The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Ariel Ginzberg
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Yarden Levy
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Oded Abramsky
- Department of Neurology and The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| | - Dimitrios Karussis
- Unit of Neuroimmunology and Multiple Sclerosis Center, Hadassah University Hospital, Jerusalem, Ein-Kerem, Israel
| |
Collapse
|
20
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Barati S, Tahmasebi F, Faghihi F. Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides 2020; 84:102095. [PMID: 33059244 DOI: 10.1016/j.npep.2020.102095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) with symptoms such as neuroinflammation and axonal degeneration. Existing drugs help reduce inflammatory conditions and protect CNS from demyelination and axonal damage; however, these drugs are unable to enhance axonal repair and remyelination. In this regard, cell therapy is considered as a promising regenerative approach to MS treatment. High immunomodulatory capacity, neuro-differentiation and neuroprotection properties have made Mesenchymal Stem Cells (MSCs) particularly useful for regenerative medicine. There are scant studies on the role of MSCs in patients suffering from MS. The low number of MS patients and the lack of control groups in these studies may explain the lack of beneficial effects of MSC transplantation in cell therapies. In this review, we evaluated the beneficial effects of MSC transplantation in clinical studies in terms of immunomodulatory, remyelinating and neuroprotecting properties of MSCs.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Padnahad Co.Ltd, Tehran, Iran.
| |
Collapse
|
22
|
Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020; 25:1202-1214. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoya Kidani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.,Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
23
|
Ishiuchi N, Nakashima A, Doi S, Yoshida K, Maeda S, Kanai R, Yamada Y, Ike T, Doi T, Kato Y, Masaki T. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther 2020; 11:130. [PMID: 32197638 PMCID: PMC7083035 DOI: 10.1186/s13287-020-01642-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote the regeneration of injured tissue via their paracrine abilities, which are enhanced by hypoxic preconditioning. In this study, we examined the therapeutic efficacy of hypoxia-preconditioned MSCs on renal fibrosis and inflammation in rats with ischemia-reperfusion injury (IRI). Methods MSCs derived from rats and humans were incubated in 1% O2 conditions (1%O2 MSCs) for 24 h. After IRI, 1%O2 MSCs or MSCs cultured under normoxic conditions (21%O2 MSCs) were injected through the abdominal aorta. At 7 or 21 days post-injection, the rats were sacrificed and their kidneys were analyzed. In in vitro experiments, we examined whether 1%O2 MSCs enhanced the ability to produce anti-fibrotic humoral factors using transforming growth factor (TGF)-β1-stimulated HK-2 cells incubated with conditioned medium from MSCs. Results Administration of rat 1%O2 MSCs (1%O2 rMSCs) attenuated renal fibrosis and inflammation more significantly than rat 21%O2 MSCs. Notably, human 1%O2 MSCs (1%O2 hMSCs) also attenuated renal fibrosis to the same extent as 1%O2 rMSCs. Flow cytometry showed that 1%O2 hMSCs did not change human leukocyte antigen expression. Further in vitro experiments revealed that conditioned medium from 1%O2 MSCs further suppressed TGF-β1-induced fibrotic changes in HK-2 cells compared with 21%O2 MSCs. Hypoxic preconditioning enhanced vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) secretion. Interestingly, VEGF knockdown in 1%O2 MSCs attenuated HGF secretion and the inhibition of TGF-β1-induced fibrotic changes in HK-2 cells. In addition, VEGF knockdown in 1%O2 hMSCs reduced the anti-fibrotic effect in IRI rats. Conclusions Our results indicate that hypoxia-preconditioned MSCs are useful as an allogeneic transplantation cell therapy to prevent renal fibrosis and inflammation.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ken Yoshida
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Ryo Kanai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yumi Yamada
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukio Kato
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
24
|
Ma M, Li B, Zhang M, Zhou L, Yang F, Ma F, Shao H, Li Q, Li X, Zhang X. