1
|
Clarke L, Arnett S, Bukhari W, Khalilidehkordi E, Jimenez Sanchez S, O'Gorman C, Sun J, Prain KM, Woodhall M, Silvestrini R, Bundell CS, Abernethy DA, Bhuta S, Blum S, Boggild M, Boundy K, Brew BJ, Brownlee W, Butzkueven H, Carroll WM, Chen C, Coulthard A, Dale RC, Das C, Fabis-Pedrini MJ, Gillis D, Hawke S, Heard R, Henderson APD, Heshmat S, Hodgkinson S, Kilpatrick TJ, King J, Kneebone C, Kornberg AJ, Lechner-Scott J, Lin MW, Lynch C, Macdonell RAL, Mason DF, McCombe PA, Pereira J, Pollard JD, Ramanathan S, Reddel SW, Shaw CP, Spies JM, Stankovich J, Sutton I, Vucic S, Walsh M, Wong RC, Yiu EM, Barnett MH, Kermode AGK, Marriott MP, Parratt JDE, Slee M, Taylor BV, Willoughby E, Brilot F, Vincent A, Waters P, Broadley SA. MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Front Neurol 2021; 12:722237. [PMID: 34566866 PMCID: PMC8458658 DOI: 10.3389/fneur.2021.722237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are inflammatory diseases of the CNS. Overlap in the clinical and MRI features of NMOSD and MS means that distinguishing these conditions can be difficult. With the aim of evaluating the diagnostic utility of MRI features in distinguishing NMOSD from MS, we have conducted a cross-sectional analysis of imaging data and developed predictive models to distinguish the two conditions. NMOSD and MS MRI lesions were identified and defined through a literature search. Aquaporin-4 (AQP4) antibody positive NMOSD cases and age- and sex-matched MS cases were collected. MRI of orbits, brain and spine were reported by at least two blinded reviewers. MRI brain or spine was available for 166/168 (99%) of cases. Longitudinally extensive (OR = 203), "bright spotty" (OR = 93.8), whole (axial; OR = 57.8) or gadolinium (Gd) enhancing (OR = 28.6) spinal cord lesions, bilateral (OR = 31.3) or Gd-enhancing (OR = 15.4) optic nerve lesions, and nucleus tractus solitarius (OR = 19.2), periaqueductal (OR = 16.8) or hypothalamic (OR = 7.2) brain lesions were associated with NMOSD. Ovoid (OR = 0.029), Dawson's fingers (OR = 0.031), pyramidal corpus callosum (OR = 0.058), periventricular (OR = 0.136), temporal lobe (OR = 0.137) and T1 black holes (OR = 0.154) brain lesions were associated with MS. A score-based algorithm and a decision tree determined by machine learning accurately predicted more than 85% of both diagnoses using first available imaging alone. We have confirmed NMOSD and MS specific MRI features and combined these in predictive models that can accurately identify more than 85% of cases as either AQP4 seropositive NMOSD or MS.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Wajih Bukhari
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Elham Khalilidehkordi
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Sofia Jimenez Sanchez
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Cullen O'Gorman
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Jing Sun
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Kerri M Prain
- Department of Immunology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Roger Silvestrini
- Department of Immunopathology, Westmead Hospital, Westmead, NSW, Australia
| | - Christine S Bundell
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | | | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Stefan Blum
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Mike Boggild
- Department of Neurology, Townsville Hospital, Douglas, QLD, Australia
| | - Karyn Boundy
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce J Brew
- Centre for Applied Medical Research, St. Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Wallace Brownlee
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Cella Chen
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Alan Coulthard
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Russell C Dale
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chandi Das
- Department of Neurology, Canberra Hospital, Garran, ACT, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - David Gillis
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Simon Hawke
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Robert Heard
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | | | - Saman Heshmat
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Medical School, Liverpool Hospital, University of New South Wales, Liverpool, NSW, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - John King
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Andrew J Kornberg
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Ming-Wei Lin
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | | | | | - Deborah F Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Pamela A McCombe
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Jennifer Pereira
- School of Medicine, University of Auckland, Grafton, New Zealand
| | - John D Pollard
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Sudarshini Ramanathan
- Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia.,Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Stephen W Reddel
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cameron P Shaw
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Judith M Spies
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - James Stankovich
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ian Sutton
- Department of Neurology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Michael Walsh
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Richard C Wong
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Eppie M Yiu
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allan G K Kermode
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Mark P Marriott
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - John D E Parratt
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Mark Slee
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Fabienne Brilot
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
2
|
Clarke L, Arnett S, Lilley K, Liao J, Bhuta S, Broadley SA. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin Exp Immunol 2021; 206:251-265. [PMID: 34080180 DOI: 10.1111/cei.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system (CNS) associated with antibodies to aquaporin-4 (AQP4), which has distinct clinical, radiological and pathological features, but also has some overlap with multiple sclerosis and myelin oligodendrocyte glycoprotein (MOG) antibody associated disease. Early recognition of NMOSD is important because of differing responses to both acute and preventive therapy. Magnetic resonance (MR) imaging has proved essential in this process. Key MR imaging clues to the diagnosis of NMOSD are longitudinally extensive lesions of the optic nerve (more than half the length) and spinal cord (three or more vertebral segments), bilateral optic nerve lesions and lesions of the optic chiasm, area postrema, floor of the IV ventricle, periaqueductal grey matter, hypothalamus and walls of the III ventricle. Other NMOSD-specific lesions are denoted by their unique morphology: heterogeneous lesions of the corpus callosum, 'cloud-like' gadolinium (Gd)-enhancing white matter lesions and 'bright spotty' lesions of the spinal cord. Other lesions described in NMOSD, including linear periventricular peri-ependymal lesions and patch subcortical white matter lesions, may be less specific. The use of advanced MR imaging techniques is yielding further useful information regarding focal degeneration of the thalamus and optic radiation in NMOSD and suggests that paramagnetic rim patterns and changes in normal appearing white matter are specific to MS. MR imaging is crucial in the early recognition of NMOSD and in directing testing for AQP4 antibodies and guiding immediate acute treatment decisions. Increasingly, MR imaging is playing a role in diagnosing seronegative cases of NMOSD.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Kate Lilley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Jacky Liao
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Radiology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
3
|
Hiraga A, Mori M, Kuwabara S. Dementia and Parkinson-like syndrome with basal ganglia lesion in neuromyelitis optica spectrum disorders. Neurocase 2021; 27:223-226. [PMID: 33934681 DOI: 10.1080/13554794.2021.1921222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Brain lesions in neuromyelitis optica spectrum disorders (NMOSD) are generally located at sites of high anti-aquaporin 4 (AQP4) expression. Clinical features of NMOSD associated with basal ganglia damage in sites not enriched with AQP4 remain unknown. Here we describe the case of an 82-year-old woman who developed dementia and bradykinesia for 5 weeks. Brain magnetic resonance imaging revealed obvious basal ganglia abnormalities. Test for serum anti-AQP4 antibody was positive, and she was diagnosed with NMOSD. Our case showed that NMOSD associated with dementia and/or Parkinson-like syndrome with basal ganglia lesions could be another clinical presentation in NMOSD.
Collapse
Affiliation(s)
- Akiyuki Hiraga
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Singanamalla B, Dhawan S, Saini AG, Singh P, Sankhyan N. Black Holes in the Brain and Spine: A Dark Disease. J Pediatr Neurosci 2020; 15:63-64. [PMID: 32435312 PMCID: PMC7227761 DOI: 10.4103/jpn.jpn_110_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/07/2019] [Accepted: 10/30/2019] [Indexed: 11/04/2022] Open
Abstract
A 7-year-old girl presented with difficulty in walking and bilateral vision impairment since past 15 days. On examination, she had disc pallor, flaccid paraparesis with positive Babinski sign, and reduced sensations below clavicle. She was diagnosed as anti-aquaporin-4 (AQP-4)-positive neuromyelitis optica. This article emphasizes the importance of recognizing its classical neuroimaging findings distinct from other disorders.
Collapse
Affiliation(s)
- Bhanudeep Singanamalla
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sumeet Dhawan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Paramjeet Singh
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Salama S, Marouf H, Reda MI, Mansour AR, ELKholy O, Levy M. Cognitive functions in Egyptian neuromyelitis optica spectrum disorder. Clin Neurol Neurosurg 2019; 189:105621. [PMID: 31790906 DOI: 10.1016/j.clineuro.2019.105621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune demyelinating disease of the central nervous system, characterized by optic neuritis and longitudinally extensive transverse myelitis. Magnetic resonance imaging abnormalities may be observed in various brain regions of NMOSD patients. Only a few studies have addressed the cognitive functions in NMOSD, but none among Egyptian patients. OBJECTIVE To investigate cognitive performance in a cohort of 20 Egyptian patients with NMOSD. DESIGN Observational, prospective study. PATIENTS We studied 20 Egyptian patients with NMOSD and compared them with 18 healthy Egyptian controls matched for age, sex, and educational level. MAIN OUTCOME MEASURE We applied an Arabic translation of MOCA and BICAMS Tests for Multiple Sclerosis. RESULTS Cognitive performance was significantly worse in the NMOSD group than in healthy controls for CVLT (P = 0.0099), SDMT (P = 0.0112), BVSMT (P = 0.019) and BICAMS in total (P = 0.0014). Patients with a later disease onset performed worse in MOCA and BVSMT. CONCLUSIONS This study confirms the concept of cognitive involvement in NMOSD among Egyptian patients. Information processing speed was the function most commonly impaired.
Collapse
Affiliation(s)
- Sara Salama
- Department of Neurology and Psychiatry, University of Alexandria, Alexandria, Egypt; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Hazem Marouf
- Department of Neurology and Psychiatry, University of Alexandria, Alexandria, Egypt
| | - M Ihab Reda
- Department of Radiology, University of Alexandria, Alexandria, Egypt
| | - Amal R Mansour
- Department of Clinical Pathology, University of Alexandria, Alexandria, Egypt
| | - Osama ELKholy
- Department of Neurology and Psychiatry, University of Alexandria, Alexandria, Egypt
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Sun H, Sun X, Huang D, Wu L, Yu S. Cerebral cortex impairment in neuromyelitis optica spectrum disorder: A case report and literature review. Mult Scler Relat Disord 2019; 32:9-12. [DOI: 10.1016/j.msard.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/05/2019] [Indexed: 11/25/2022]
|
7
|
Bulut E, Karakaya J, Salama S, Levy M, Huisman TAGM, Izbudak I. Brain MRI Findings in Pediatric-Onset Neuromyelitis Optica Spectrum Disorder: Challenges in Differentiation from Acute Disseminated Encephalomyelitis. AJNR Am J Neuroradiol 2019; 40:726-731. [PMID: 30846436 DOI: 10.3174/ajnr.a6003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating pediatric-onset neuromyelitis optica spectrum disorder from acute disseminated encephalomyelitis could be challenging, especially in cases presenting with only brain manifestations. Our purpose was to investigate brain MR imaging features that may help distinguish these 2 entities. MATERIALS AND METHODS We retrospectively examined initial brain MR imaging studies of 10 patients with pediatric-onset neuromyelitis optica spectrum disorder (female/male ratio, 7:3) and 10 patients with acute disseminated encephalomyelitis (female/male ratio, 2:8). The mean age of the patients was 10.3 ± 5.6 and 8.7 ± 5.3 years, respectively. Brain lesions were evaluated with respect to location, extent, expansion, T1 hypointensity, contrast enhancement/pattern, and diffusion characteristics. The χ2 test (Yates or Fisher exact χ2tests) was used to compare differences between groups. RESULTS Cerebral subcortical ± juxtacortical and pons ± middle cerebellar peduncle were the most frequent locations involved in both neuromyelitis optica spectrum disorder (n = 5 and 4, respectively) and acute disseminated encephalomyelitis (n = 9 and 7, respectively). Thalamic lesions were more frequent in acute disseminated encephalomyelitis (P = .020) and were detected only in 1 patient with neuromyelitis optica spectrum disorder. None of the patients with neuromyelitis optica spectrum disorder had hypothalamic, internal capsule, or cortical lesions. The internal capsule involvement was found to be significantly different between groups (P = .033). There was no significant difference in terms of extent, expansion, T1 hypointensity, contrast enhancement/pattern, and diffusion characteristics. CONCLUSIONS Although there is a considerable overlap in brain MR imaging findings, thalamic and internal capsule involvement could be used to differentiate pediatric-onset neuromyelitis optica spectrum disorder from acute disseminated encephalomyelitis.
Collapse
Affiliation(s)
- E Bulut
- From the Departments of Radiology (E.B.)
| | - J Karakaya
- Statistics (J.K.), Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Salama
- Department of Neurology and Psychiatry (S.S.), University of Alexandria, Alexandria, Egypt
| | - M Levy
- Department of Neurology (M.L.), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - T A G M Huisman
- Edward B. Singleton Chair of Radiology (T.A.G.M.H.), Texas Children's Hospital, Houston, Texas
| | - I Izbudak
- Section of Pediatric Neuroradiology (I.I.), Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Disruption of blood-brain barrier integrity associated with brain lesions in Chinese neuromyelitis optica spectrum disorder patients. Mult Scler Relat Disord 2018; 27:254-259. [PMID: 30419511 DOI: 10.1016/j.msard.2018.10.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aims of this study were to report brain characteristic abnormalities and to evaluate the relationship of blood-brain barrier (BBB) disruption and brain lesions in Chinese patients with NMOSD. METHODS Brain magnetic resonance imaging characteristics and cerebrospinal fluid (CSF) laboratory tests of 121 patients with NMOSD at acute attack were reviewed retrospectively. Qalb (CSF albumin/serum albumin) was used for assessment of disruption of BBB. RESULTS Brain MRI abnormalities were observed in 36.4% (44/121) of the NMOSD patients. Thirty patients (25%) showed typical-NMOSD abnormalities, including dorsal medulla lesions (n = 16, 13.2%), brainstem/cerebellum (n = 11, 9.1%), thalamus/hypothalamus (n = 3, 2.5%), periventricular white matter lesions (n = 4, 3.3%) hemispheric white matter (n = 4, 3.3%). Twenty-five patients (20.7%) had nonspecific lesions. Compared to the NMOSD patients without brain lesion, the proportion of patients who had abnormal BBB permeability was significantly higher in the abnormal brain MRI group (47.7% vs. 27.3%, P < 0.05). BBB permeability was not correlated to distribution of brain lesions or enhancement lesions. Qalb was associated with higher Expanded Disability Status Scale scores (r = 0.689, P < 0.05). CONCLUSIONS Brain lesions are common in NMOSD patients. Marker of BBB permeability is associated with brain lesion and EDSS scores of NMOSD.