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Exp Eye Res 2019; 191:107899. [PMID: 31866431 DOI: 10.1016/j.exer.2019.107899] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Retinal detachment (RD) induces ischemia and oxygen deficiency in the retina and results in multiple pathological events; photoreceptor cell degeneration and death is the eventual cause of vision decline. In this study, we investigated the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in a rat retinal detachment (RD) model. The model was developed using a subretinal injection of 1% hyaluronic acid in male Sprague-Dawley rats. MSC-Exos were sub-retinally injected at the time of retinal separation to study their therapeutic function. The retinal expression levels of inflammatory cytokines TNF-α, IL-1β, and MCP-1 were detected by RT-PCR, the autophagy-related protein 5 (Atg5) and microtubule-associated protein 1 light chain 3 beta (LC3) were detected by Western blot, and apoptosis was examined using TUNEL assays at 3 days following RD. Retinal structure was observed at 7 days post-RD. Proteomic analysis was also performed to detect proteins carried by MSC-Exos using iTRAQ-based technology combined with one-dimensional nano LC-nano-ESI- MS/MS. We found that expression of TNF-α and IL-1β were significantly reduced, the LC3-II to LC3-I ratio was enhanced and cleavage of Atg5 was decreased after MSC-Exo treatment. Treatment with MSC-Exos also suppressed photoreceptor cell apoptosis and maintained normal retinal structure when compared to control groups. Proteomic analysis revealed that MSC-Exos contained proteins with anti-inflammatory, neuroprotective and anti-apoptotic effects. These results suggest that MSC-Exos have therapeutic effects on RD-induced retinal injury and can be used to reduce effects of retinal detachment on photoreceptor cell degeneration in patients.
Collapse
Affiliation(s)
- Mingming Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Bing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Feifei Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| |
Collapse
|
25
|
Cao D, Qiao H, He D, Qin X, Zhang Q, Zhou Y. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway. J Neural Transm (Vienna) 2019; 126:1589-1597. [PMID: 31707461 DOI: 10.1007/s00702-019-02102-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Microglia are the resident mononuclear immune cells of the central nervous system (CNS) and the activation of microglia contributes to the production of excessive neurotoxic factors. In particular, the overproduction of neurotoxic factors has critical effects on the development of brain injuries and neurodegenerative diseases. The human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have blossomed into an effective approach with great potential for the treatment of neurodegenerative diseases and gliomas. The present study aimed to investigate the mechanism behind the therapeutic effect of hBM-MSCs on the activation of microglia in vitro. Specifically, the hBM-MSCs significantly inhibited the proliferation of lipopolysaccharide-activated microglial cells (LPS)-activated microglial cells. Additionally, we investigated whether the adenosine-monophosphate-activated protein kinase signaling (AMPK) pathway was involved in this process. Our data demonstrated that hBM-MSCs significantly increased the phosphorylated AMPK in LPS-activated microglial cells. In addition, our study indicated the inhibitory effect of hBM-MSCs on the pro-inflammatory mediators and oxidative stress by the AMPK pathway in LPS-activated microglial cells. These results could shed light on the understanding of the molecular basis for the inhibition of hBM-MSCs on LPS-activated microglial cells and provide a molecular mechanism for the hBM-MSCs implication in brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dayong Cao
- Department of Burns, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, People's Republic of China
| | - Haowen Qiao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, People's Republic of China
| | - Xingping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Oncology, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, People's Republic of China
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
26
|
Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerg Top Life Sci 2019; 3:631-643. [PMID: 33523179 DOI: 10.1042/etls20190091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Synthetic biology is a relatively new field of science that combines aspects of biology and engineering to create novel tools for the construction of biological systems. Using tools within synthetic biology, stem cells can then be reprogrammed and differentiated into a specified cell type. Stem cells have already proven to be largely beneficial in many different therapies and have paved the way for tissue engineering and regenerative medicine. Although scientists have made great strides in tissue engineering, there still remain many questions to be answered in regard to regeneration. Presented here is an overview of synthetic biology, common tools built within synthetic biology, and the way these tools are being used in stem cells. Specifically, this review focuses on how synthetic biologists engineer genetic circuits to dynamically control gene expression while also introducing emerging topics such as genome engineering and synthetic transcription factors. The findings mentioned in this review show the diverse use of stem cells within synthetic biology and provide a foundation for future research in tissue engineering with the use of synthetic biology tools. Overall, the work done using synthetic biology in stem cells is in its early stages, however, this early work is leading to new approaches for repairing diseased and damaged tissues and organs, and further expanding the field of tissue engineering.