Collapse
|
9
|
Sun H, Wu L. Teaching NeuroImages: Cortical damage with leptomeningeal enhancement in neuromyelitis optica spectrum disorder. Neurology 2018; 91:e1087-e1088. [PMID: 30201755 DOI: 10.1212/wnl.0000000000006161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hui Sun
- From the Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Lei Wu
- From the Department of Neurology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Carnero Contentti E, Daccach Marques V, Soto de Castillo I, Tkachuk V, Antunes Barreira A, Armas E, Chiganer E, de Aquino Cruz C, Di Pace JL, Hryb JP, Lavigne Moreira C, Lessa C, Molina O, Perassolo M, Soto A, Caride A. Frequency of brain MRI abnormalities in neuromyelitis optica spectrum disorder at presentation: A cohort of Latin American patients. Mult Scler Relat Disord 2017; 19:73-78. [PMID: 29156226 DOI: 10.1016/j.msard.2017.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Brain magnetic resonance imaging (BMRI) lesions were classically not reported in neuromyelitis optica (NMO). However, BMRI lesions are not uncommon in NMO spectrum disorder (NMOSD) patients. OBJECTIVE To report BMRI characteristic abnormalities (location and configuration) in NMOSD patients at presentation. METHODS Medical records and BMRI characteristics of 79 patients with NMOSD (during the first documented attack) in Argentina, Brazil and Venezuela were reviewed retrospectively. RESULTS BMRI abnormalities were observed in 81.02% of NMOSD patients at presentation. Forty-two patients (53.1%) showed typical-NMOSD abnormalities. We found BMRI abnormalities at presentation in the brainstem/cerebellum (n = 26; 32.9%), optic chiasm (n = 16; 20.2%), area postrema (n = 13; 16.4%), thalamus/hypothalamus (n = 11; 13.9%), corpus callosum (n = 11; 13.9%), periependymal-third ventricle (n = 9; 11.3%), corticospinal tract (n = 7; 8.8%), hemispheric white matter (n = 1; 1.2%) and nonspecific areas (n = 49; 62.03%). Asymptomatic BMRI lesions were more common. The frequency of brain MRI abnormalities did not differ between patients who were positive and negative for aquaporin 4 antibodies at presentation. CONCLUSION Typical brain MRI abnormalities are frequent in NMOSD at disease onset.
Collapse
Affiliation(s)
| | - Vanessa Daccach Marques
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | | | - Veronica Tkachuk
- Neurology Department, Hospital José de San Martin, Buenos Aires, Argentina
| | - Amilton Antunes Barreira
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - Elizabeth Armas
- Neurology Department, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Edson Chiganer
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Camila de Aquino Cruz
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - José Luis Di Pace
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Javier Pablo Hryb
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Carolina Lavigne Moreira
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of de São Paulo, São Paulo, Brazil
| | - Carmen Lessa
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Omaira Molina
- Neurology Department, Hospital Universitario de Maracaibo, Maracaibo, Venezuela
| | - Monica Perassolo
- Neurology Department, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Arnoldo Soto
- Neurology Department, Hospital Universitario de Caracas, Caracas, Venezuela
| | - Alejandro Caride
- Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
11
|
Sahraian MA, Moghadasi AN, Azimi AR, Asgari N, H Akhoundi F, Abolfazli R, Alaie S, Ashtari F, Ayromlou H, Baghbanian SM, Moghadam NB, Fatehi F, Foroughipour M, Langroodi HG, Majdinasab N, Nickseresht A, Nourian A, Shaygannejad V, Torabi HR. Diagnosis and management of Neuromyelitis Optica Spectrum Disorder (NMOSD) in Iran: A consensus guideline and recommendations. Mult Scler Relat Disord 2017; 18:144-151. [PMID: 29141797 DOI: 10.1016/j.msard.2017.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a relapsing neuro inflammatory disease of the central nervous system that typically presents with optic neuritis or myelitis and may cause severe disability. The diagnostic criteria have been updated and several immunosuppressive agents have been demonstrated to prevent acute exacerbations. As the disease rarely develops in a progressive course, management of acute attacks and proper prevention of exacerbations may change the long term out-come and prevent future disability. Consensus recommendations and guidelines will help the physicians to improve their practice and unify the treatment approaches in different communities. In order to develop a national consensus and recommendations for the diagnosis and management of NMOSD in Iran, a group of neurologists with long term experience in management of NMOSD were gathered to develop this consensus based on available national and international data. The primary draft was prepared and discussed to suggest the most appropriate treatment for these patients. We propose strategies for early diagnosis and treatment for prevention of relapses and minimizing consequences of attacks as a primary therapeutic goal. Attacks are currently treated with intravenous corticosteroids and, in refractory cases, with plasma exchange. All participants agreed on preventive treatment with currently available immunosuppressive agents such as azothioprin, rituximab and mycofenolate mofetil based on previous positive data in NMOSD in order to reduce attack frequency. The current consensus reviews the previous data and provides the clinicians with practical recommendations and advices for the diagnosis and management of NMOSD based on scientific data and clinical experience.
Collapse
Affiliation(s)
- Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran; Iranian Center for Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Iran.
| | | | - Amir Reza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran; Iranian Center for Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Nasrin Asgari
- Institutes of Regional Health Research and Molecular Medicine, University of Southern Denmark, Denmark
| | - Fahimeh H Akhoundi
- Department of Neurology, Firozgar Hospital, Iran University of Medical Sciences, Iran
| | - Roya Abolfazli
- Department of Neurology, Amiralam Hospital, Tehran University of Medical Sciences, Iran
| | | | - Fereshteh Ashtari
- Department of Neurology, Kashani Hospital, Isfahan University of Medical Sciences, Iran; Isfahan neurosciences research center, Alzahra Hospital, Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hormoz Ayromlou
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | | | - Nahid Beladi Moghadam
- Department of Neurology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Iran
| | - Farzad Fatehi
- Iranian Center for Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Iran; Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Iran
| | - Mohsen Foroughipour
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Nastaran Majdinasab
- Department of Neurology, Golestan Hospital, Ahwaz University of Medical Sciences, Iran
| | - Alireza Nickseresht
- Department of Neurology, Namazi Hospital, Shiraz University of Medical Sciences, Iran
| | - Abbas Nourian
- Islamic Azad University, Faculty of Medicine, Khorasan Razavi Branch, Iran
| | - Vahid Shaygannejad
- Isfahan neurosciences research center, Alzahra Hospital, Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
12
|
Chen J, Zhu J, Wang Z, Yao X, Wu X, Liu F, Zheng W, Li Z, Lin A. MicroRNAs Correlate with Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder in a Chinese Population. Med Sci Monit 2017; 23:2565-2583. [PMID: 28550707 PMCID: PMC5458669 DOI: 10.12659/msm.904642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies identified a set of differentially expressed miRNAs in whole blood that may discriminate neuromyelitis optica spectrum disorders (NMOSD) from relapsing-remitting multiple sclerosis (RRMS). This study invalidated 9 known miRNAs in Chinese patients. Material/Methods The levels of miRNAs in whole blood were assayed in healthy controls (n=20) and patients with NMOSD (n=45), RRMS (n=17) by quantitative real-time polymerase chain reaction (qRT-PCR), and pairwise-compared between groups. They were further analyzed for association with clinical features and MRI findings of the diseases. Results Compared with healthy controls, miR-22b-5p, miR-30b-5p and miR-126-5p were down-regulated in NMOSD, in contrast, both miR-101-5p and miR-126-5p were up-regulated in RRMS. Moreover, the levels of miR-101-5p, miR-126-5p and miR-660-5p, were significantly higher in RRMS than in NMOSD (P=0.04, 0.01 and 0.02, respectively). The level of miR-576-5p was significantly higher in patients underwent relapse for ≤3 times than those for ≥4 times. In addition, its level was significantly higher in patients suffered from a severe visual impairment (visual sight ≤0.1). Moreover, the levels of each of the 9 miRNAs were lower in NMOSD patients with intracranial lesions (NMOSD-IC) than those without (NMOSD-non-IC). Despite correlations of miRNAs with these disease subtypes, all AUCs of ROC generated to discriminate patients and controls, as well as intracranial lesions, were <0.8. Conclusions Certain miRNAs are associated with RRMS and NMOSD. They are also related to the clinical features, especially intracranial lesions of NMOSD. However, none of the miRNAs alone or in combination was powerful to ensure the diagnosis and differentiation of the 2 disease subtypes.
Collapse
Affiliation(s)
- Jianglong Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland).,Department of Neurology, Jinjiang Hospital of traditional Chinese Medicine, Jinjiang, Fujian, China (mainland)
| | - Jiting Zhu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Zeng Wang
- Department of Neurology, The Third Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaoping Yao
- Department of Neurology, Jinjiang Hospital of traditional Chinese Medicine, Jinjiang, Fujian, China (mainland)
| | - Xuan Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Weidong Zheng
- Department of Ophthalmology, Jinjiang Hospital of Traditional Chinese Medicine, Fuzhou, Fujian, China (mainland)
| | - Zhiwen Li
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Aiyu Lin
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
13
|
Orman G, Wang KY, Pekcevik Y, Thompson CB, Mealy M, Levy M, Izbudak I. Enhancing Brain Lesions during Acute Optic Neuritis and/or Longitudinally Extensive Transverse Myelitis May Portend a Higher Relapse Rate in Neuromyelitis Optica Spectrum Disorders. AJNR Am J Neuroradiol 2017; 38:949-953. [PMID: 28302609 DOI: 10.3174/ajnr.a5141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and to correlate contrast enhancement with outcome measures. MATERIALS AND METHODS Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast enhancement and with and without seropositivity. RESULTS Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was significantly associated with higher annualized relapse rates (P = .03) and marginally associated with shorter disease duration (P = .05). Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates (P = .03). CONCLUSIONS Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast enhancement during an acute relapse of optic neuritis and/or longitudinally extensive transverse myelitis are associated with increased annual relapse rates.
Collapse
Affiliation(s)
- G Orman
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| | - K Y Wang
- Department of Radiology (K.Y.W.), Baylor College of Medicine, Houston, Texas
| | - Y Pekcevik
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| | - C B Thompson
- Biostatistics Center (C.B.T.), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - M Mealy
- Department of Neurology (M.M., M.L.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Levy
- Department of Neurology (M.M., M.L.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - I Izbudak
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| |
Collapse
|
14
|
Meng H, Xu J, Pan C, Cheng J, Hu Y, Hong Y, Shen Y, Dai H. Cognitive dysfunction in adult patients with neuromyelitis optica: a systematic review and meta-analysis. J Neurol 2016; 264:1549-1558. [PMID: 27909800 DOI: 10.1007/s00415-016-8345-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate cognitive dysfunction in 24-60-year-old neuromyelitis optica (NMO) patients, demographically matched healthy subjects, and MS patients. We conducted a comprehensive literature review of the PubMed, Medline, EMBASE, CNKI, Wan Fang Date, Web of Science, and Cochrane Library databases from inception to May 2016 for case-control studies that reported cognitive test scores in NMO patients, healthy subjects, and MS patients. Outcome measures were cognitive function evaluations, including performance on attention, language, memory, information processing speed, and executive function tests. The meta-analysis included eight studies. NMO patients performed significantly worse on attention (P < 0.00001), language (P = 0.00008), memory (P = 0.00004), information processing speed (P < 0.00001), and executive function tests (P = 0.00009) than healthy subjects. There were no significant differences in performance between NMO patients and MS patients on these tests. This meta-analysis indicates that NMO patients aged 24-60 years have significantly worse cognitive performance than demographically matched healthy subjects. However, this was comparable to the performance of demographically matched MS patients. There is a need for further rigorous randomized controlled trials with focus on elucidating the underlying mechanism of cognitive dysfunction in NMO patients.
Collapse
Affiliation(s)
- Hao Meng
- Non-Coding RNA Center, Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jun Xu
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Chenling Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jiaxing Cheng
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Yue Hu
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Yin Hong
- Health Management Center, Northern Jiangsu Poeple's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hua Dai
- Non-Coding RNA Center, Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
15
|
Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, Hümmert MW, Trebst C, Pache F, Winkelmann A, Beume LA, Ringelstein M, Stich O, Aktas O, Korporal-Kuhnke M, Schwarz A, Lukas C, Haas J, Fechner K, Buttmann M, Bellmann-Strobl J, Zimmermann H, Brandt AU, Franciotta D, Schanda K, Paul F, Reindl M, Wildemann B. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. J Neuroinflammation 2016; 13:281. [PMID: 27802825 PMCID: PMC5088671 DOI: 10.1186/s12974-016-0719-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) are present in a subset of aquaporin-4 (AQP4)-IgG-negative patients with optic neuritis (ON) and/or myelitis. Little is known so far about brainstem involvement in MOG-IgG-positive patients. Objective To investigate the frequency, clinical and paraclinical features, course, outcome, and prognostic implications of brainstem involvement in MOG-IgG-positive ON and/or myelitis. Methods Retrospective case study. Results Among 50 patients with MOG-IgG-positive ON and/or myelitis, 15 (30 %) with a history of brainstem encephalitis were identified. All were negative for AQP4-IgG. Symptoms included respiratory insufficiency, intractable nausea and vomiting (INV), dysarthria, dysphagia, impaired cough reflex, oculomotor nerve palsy and diplopia, nystagmus, internuclear ophthalmoplegia (INO), facial nerve paresis, trigeminal hypesthesia/dysesthesia, vertigo, hearing loss, balance difficulties, and gait and limb ataxia; brainstem involvement was asymptomatic in three cases. Brainstem inflammation was already present at or very shortly after disease onset in 7/15 (47 %) patients. 16/21 (76.2 %) brainstem attacks were accompanied by acute myelitis and/or ON. Lesions were located in the pons (11/13), medulla oblongata (8/14), mesencephalon (cerebral peduncles; 2/14), and cerebellar peduncles (5/14), were adjacent to the fourth ventricle in 2/12, and periaqueductal in 1/12; some had concomitant diencephalic (2/13) or cerebellar lesions (1/14). MRI or laboratory signs of blood-brain barrier damage were present in 5/12. Cerebrospinal fluid pleocytosis was found in 11/14 cases, with neutrophils in 7/11 (3-34 % of all CSF white blood cells), and oligoclonal bands in 4/14. Attacks were preceded by acute infection or vaccination in 5/15 (33.3 %). A history of teratoma was noted in one case. The disease followed a relapsing course in 13/15 (87 %); the brainstem was involved more than once in 6. Immunosuppression was not always effective in preventing relapses. Interferon-beta was followed by new attacks in two patients. While one patient died from central hypoventilation, partial or complete recovery was achieved in the remainder following treatment with high-dose steroids and/or plasma exchange. Brainstem involvement was associated with a more aggressive general disease course (higher relapse rate, more myelitis attacks, more frequently supratentorial brain lesions, worse EDSS at last follow-up). Conclusions Brainstem involvement is present in around one third of MOG-IgG-positive patients with ON and/or myelitis. Clinical manifestations are diverse and may include symptoms typically seen in AQP4-IgG-positive neuromyelitis optica, such as INV and respiratory insufficiency, or in multiple sclerosis, such as INO. As MOG-IgG-positive brainstem encephalitis may take a serious or even fatal course, particular attention should be paid to signs or symptoms of additional brainstem involvement in patients presenting with MOG-IgG-positive ON and/or myelitis.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Ingo Kleiter
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Nasrin Asgari
- Department of Neurology and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Nadja Borisow
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florence Pache
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | - Oliver Stich
- Department of Neurology, Albert Ludwigs University, Freiburg, Germany
| | - Orhan Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Alexander Schwarz
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Carsten Lukas
- Department of Neuroradiology, Ruhr University Bochum, Bochum, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - Mathias Buttmann
- Department of Neurology, Julius Maximilians University, Würzburg, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander U Brandt
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | | | - Kathrin Schanda
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Markus Reindl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | | |
Collapse
|
16
|
Kim W, Lee JE, Kim SH, Huh SY, Hyun JW, Jeong IH, Park MS, Cho JY, Lee SH, Lee KS, Kim HJ. Cerebral Cortex Involvement in Neuromyelitis Optica Spectrum Disorder. J Clin Neurol 2016; 12:188-93. [PMID: 26833983 PMCID: PMC4828565 DOI: 10.3988/jcn.2016.12.2.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Brain lesions involving the cerebral cortex are rarely described in patients with neuromyelitis optica spectrum disorder (NMOSD), in contrast to multiple sclerosis. We investigated cerebral cortex involvement using conventional brain magnetic resonance imaging (MRI) in anti-aquaporin-4 (AQP4)-antibody-positive NMOSD patients. METHODS The study enrolled 215 NMOSD patients who were seropositive for the anti-AQP4 antibody from 5 referral hospitals, and retrospectively analyzed their demographic, clinical, and MRI findings. Abnormal cerebral cortex lesions on brain MRI were identified by a neuroradiologist and two neurologists using consensus. RESULTS Most of the 215 enrolled patients (87%) were female. The median age at onset was 22.5 years (range: 15-36 years) and the mean follow-up duration was 123 months. Brain lesions were found in 143 of 194 patients (74%) in whom MRI was performed during follow-up. Brain lesions involving the cerebral cortex were identified in 6 of these 194 patients (3.1%). Five of the patients were female, and the six patients together had a median age of 29 years (range: 15-36 years) at the time of lesion presentation. Three of them showed leptomeningeal enhancement in the lesions. At presentation of the cortex-involving lesions, five of these patients were not being treated at the time of presentation, while the sixth was being treated with interferon-beta. CONCLUSIONS Although rare, cortical involvement occurs in NMOSD and is commonly combined with leptomeningeal enhancement. We speculate that this occurs only in patients who are not treated appropriately with immunosuppressant drugs.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, The Catholic University of Korea College of Medicine, Seoul, Korea.