Collapse
|
27
|
Vasilev G, Ivanova M, Ivanova-Todorova E, Tumangelova-Yuzeir K, Krasimirova E, Stoilov R, Kyurkchiev D. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int 2019; 39:819-826. [PMID: 30944956 DOI: 10.1007/s00296-019-04296-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
We aimed to assess the immunoregulatory effects of secretory factors produced by adipose tissue-derived MSC (AT-MSC) on Th17 and Treg subsets from patients with rheumatoid arthritis (RA). 17 patients with active disease matching the ACR/EULAR 2010 criteria for RA were included. Patients' peripheral blood mononuclear cells (PBMC) were cultured in AT-MSC-conditioned medium (AT-MSCcm) and in control medium. The cytokine production of AT-MSC and PBMC was quantified by ELISA. Th17 and Treg were determined by flow cytometry. AT-MSCcm contained: IL-6, IL-17, IL-21, CCL2, CCL5, IL-8, sVEGF-A and PGE2. Cultivation of patients' PBMC with AT-MSCcm increased TGF-β1 (8318 pg/ml; IQR 6327-11,686) vs control medium [6227 pg/ml (IQR 1681-10,148, p = 0.013)]. PBMC cultivated with AT-MSCcm downregulated TNF-α, IL-17A, and IL-21 compared to control PBMC: 5 pg/ml IQR (1.75-11.65) vs 1 pg/ml (IQR 0.7-1.9), p = 0.001; 4.2 pg/ml (IQR 3.1-6.1) vs 2.3 pg/ml (IQR.75-5.42), p = 0.017; 66.9 pg/ml (IQR 40.6-107.2) vs 53 pg/ml (IQR 22-73), p = 0.022. Th17 decreased under the influence of AT-MSCcm: 10.13 ± 3.88% vs 8.98 ± 3.58%, p = 0.02. CD4+FoxP3+, CD4+CD25-FoxP3+, and CD4+CD25+FoxP3+ was 11.35 ± 4.1%; 7.13 ± 3.12% and 4.22 ± 2% in control PBMC. Accordingly, CD4+FoxP3+, CD4+CD25-FoxP3+, and CD4+CD25+FoxP3+ significantly increased in PBMC cultured with AT-MSCcm: 15.6 ± 6.1%, p = 0.001; 9.56 ± 5.4%, p = 0.004 and 6.04 ± 3.6%, p = 0.001. All these effects could define MSC-based approaches as adequate avenues for further treatment development in RA.
Collapse
Affiliation(s)
- Georgi Vasilev
- Laboratory of Clinical Immunology, Department of Clinical Immunology, University Hospital "St. Ivan Rilski"-Sofia, Medical University of Sofia, Sofia, Bulgaria.
| | - Mariana Ivanova
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski"-Sofia, Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- Laboratory of Clinical Immunology, Department of Clinical Immunology, University Hospital "St. Ivan Rilski"-Sofia, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- Laboratory of Clinical Immunology, Department of Clinical Immunology, University Hospital "St. Ivan Rilski"-Sofia, Medical University of Sofia, Sofia, Bulgaria
| | - Ekaterina Krasimirova
- Laboratory of Clinical Immunology, Department of Clinical Immunology, University Hospital "St. Ivan Rilski"-Sofia, Medical University of Sofia, Sofia, Bulgaria
| | - Rumen Stoilov
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski"-Sofia, Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, Department of Clinical Immunology, University Hospital "St. Ivan Rilski"-Sofia, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
28
|
Zappa Villar MF, Lehmann M, García MG, Mazzolini G, Morel GR, Cónsole GM, Podhajcer O, Reggiani PC, Goya RG. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav Brain Res 2019; 374:111887. [PMID: 30951751 DOI: 10.1016/j.bbr.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 μl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.
Collapse
Affiliation(s)
- Maria F Zappa Villar
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Marianne Lehmann
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Mariana G García
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Gustavo R Morel
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Osvaldo Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, Buenos Aires, Argentina
| | - Paula C Reggiani
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina.
| |
Collapse
|
29
|
Bingham JR, Kniery KR, Jorstad NL, Horkayne-Szakaly I, Hoffer ZS, Salgar SK. "Stem cell therapy to promote limb function recovery in peripheral nerve damage in a rat model" - Experimental research. Ann Med Surg (Lond) 2019; 41:20-28. [PMID: 31011420 PMCID: PMC6463551 DOI: 10.1016/j.amsu.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Optimizing nerve regeneration and mitigating muscle atrophy are the keys to successful outcomes in peripheral nerve damage. We investigated whether mesenchymal stem cell (MSC) therapy can improve limb function recovery in peripheral nerve damage. Materials and methods We used sciatic nerve transection/repair (SNR) and individual nerve transection/repair (INR; branches of sciatic nerve - tibial, peroneal, sural) models to study the effect of MSCs on proximal and distal peripheral nerve damages, respectively, in male Lewis rats. Syngeneic MSCs (5 × 106; passage≤6) or saline were administered locally and intravenously. Sensory/motor functions (SF/MF) of the limb were assessed. Results Rat MSCs (>90%) were CD29+, CD90+, CD34−, CD31− and multipotent. Total SF at two weeks post-SNR & INR with or without MSC therapy was ∼1.2 on a 0–3 grading scale (0 = No function; 3 = Normal); by 12 weeks it was 2.6–2.8 in all groups (n ≥ 9/group). MSCs accelerated SF onset. At eight weeks post-INR, sciatic function index (SFI), a measure of MF (0 = Normal; −100 = Nonfunctional) was −34 and −77 in MSC and vehicle groups, respectively (n ≥ 9); post-SNR it was −72 and −92 in MSC and vehicle groups, respectively. Long-term MF (24 weeks) was apparent in MSC treated INR (SFI -63) but not in SNR (SFI -100). Gastrocnemius muscle atrophy was significantly reduced (P < 0.05) in INR. Nerve histomorphometry revealed reduced axonal area (P < 0.01) but no difference in myelination (P > 0.05) in MSC treated INR compared to the naive contralateral nerve. Conclusion MSC therapy in peripheral nerve damage appears to improve nerve regeneration, mitigate flexion-contractures, and promote limb functional recovery. Mesenchymal stem cell (MSC) therapy improved limb functional recovery. MSCs improved nerve regeneration and mitigated foot flexion-contractures. Limb muscle atrophy was significantly reduced in individual nerve repair (INR). Functional recovery in distal nerve repair (INR) was superior to proximal (SNR). MSC therapy is attractive, feasible & promising in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Jason R Bingham
- Department of Surgery, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Kevin R Kniery
- Department of Surgery, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Iren Horkayne-Szakaly
- Department of Neuropathology & Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD, 20910, USA
| | - Zachary S Hoffer
- Department of Pathology, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| |
Collapse
|
30
|
Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome. Front Bioeng Biotechnol 2019; 7:9. [PMID: 30761298 PMCID: PMC6361779 DOI: 10.3389/fbioe.2019.00009] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory condition still lacking effective treatments. Mesenchymal stem/stromal cells (MSCs) have been successfully employed in pre-clinical models aiming to resurface the degenerated cartilage. In early-phase clinical trials, intra-articular (IA) administration of MSCs leads to pain reduction and cartilage protection or healing. However, the consistent lack of engraftment indicates that the observed effect is delivered through a "hit-and-run" mechanism, by a temporal release of paracrine molecules. MSCs express a variety of chemokines and cytokines that aid in repair of degraded tissue, restoration of normal tissue metabolism and, most importantly, counteracting inflammation. Secretion of therapeutic factors is increased upon licensing by inflammatory signals or apoptosis, induced by the host immune system. Trophic effectors are released as soluble molecules or carried by extracellular vesicles (ECVs). This review provides an overview of the functions and mechanisms of MSC-secreted molecules found to be upregulated in models of OA, whether using in vitro or in vivo models.