| | - Jee Eun Lee
- Department of Neurology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Su Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - So Young Huh
- Department of Neurology, Kosin University College of Medicine, Busan, Korea
| | - Jae Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - In Hye Jeong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Min Su Park
- Department of Neurology, Yeungnam University College of Medicine, Daegu, Korea
| | - Joong Yang Cho
- Department of Neurology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Sang Hyun Lee
- Department of Radiolgoy, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Kwang Soo Lee
- Department of Neurology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
17
|
Belova AN, Bojko AN, Belova EM. Diagnostic criteria for neuromyelitisoptica spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:32-40. [DOI: 10.17116/jnevro20161162232-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Kremer S, Renard F, Achard S, Lana-Peixoto MA, Palace J, Asgari N, Klawiter EC, Tenembaum SN, Banwell B, Greenberg BM, Bennett JL, Levy M, Villoslada P, Saiz A, Fujihara K, Chan KH, Schippling S, Paul F, Kim HJ, de Seze J, Wuerfel JT, Cabre P, Marignier R, Tedder T, van Pelt D, Broadley S, Chitnis T, Wingerchuk D, Pandit L, Leite MI, Apiwattanakul M, Kleiter I, Prayoonwiwat N, Han M, Hellwig K, van Herle K, John G, Hooper DC, Nakashima I, Sato D, Yeaman MR, Waubant E, Zamvil S, Stüve O, Aktas O, Smith TJ, Jacob A, O'Connor K. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurol 2015; 72:815-22. [PMID: 26010909 DOI: 10.1001/jamaneurol.2015.0248] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.
Collapse
Affiliation(s)
- Stephane Kremer
- ICube (UMR 7357, UdS, Centre National de la Recherche Scientifique), Fédération de médecine translationelle de Strasbourg, Université de Strasbourg, Strasbourg, France2Department of Radiology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Felix Renard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, Grenoble, France
| | - Sophie Achard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, Grenoble, France
| | | | - Jacqueline Palace
- Department of Neurology, Oxford University Hospital Trust, Oxford, England
| | - Nasrin Asgari
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense7Department of Neurology, Vejle Hospital, Vejle, Denmark
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Silvia N Tenembaum
- Department of Neurology and Neurophysiology, National Pediatric Hospital Dr Juan P. Garrahan, Buenos Aires, Argentina
| | - Brenda Banwell
- Department of Neurology, University of Pennsylvania, Philadelphia11Division of Child Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas13Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado Denver, Aurora15Department of Ophthalmology, University of Colorado Denver, Aurora
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Pablo Villoslada
- Institute of Biomedical Research August Pi Sunyer-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Institute of Biomedical Research August Pi Sunyer-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koon Ho Chan
- University Department of Medicine, Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, University Hospital Zurich, Zurich, Switzerland21Department of Neurology, University Hospital Zurich, Zurich, Switzerland22Neuroscience Center Zurich, Federal Technical High School Zurich, Zurich, S
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany25Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany26Department of Neurology, Charité University Medicine, Berlin, Ger
| | - Ho Jin Kim
- Department of Neurology, Research Institute, Goyang, Korea28Hospital of National Cancer Center, Goyang, Korea
| | - Jerome de Seze
- Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France30Clinical Investigation Center (INSERM 1434), Hôpitaux Universitaires de Strasbourg, Strasbourg, France31UMR INSERM 1119 and Fédération de médecine translationelle, Strasbourg
| | - Jens T Wuerfel
- NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany25Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany26Department of Neurology, Charité University Medicine, Berlin, Ger
| | | | | | | | - Thomas Tedder
- Duke University School of Medicine, Durham, North Carolina
| | | | | | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | - Maria Isabel Leite
- Department of Neurology, Oxford University Hospital Trust, Oxford, England
| | | | | | | | - May Han
- Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - Ichiro Nakashima
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Douglas Sato
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas13Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Orhan Aktas
- University of Düsseldorf, Düsseldorf, Germany
| | | | | | - Kevin O'Connor
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Fan Y, Shan F, Lin SP, Long Y, Liang B, Gao C, Gao Q. Dynamic change in magnetic resonance imaging of patients with neuromyelitis optica. Int J Neurosci 2015; 126:448-54. [PMID: 26010209 DOI: 10.3109/00207454.2015.1055356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To analyze changes in magnetic resonance imaging (MRI) of spinal cord lesions in neuromyelitis optica (NMO) and the correlation between segmental length of spinal cord lesions and expanded disability status scale (EDSS) scores. METHODS Twenty-five patients with confirmed NMO were examined from the Second Affiliated Hospital of Guangzhou Medical University, China. The information collected included their treatment, MRI, laboratory tests, and EDSS scores at different stages. RESULTS All cases exhibited spinal cord lesions, with 23 (92%) having longitudinally extensive transverse myelitis (extending ≥3 vertebral segments). There was a positive correlation between segmental length of spinal cord lesions and EDSS scores: during the acute phase, r = 0.430 (P = 0.032); during remission, r = 0.605 (P = 0.002). Enlarged spinal cord lesions and swelling were found in 18 cases (72%) during the acute phase, and 4 cases (16%, P = 0.000) after 6 months of treatment. Lesion enhancements were found in 17 cases (68%) during the acute phase, and 8 cases (32%, P = 0.023) after 6 months of treatment. Leptomeningeal enhancement was found in three cases during the acute phase, which disappeared after treatment. Atrophy of spinal cord lesions occurred in two cases. Change in lesions was statistically significant (P = 0.006) after 12 months of treatment. CONCLUSION Positive correlation was found between segmental length of spinal cord lesions and EDSS scores, which was more significant during remission. After 6 months of regular treatment, restorative changes compared with the acute phase were found by MRI.