Collapse
Affiliation(s)
- Patrizio Mancuso
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Swarna Raman
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Glynn
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Kin K, Yasuhara T, Borlongan CV, Date I. Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 2018; 4:128-132. [PMID: 30450420 PMCID: PMC6187943 DOI: 10.4103/bc.bc_17_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
As prevalence of depression continues to rise around the world, there remains a stagnation of available treatments as the affected population grows. The subset of treatment-resistant depression also is on the rise highlighting the need for innovative treatments to address this issue. Mesenchymal stem cells (MSCs) have been reported to attenuate depression-like behaviors, however, the effects of encapsulation of MSCs have yet to be investigated. Encapsulation of MSCs exhibited prolonged survival of exogenous cell injection accompanied with increased secretion of neurotrophic factors including vascular endothelial growth factor, ciliary neurotrophic factor, and others. The enhanced expression of these factors highlights the ability of encapsulated MSCs to upregulate the respective signaling pathways, which are associated with depression pathology and activation of neurogenesis. This treatment identifies a promising therapeutic option for depression, specifically treatment-resistant depression. Further, evaluation of long-term effects of the treatment is warranted. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases including PubMed. Some original themes in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, US
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
32
|
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143:2628-2639. [PMID: 29931767 DOI: 10.1002/ijc.31619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic agents are part of the standard treatment algorithms for many malignancies; however, their application and dosage are limited by their toxic effects to normal tissues. Chemotherapy-induced toxicities can be long-lasting and may be incompletely reversible; therefore, causative therapies for chemotherapy-dependent side effects are needed, especially considering the increasing survival rates of treated cancer patients. Mesenchymal stem cells (MSCs) have been shown to exhibit regenerative abilities for various forms of tissue damage. Preclinical data suggest that MSCs may also help to alleviate tissue lesions caused by chemotherapeutic agents, mainly by establishing a protective microenvironment for functional cells. Due to the systemic administration of most anticancer agents, the effects of these drugs on the MSCs themselves are of crucial importance to use stem cell-based approaches for the treatment of chemotherapy-induced tissue toxicities. Here, we present a concise review of the published data regarding the influence of various classes of chemotherapeutic agents on the survival, stem cell characteristics and physiological functions of MSCs. Molecular mechanisms underlying the effects are outlined, and resulting challenges of MSC-based treatments for chemotherapy-induced tissue injuries are discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
34
|
Concentrated Conditioned Media from Adipose Tissue Derived Mesenchymal Stem Cells Mitigates Visual Deficits and Retinal Inflammation Following Mild Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19072016. [PMID: 29997321 PMCID: PMC6073664 DOI: 10.3390/ijms19072016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Blast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury. We show that intravitreal injection of 1 μL of ASC concentrated conditioned medium from cells pre-stimulated with inflammatory cytokines (ASC-CCM) mitigates loss of visual acuity and contrast sensitivity four weeks post blast injury. Moreover, blast mice showed increased retinal expression of genes associated with microglial activation and inflammation by molecular analyses, retinal glial fibrillary acidic protein (GFAP) immunoreactivity, and increased loss of ganglion cells. Interestingly, blast mice that received ASC-CCM improved in all parameters above. In vitro, ASC-CCM not only suppressed microglial activation but also protected against Tumor necrosis alpha (TNFα) induced endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrate TSG-6 is highly expressed in ASC-CCM from cells pre-stimulated with TNFα and IFNγ but not from unstimulated cells. Our findings suggest that ASC-CCM mitigates visual deficits of the blast injury through their anti-inflammatory properties on activated pro-inflammatory microglia and endothelial cells. A regenerative therapy for immediate delivery at the time of injury may provide a practical and cost-effective solution against the traumatic effects of blast injuries to the retina.
Collapse
|
35
|
Green DW, Watson GS, Watson JA, Lee JM, Jung HS. Use of Tethered Hydrogel Microcoatings for Mesenchymal Stem Cell Equilibrium, Differentiation, and Self-Organization into Microtissues. ACTA ACUST UNITED AC 2017; 1:e1700116. [PMID: 32646160 DOI: 10.1002/adbi.201700116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Indexed: 01/29/2023]
Abstract
Therapeutic adult mesenchymal stem cells (MSCs) lose multipotency and multilineage specialization in culture and after transplantation due to the absence of complex biological architecture. Here, it is shown that a transient ultrathin covering of permeable biomaterial can be differentially formulated to either preserve multipotency or induce multidifferentiation. Accordingly, populations of single, spherical MSCs in suspended media with high selectivity and specificity can be coated. Assembly of single, double, and triple hydrogel layers at MSC membranes is initiated by first attaching MSC-specific immunoglobulins onto CD90 or Stro-1 receptors and UEA-1 and soybean lectins. A secondary biotinylated immunoglobulin is targeted for avidin binding, which becomes an attractor for biotinylated alginate or hyaluronate, which are subsequently stiffened and gelled, in situ around the entire cell surface. Alginate microcoatings permeated with mobile BMP-2-induced osteospecialized tissue, vascular endothelial growth factor (VEGF) induced microcapillary formation, while microcoatings, with selected basement membrane proteins, preserve the multipotent phenotype of MSCs, for continuing rounds of culture and directed specialization. Furthermore, forced packing of microcoated MSC populations creates prototypical tissue compartments: the coating partially simulating the extracellular matrix structures. Remarkably, microcoated MSC clusters show a tremendous simulation of a common embryological tissue transformation into the epithelium. Thus, confinement of free morphology exerts another control on tissue specialization and formation.
Collapse
Affiliation(s)
- David W Green
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, SAR
| | - Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, 4655, Australia
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, 4655, Australia
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, SAR
| |
Collapse
|
36
|
Delivery of Exogenous miR-124 to Glioblastoma Multiform Cells by Wharton’s Jelly Mesenchymal Stem Cells Decreases Cell Proliferation and Migration, and Confers Chemosensitivity. Stem Cell Rev Rep 2017; 14:236-246. [DOI: 10.1007/s12015-017-9788-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Regulation of focal adhesion turnover in SDF-1α-stimulated migration of mesenchymal stem cells in neural differentiation. Sci Rep 2017; 7:10013. [PMID: 28855566 PMCID: PMC5577153 DOI: 10.1038/s41598-017-09736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Directed migration of the transplanted mesenchymal stem cells (MSCs) to the lesion sites plays a pivotal role in the efficacy of cell-based therapy. Our previous study demonstrates that MSCs under varying neural differentiation states possess different migratory capacities in response to chemoattractants. However, the underlying mechanism has not been fully addressed. Herein, we show that the assembly and turnover of focal adhesions, the phosphorylation of FAK and paxillin, and the reorganisation of F-actin in MSCs are closely related to their differentiation states in response to SDF-1α. Upon SDF-1α stimulation, FAs turnover more rapidly with the most obvious reduction in the existing time of FAs in MSCs of 24-h preinduction that exhibit the most effective migration towards SDF-1α. Further, we confirm that PI3K/Akt and MAPK pathways participate in the regulation of SDF-1α-induced cell migration and FA assembly, and moreover, that the regulatory effects vary greatly depending on the differentiation states. Collectively, these results demonstrate that FA assembly and turnover, which is accompanied with F-actin reorganisation in response to SDF-1α, correlates closely with the differentiation states of MSCs, which might contribute to the different chemotactic responses of these cells, and thus help develop new strategy to improve the efficacy of MSCs-based therapy.