Collapse
Affiliation(s)
- Yongxiang Fan
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Fulan Shan
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Shao-peng Lin
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,c 3 Department of Emergency , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Youming Long
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Bin Liang
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Cong Gao
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Qingchun Gao
- a 1 Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b 2 Department of Neurology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
20
|
What do we know about brain contrast enhancement patterns in neuromyelitis optica? Clin Imaging 2015; 40:573-80. [PMID: 26615899 DOI: 10.1016/j.clinimag.2015.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system that usually presents with acute myelitis and/or optic neuritis. Recently, some brain magnetic resonance imaging findings have been described in NMO that are important in the differential diagnosis. Pencil-thin, leptomeningeal, and cloud-like enhancement may be specific to NMO. These patterns are usually seen during relapses. Recognizing these lesions and enhancement patterns may expedite the diagnosis and allows early effective treatment. The purpose of this article is to review the latest knowledge and to share our experience with the contrast enhancement patterns of NMO brain lesions.
Collapse
|
21
|
Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85:177-89. [PMID: 26092914 PMCID: PMC4515040 DOI: 10.1212/wnl.0000000000001729] [Citation(s) in RCA: 3144] [Impact Index Per Article: 314.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS.
Collapse
Affiliation(s)
- Dean M Wingerchuk
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN.
| | - Brenda Banwell
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Jeffrey L Bennett
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Philippe Cabre
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - William Carroll
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Tanuja Chitnis
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Jérôme de Seze
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Kazuo Fujihara
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Benjamin Greenberg
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Anu Jacob
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Sven Jarius
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Marco Lana-Peixoto
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Michael Levy
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Jack H Simon
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Silvia Tenembaum
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Anthony L Traboulsee
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Patrick Waters
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Kay E Wellik
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN
| | - Brian G Weinshenker
- From the Departments of Neurology (D.M.W.) and Library Services (K.E.W.), Mayo Clinic, Scottsdale, AZ; the Children's Hospital of Philadelphia (B.B.), PA; the Departments of Neurology and Ophthalmology (J.L.B.), University of Colorado Denver, Aurora; the Service de Neurologie (P.C.), Centre Hospitalier Universitaire de Fort de France, Fort-de-France, Martinique; Department of Neurology (W.C.), Sir Charles Gairdner Hospital, Perth, Australia; the Department of Neurology (T.C.), Massachusetts General Hospital, Boston; the Department of Neurology (J.d.S.), Strasbourg University, France; the Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan; the Departments of Neurology and Neurotherapeutics (B.G.), University of Texas Southwestern Medical Center, Dallas; The Walton Centre NHS Trust (A.J.), Liverpool, UK; the Molecular Neuroimmunology Group, Department of Neurology (S.J.), University Hospital Heidelberg, Germany; the Center for Multiple Sclerosis Investigation (M.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; the Department of Neurology (M.L.), Johns Hopkins University, Baltimore, MD; Portland VA Medical Center and Oregon Health and Sciences University (J.H.S.), Portland; the Department of Neurology (S.T.), National Pediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; the Department of Medicine (A.L.T.), University of British Columbia, Vancouver, Canada; Nuffield Department of Clinical Neurosciences (P.W.), University of Oxford, UK; and the Department of Neurology (B.G.W.), Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
22
|
Sahraian MA, Moghadasi AN, Owji M, Naghshineh H, Minagar A. Neuromyelitis optica with linear enhancement of corpus callosum in brain magnetic resonance imaging with contrast: a case report. J Med Case Rep 2015; 9:137. [PMID: 26059535 PMCID: PMC4487970 DOI: 10.1186/s13256-015-0613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Neuromyelitis optica is a demyelinating disease of the central nervous system with various patterns of brain lesions. Corpus callosum may be involved in both multiple sclerosis and neuromyelitis optica. Previous case reports have demonstrated that callosal lesions in neuromyelitis optica are usually large and edematous and have a heterogeneous intensity showing a “marbled pattern” in the acute phase. Their size and intensity may reduce with time or disappear in the chronic stages. Case presentation In this report, we describe a case of a 25-year-old Caucasian man with neuromyelitis optica who presented clinically with optic neuritis and myelitis. His brain magnetic resonance imaging demonstrated linear enhancement of the corpus callosum. Brain images with contrast agent added also showed linear ependymal layer enhancement of the lateral ventricles, which has been reported in this disease previously. Conclusions Linear enhancement of corpus callosum in magnetic resonance imaging with contrast agent could help in diagnosing neuromyelitis optica and differentiating it from other demyelinating disease, especially multiple sclerosis.
Collapse
Affiliation(s)
- Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.
| | | | - Mahsa Owji
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.
| | - Hoda Naghshineh
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Minagar
- Department of Neurology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
23
|
Wang Y, Wu A, Chen X, Zhang L, Lin Y, Sun S, Cai W, Zhang B, Kang Z, Qiu W, Hu X, Lu Z. Comparison of clinical characteristics between neuromyelitis optica spectrum disorders with and without spinal cord atrophy. BMC Neurol 2014; 14:246. [PMID: 25526927 PMCID: PMC4302083 DOI: 10.1186/s12883-014-0246-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Spinal cord lesions is one of the predominant characteristics in patients with neuromyelitis optica spectrum disorders (NMOSD). Interestingly, mounting evidence indicates that spinal cord atrophy (SCA) is one of common clinical features in multiple sclerosis (MS) patients, and correlates closely with the neurological disability. However, Clinical studies related to the SCA aspects of NMOSD are still scarce. METHODS We retrospectively analyzed 185 patients with NMOSD, including 23 patients with SCA and 162 patients without SCA. Data were collected regarding clinical characteristics, laboratory tests, and magnetic resonance imaging findings. RESULTS 12.4% of patients had SCA in NMOSD. Patients with SCA had a longer disease duration and higher EDSS at clinical onset and last visit. More importantly, SCA patients were more prone to reach disability milestones (EDSS ≥ 6.0). Bowel or bladder dysfunction, movement disorders, and sensory disturbances symptoms were more common in patients with SCA. ESR and CRP were significantly higher in patients with SCA than those without SCA. Patients with SCA were more frequently complicated with cervical cord lesions. However, the ARR, progression index, seropositive rate of NMO-IgG and OCB were similar in the two groups. Futhermore, LETM did not differ significantly between patients with SCA and without SCA in NMOSD patients. CONCLUSIONS Patients with SCA might have longer disease duration, more severe clinical disability, and more frequently complicated with cervical spinal cord lesions. SCA might be predictive of the more severe neurologic dysfunction and worse prognosis in NMOSD. Inflammation contributes to the development of SCA in NMOSD.
Collapse
Affiliation(s)
- Yanqiang Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Aimin Wu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Xiaoyu Chen
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Yinyao Lin
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Shaoyang Sun
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Wei Cai
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Bingjun Zhang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Zhuang Kang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Xueqiang Hu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Zhengqi Lu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
24
|
Liao MF, Chang KH, Lyu RK, Huang CC, Chang HS, Wu YR, Chen CM, Chu CC, Kuo HC, Ro LS. Comparison between the cranial magnetic resonance imaging features of neuromyelitis optica spectrum disorder versus multiple sclerosis in Taiwanese patients. BMC Neurol 2014; 14:218. [PMID: 25433369 PMCID: PMC4264553 DOI: 10.1186/s12883-014-0218-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are inflammatory diseases of the central nervous system with different pathogenesis, brain lesion patterns, and treatment strategies. However, it is still difficult to distinguish these two disease entities by neuroimaging studies. Herein, we attempt to differentiate NMOSD from MS by comparing brain lesion patterns on magnetic resonance imaging (MRI). Methods The medical records and cranial MRI studies of patients with NMOSD diagnosed according to the 2006 Wingerchuk criteria and the presence of anti-aquaporin 4 (anti-AQP4) antibodies, and patients with MS diagnosed according to the Poser criteria, were retrospectively reviewed. Results Twenty-five NMOSD and 29 MS patients were recruited. The NMOSD patients became wheelchair dependent earlier than MS patients (log rank test; P = 0.036). Linear ependymal (28% vs. 0%, P = 0.003) and punctate lesions (64% vs. 28%, P = 0.013) were more frequently seen in NMOSD patients. Ten NMOSD patients (40%) had brain lesions that did not meet the Matthews criteria (MS were separated from NMOSD by the presence of at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion or a Dawson finger-type lesion). The different image patterns of NMOSD didn’t correlate with the clinical prognosis. However, NMOSD patients with more (≧10) brain lesions at onset became wheelchair dependence earlier than those with fewer (<10) brain lesions (log rank test; P < 0.001). Conclusions The diagnostic sensitivity of NMOSD criteria can be increased to 56% by combining the presence of linear ependymal lesions with unmet the Matthews criteria. The prognoses of NMOSD and MS are different. A specific imaging marker, the linear ependymal lesion, was present in some NMOSD patients. The diagnosis of NMOSD can be improved by following the evolution of this imaging feature when anti-AQP4 antibody test results are not available.