Collapse
|
39
|
Stem cells in regenerative medicine - from laboratory to clinical application - the eye. Cent Eur J Immunol 2017; 42:173-180. [PMID: 28860936 PMCID: PMC5573891 DOI: 10.5114/ceji.2017.69360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022] Open
Abstract
Stem cells are currently one of the most researched and explored subject in science. They consstitue a very promising part of regenerative medicine and have many potential clinical applications. Harnessing their ability to replicate and differentiate into many cell types can enable successful treatment of diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, iPSCs) and many different methods of deriving and cultivating them in order to obtain viable material. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise different aspects of stem cells, discussing their characteristics, sources and methods of culture. We also demonstrate the most recent clinical applications in ophthalmology based on an extensive current literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory and clinical aspects of stem cells are discussed.
Collapse
|
40
|
Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep 2017; 7:41837. [PMID: 28186117 PMCID: PMC5301256 DOI: 10.1038/srep41837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022] Open
Abstract
Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy.
Collapse
|
41
|
Lee J, Abdeen AA, Tang X, Saif TA, Kilian KA. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomater 2016; 42:46-55. [PMID: 27375285 PMCID: PMC5003770 DOI: 10.1016/j.actbio.2016.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Tang
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taher A Saif
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
42
|
Lindsay SL, Barnett SC. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair? Neurochem Int 2016; 106:101-107. [PMID: 27498150 PMCID: PMC5455984 DOI: 10.1016/j.neuint.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Human olfactory mucosa is a new source of mesenchymal stromal cells (MSCs). Some bone marrow MSCs are nestin-positive, neural crest derived and regulate hematopoietic stem cell activation. Human olfactory mucosa contains a population of nestin-positive MSCs that secrete CXCL12 and may have promote CNS repair.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
43
|
Fitzpatrick EB, Dehart MJ, Brown TA, Salgar SK. Mesenchymal stem cell therapy to promote limb transplant functional recovery. Microsurgery 2016; 37:222-234. [DOI: 10.1002/micr.30068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mary J. Dehart
- Department of Clinical Investigation; Madigan Army Medical Center; Tacoma WA 98431
| | - Tommy A. Brown
- Department of Surgery; Madigan Army Medical Center; Tacoma WA 98431
| | | |
Collapse
|
44
|
CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma. Oncol Lett 2016; 11:2353-2358. [PMID: 27073479 PMCID: PMC4812259 DOI: 10.3892/ol.2016.4270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/13/2016] [Indexed: 12/23/2022] Open
Abstract
Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma.
Collapse
|
45
|
|
46
|
Dulamea AO, Sirbu-Boeti MP, Bleotu C, Dragu D, Moldovan L, Lupescu I, Comi G. Autologous mesenchymal stem cells applied on the pressure ulcers had produced a surprising outcome in a severe case of neuromyelitis optica. Neural Regen Res 2016; 10:1841-5. [PMID: 26807122 PMCID: PMC4705799 DOI: 10.4103/1673-5374.165325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies provided evidence that mesenchymal stem cells (MSCs) have regenerative potential in cutaneous repair and profound immunomodulatory properties making them a candidate for therapy of neuroimmunologic diseases. Neuromyelitis optica (NMO) is an autoimmune, demyelinating central nervous system disorder characterized by a longitudinally extensive spinal cord lesion. A 46-year-old male diagnosed with NMO had relapses with paraplegia despite treatment and developed two stage IV pressure ulcers (PUs) on his legs. The patient consented for local application of autologous MSCs on PUs. MSCs isolated from the patient's bone marrow aspirate were multiplied in vitro during three passages and embedded in a tridimensional collagen-rich matrix which was applied on the PUs. Eight days after MSCs application the patient showed a progressive healing of PUs and improvement of disability. Two months later the patient was able to walk 20 m with bilateral assistance and one year later he started to walk without assistance. For 76 months the patient had no relapse and no adverse event was reported. The original method of local application of autologous BM-MSCs contributed to healing of PUs. For 6 years the patient was free of relapses and showed an improvement of disability. The association of cutaneous repair, sustained remission of NMO and improvement of disability might be explained by a promotion/optimization of recovery mechanisms in the central nervous system even if alternative hypothesis should be considered. Further studies are needed to assess the safety and efficacy of mesenchymal stem cells in NMO treatment.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Mirela-Patricia Sirbu-Boeti
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Coralia Bleotu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Denisa Dragu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Lucia Moldovan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, Bucharest, Sector 6, PO Box 17-16, Romania
| | - Ioana Lupescu
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Giancarlo Comi
- Universita Vita-Salute San Raffaele, 58 Via Olgettina, Milan, Italy
| |
Collapse
|
47
|
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Res Ther 2015; 6:263. [PMID: 26718461 PMCID: PMC4697327 DOI: 10.1186/s13287-015-0254-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. Methods MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 106 cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry. Results Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro. Conclusions This study is the first evaluating the functional capacity of guinea pig bone marrow and adipose tissue-derived MSCs and providing evidence of their neuroprotective value in an animal model of colitis. In vitro characteristics of MSCs cannot be extrapolated to their therapeutic efficacy. TGF-β1 released by both types of MSCs might have contributed to the attenuation of enteric neuropathy associated with colitis.
Collapse
Affiliation(s)
- Rhian Stavely
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Sarah Miller
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Richard Boyd
- Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, 3800, Victoria, Australia.
| | - Samy Sakkal
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| |
Collapse
|
48
|
Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WWY. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol 2015; 15 Suppl 1:155. [PMID: 26818606 PMCID: PMC4895295 DOI: 10.1186/s12886-015-0138-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSC) have become a promising tool for cell therapy in regenerative medicine. They are readily available, demonstrate powerful differentiation capabilities and present immunosuppressive properties that aid them in surviving from host immune rejection for its great potential use in allograft. Currently clinical trials are underway using MSC, both culture-expanded allogeneic and autologous, for the treatment of a range of diseases not treatable by conventional therapies. A vast array of studies has dedicated towards the use of MSC for treating corneal diseases with very promising outcomes. MSC have successfully differentiated into keratocytes both in vitro and in vivo, and corneal epithelial cells in vitro, but it is uncertain if MSC can assume corneal epithelial cells in vivo. However, to date few studies have unequivocally established the efficacy of MSC for treating corneal endothelial defects. Currently, the diversity in protocols of the isolation and expansion of MSC are hindering to the assessment of cell treatment ability and the further development of treatment regimens. Therefore, future studies should develop international standards for MSC isolation and characterization. In this review, we discuss recent advances in MSC for treating ocular surface diseases.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| | | | | | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
49
|
Long Q, Hei Y, Luo Q, Tian Y, Yang J, Li J, Wei L, Liu W. BMSCs transplantation improves cognitive impairment via up-regulation of hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Neuroscience 2015; 311:464-73. [DOI: 10.1016/j.neuroscience.2015.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
|
50
|
Farjam M, Zhang GX, Ciric B, Rostami A. Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 2015; 358:22-30. [PMID: 26440421 DOI: 10.1016/j.jns.2015.09.346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Inflammatory demyelination of the central nervous system (CNS) is the hallmark of multiple sclerosis (MS), a chronic debilitating disease that affects more than 2.5 million individuals worldwide. It has been widely accepted, although not proven, that the major pathogenic mechanism of MS involves myelin-reactive T cell activation in the periphery and migration into the CNS, which subsequently triggers an inflammatory cascade that leads to demyelination and axonal damage. Virtually all MS medications now in use target the immune system and prevent tissue damage by modulating neuroinflammatory processes. Although current therapies such as commonly prescribed disease-modifying medications decrease the relapse rate in relapsing-remitting MS (RRMS), the prevention of long-term accumulation of deficits remains a challenge. Medications used for progressive forms of MS also have limited efficacy. The need for therapies that are effective against disease progression continues to drive the search for novel pharmacological targets. In recent years, due to a better understanding of MS immunopathogenesis, new approaches have been introduced that more specifically target autoreactive immune cells and their products, thus increasing specificity and efficacy, while reducing potential side effects such as global immunosuppression. In this review we describe several immunopharmacological targets that are currently being explored for MS therapy.
Collapse
Affiliation(s)
- Mojtaba Farjam
- Non-communicable Diseases Research Center, Department of Medical Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|