Collapse
|
25
|
Differentiation of neuromyelitis optica from multiple sclerosis in a cohort from the mainland of China. Chin Med J (Engl) 2014. [DOI: 10.1097/00029330-201409200-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
26
|
Renard D, Castelnovo G, Campello C, Bouly S, Le Floch A, Thouvenot E, Waconge A, Taieb G. An MRI review of acquired corpus callosum lesions. J Neurol Neurosurg Psychiatry 2014; 85:1041-8. [PMID: 24563521 DOI: 10.1136/jnnp-2013-307072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lesions of the corpus callosum (CC) are seen in a multitude of disorders including vascular diseases, metabolic disorders, tumours, demyelinating diseases, trauma and infections. In some diseases, CC involvement is typical and sometimes isolated, while in other diseases CC lesions are seen only occasionally in the presence of other typical extra-callosal abnormalities. In this review, we will mainly discuss the MRI characteristics of acquired lesions involving the CC. Identification of the origin of the CC lesion depends on the exact localisation of the lesion(s) inside the CC, presence of other lesions seen outside the CC, signal changes on different MRI sequences, evolution over time of the radiological abnormalities, history and clinical state of the patient, and other radiological and non-radiological examinations.
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | | | - Chantal Campello
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Stephane Bouly
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Anne Le Floch
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Eric Thouvenot
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Anne Waconge
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| | - Guillaume Taieb
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes, France
| |
Collapse
|
27
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2014; 23:661-83. [PMID: 24118483 DOI: 10.1111/bpa.12084] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
28
|
Matthews LA, Palace JA. The role of imaging in diagnosing neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2014; 3:284-93. [DOI: 10.1016/j.msard.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
|
29
|
Comparative clinical characteristics of neuromyelitis optica spectrum disorders with and without medulla oblongata lesions. J Neurol 2014; 261:954-62. [DOI: 10.1007/s00415-014-7298-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
|
30
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2013. [PMID: 24118483 DOI: 10.1111/bpa.12084"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
31
|
Zhang L, Wu A, Zhang B, Chen S, Men X, Lin Y, Lu Z. Comparison of deep gray matter lesions on magnetic resonance imaging among adults with acute disseminated encephalomyelitis, multiple sclerosis, and neuromyelitis optica. Mult Scler 2013; 20:418-23. [PMID: 23886831 DOI: 10.1177/1352458513499420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Deep gray matter lesions have been reported in patients with acute disseminated encephalomyelitis (ADEM), multiple sclerosis (MS), and neuromyelitis optica (NMO). OBJECTIVES The purpose of this study was to compare the features of deep gray matter lesions on magnetic resonance imaging (MRI) among adult patients with ADEM, MS, and NMO. METHODS Ninety-five adult patients with ADEM (n=12), MS (n=60), and NMO (n=23) who had deep gray matter lesions on MRI were enrolled. Morphological features of deep gray matter lesions among these patients were assessed. RESULTS Putamen involvement was more common in patients with ADEM than in patients with MS and NMO. Differing from children, thalamus involvement might not be helpful in differentiating ADEM from MS in adults. Hypothalamus involvement was more common in patients with NMO than in patients with ADEM and MS. More importantly, bilateral hypothalamus involvement was more helpful in differentiating NMO from MS. The diameter of the thalamus lesions in patients with ADEM was larger than that in patients with NMO. CONCLUSIONS Morphological features of deep gray matter lesions vary among adult patients with ADEM, MS, and NMO, and may be helpful in distinguishing these diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sánchez-Catasús CA, Cabrera-Gomez J, Almaguer Melián W, Giroud Benítez JL, Rodríguez Rojas R, Bayard JB, Galán L, Sánchez RG, Fuentes NP, Valdes-Sosa P. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study. PLoS One 2013; 8:e66271. [PMID: 23824339 PMCID: PMC3688888 DOI: 10.1371/journal.pone.0066271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 12/16/2022] Open
Abstract
Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO) are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO) is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV) and grey matter volumes (GMV) and/or perfusion on one side, and the number of optic neuritis (ON) attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.
Collapse
|
33
|
Juryńczyk M, Zaleski K, Selmaj K. Natalizumab and the development of extensive brain lesions in neuromyelitis optica. J Neurol 2013; 260:1919-21. [PMID: 23719787 DOI: 10.1007/s00415-013-6965-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 11/30/2022]
|
34
|
Early treatment of inflammatory demyelinating disease. Nat Rev Neurol 2013; 9:246-7. [DOI: 10.1038/nrneurol.2013.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
Neuromyelitis optica is a rare, severe idiopathic disease that predominantly involves optic nerves and spinal cord. Main clinical features of neuromyelitis optica are visual loss, paraparesis or tetraparesis, sensory loss, and sphincter dysfunction. A 13-year-old girl with vision loss and behavioral change was admitted. Her behavioral changes concerned demanding everything, eating cacik (a kind of meal prepared by yogurt) continuously, calling everyone "father," and self-throttling during the last 1 month, and blurred vision started 15 days ago. On cranial magnetic resonance imaging (MRI), multiple lesions were seen. The patient was admitted 40 days later with walking difficulty. There were lesions in the medulla and cervical spinal cord on MRI. Neuromyelitis optica was diagnosed. Vomiting was the beginning complaint in 2 of 5 hospitalizations later. We conclude that neuromyelitis optica may involve atypical symptoms such as behavioral change and vomiting. Atypical presentations may delay diagnosis. Vomiting may be a recurrence messenger.
Collapse
Affiliation(s)
- Halûk Yavuz
- Necmeddin Erbakan Üniversitesi, Meram Tip Fakültesi, Çocuk Bölümü, Konya, Turkey
| | | |
Collapse
|
36
|
Matthews L, Marasco R, Jenkinson M, Küker W, Luppe S, Leite MI, Giorgio A, De Stefano N, Robertson N, Johansen-Berg H, Evangelou N, Palace J. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 2013; 80:1330-7. [PMID: 23486868 DOI: 10.1212/wnl.0b013e3182887957] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Neuromyelitis optica and its spectrum disorder (NMOSD) can present similarly to relapsing-remitting multiple sclerosis (RRMS). Using a quantitative lesion mapping approach, this research aimed to identify differences in MRI brain lesion distribution between aquaporin-4 antibody-positive NMOSD and RRMS, and to test their diagnostic potential. METHODS Clinical brain MRI sequences for 44 patients with aquaporin-4 antibody-positive NMOSD and 50 patients with RRMS were examined for the distribution and morphology of brain lesions. T2 lesion maps were created for each subject allowing the quantitative comparison of the 2 conditions with lesion probability and voxel-wise analysis. RESULTS Sixty-three percent of patients with NMOSD had brain lesions and of these 27% were diagnostic of multiple sclerosis. Patients with RRMS were significantly more likely to have lesions adjacent to the body of the lateral ventricle than patients with NMOSD. Direct comparison of the probability distributions and the morphologic attributes of the lesions in each group identified criteria of "at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion; or a Dawson's finger-type lesion," which could distinguish patients with multiple sclerosis from those with NMOSD with 92% sensitivity, 96% specificity, 98% positive predictive value, and 86% negative predictive value. CONCLUSION Careful inspection of the distribution and morphology of MRI brain lesions can distinguish RRMS and NMOSD.
Collapse
Affiliation(s)
- Lucy Matthews
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation 2013; 10:8. [PMID: 23320783 PMCID: PMC3599417 DOI: 10.1186/1742-2094-10-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/07/2012] [Indexed: 11/25/2022] Open
Abstract
The discovery of a novel serum autoantibody (termed NMO-IgG or AQP4-Ab) in a subset of patients in 2004 has revived interest in neuromyelitis optica (NMO). While the history of classical multiple sclerosis has been extensively studied, only little is known about the history of NMO. In the present article, we provide a comprehensive review of the early history of this rare but intriguing syndrome. We trace the origins of the concept of NMO in the 19th century medical literature and follow its evolution throughout the 20th and into the 21st century. Finally, we discuss recent proposals to revise the concept of NMO and explain why there is indeed a need for a more systematic and descriptive nomenclature.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| | | |
Collapse
|
39
|
Kıyat-Atamer A, Ekizoğlu E, Tüzün E, Kürtüncü M, Shugaiv E, Akman-Demir G, Eraksoy M. Long-term MRI findings in neuromyelitis optica: seropositive versus seronegative patients. Eur J Neurol 2012; 20:781-7. [DOI: 10.1111/ene.12058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
Affiliation(s)
- A. Kıyat-Atamer
- Department of Neurology; TC Bilim University; Istanbul; Turkey
| | - E. Ekizoğlu
- Department of Neurology; Istanbul Faculty of Medicine; Istanbul University; Istanbul; Turkey
| | - E. Tüzün
- Department of Neuroscience; Institute of Experimental Medicine; Istanbul University; Istanbul; Turkey
| | - M. Kürtüncü
- Department of Neurology; Acibadem University; Istanbul; Turkey
| | - E. Shugaiv
- Department of Neurology; Istanbul Faculty of Medicine; Istanbul University; Istanbul; Turkey
| | - G. Akman-Demir
- Department of Neurology; TC Bilim University; Istanbul; Turkey
| | - M. Eraksoy
- Department of Neurology; Istanbul Faculty of Medicine; Istanbul University; Istanbul; Turkey
| |
Collapse
|
40
|
Brain abnormalities in neuromyelitis optica spectrum disorder. Mult Scler Int 2012; 2012:735486. [PMID: 23259063 PMCID: PMC3518965 DOI: 10.1155/2012/735486] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022] Open
Abstract
Neuromyelitis optica (NMO) is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON) and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD), and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced.
Collapse
|
41
|
Abstract
The evaluation of inflammatory central nervous system disorders in childhood with predominant involvement of the optic nerves and spinal cord has been greatly enhanced over the last decade with identification of a group of disorders unified by the detection of neuromyelitis optica (NMO)-IgG, an antibody targeting the central nervous system-predominant water channel aquaporin-4. Clinical syndromes are predominated by the relapsing form of NMO but also include encephalopathic variants that can mimic acute disseminated encephalomyelitis. Maintenance immunotherapy is used to prevent relapses in NMO-IgG-seropositive patients. In contrast, NMO-IgG-seronegative children with NMO more commonly have a monophasic course (simultaneous occurrence of optic neuritis and transverse myelitis) and do not require remission-maintaining immunotherapy, but close surveillance is advised. Current clinical, pathological, and pathogenetic knowledge is reviewed with a focus on clinical presentation, neuroimaging findings, serological investigations, and treatment of children with disorders within the spectrum of central nervous system aquaporin-4 autoimmunity.
Collapse
Affiliation(s)
- J M Tillema
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Pires CE, Silva CMCD, Lopes FCR, Malfetano FR, Pereira VC, Kubo T, Bahia PR, Alves-Leon SV, Gasparetto EL. Brain MRI abnormalities in Brazilian patients with neuromyelitis optica. J Clin Neurosci 2012; 19:969-74. [DOI: 10.1016/j.jocn.2011.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/28/2022]
|
43
|
White matter atrophy and cognitive dysfunctions in neuromyelitis optica. PLoS One 2012; 7:e33878. [PMID: 22509264 PMCID: PMC3317931 DOI: 10.1371/journal.pone.0033878] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM.
Collapse
|
44
|
Jarius S, Wildemann B. The case of the Marquis de Causan (1804): an early account of visual loss associated with spinal cord inflammation. J Neurol 2012; 259:1354-7. [PMID: 22237820 DOI: 10.1007/s00415-011-6355-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/20/2023]
Abstract
The recent discovery of disease specific and pathogenic autoantibodies in neuromyelitis optica (NMO, Devic's disease) has revived the interest in this intriguing yet often devastating condition. While the history of classic multiple sclerosis has been studied extensively, only very little is known so far about the early history of NMO. Here we discuss a now forgotten report by the famous French anatomist and pathologist Antoine Portal (1742-1832), first physician to Louis XVIII and founding and lifelong president of the Académie Nationale de Médecine. Portal's report, which fascinated some of the most renowned 19th century pioneers in the field of neurology but fell into oblivion later, represents the first account of visual loss in a patient with spinal cord inflammation but no brain pathology in the Western literature known so far--published more than 60 years prior to Thomas Clifford Allbutt's much cited note on a patient with myelitis and a "sympathetic eye disorder".
Collapse
Affiliation(s)
- S Jarius
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, Germany.
| | | |
Collapse
|
45
|
Thurnher MM. Spinal Cord Inflammatory and Demyelinating Diseases. DISEASES OF THE BRAIN, HEAD & NECK, SPINE 2012–2015 2012:173-176. [DOI: 10.1007/978-88-470-2628-5_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
|
47
|
Kim W, Kim SH, Kim HJ. New insights into neuromyelitis optica. J Clin Neurol 2011; 7:115-27. [PMID: 22087205 PMCID: PMC3212597 DOI: 10.3988/jcn.2011.7.3.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 01/15/2023] Open
Abstract
Neuromyelitis optica (NMO) is an idiopathic inflammatory disorder of the central nervous system (CNS) that preferentially affects the optic nerves and spinal cord. In Asia, NMO has long been considered a subtype of multiple sclerosis (MS). However, recent clinical, pathological, immunological, and imaging studies have suggested that NMO is distinct from MS. This reconsideration of NMO was initially prompted by the discovery of a specific antibody for NMO (NMO-IgG) in 2004. NMO-IgG is an autoantibody that targets aquaporin-4 (AQP4), the most abundant water channel in the CNS; hence, it was named anti-AQP4 antibody. Since it demonstrated reasonable sensitivity and high specificity, anti-AQP4 antibody was incorporated into new diagnostic criteria for NMO.The spectrum of NMO is now known to be wider than was previously recognized and includes a proportion of patients with recurrent, isolated, longitudinally extensive myelitis or optic neuritis, and longitudinally extensive myelitis or optic neuritis associated with systemic autoimmune disease or with brain lesions typical of NMO. In this context, a new concept of "NMO spectrum disorders" was recently introduced. Furthermore, seropositivity for NMO-IgG predicts future relapses and is recognized as a prognostic marker for NMO spectrum disorders. Humoral immune mechanisms, including the activation of B-cells and the complement pathway, are considered to play important roles in NMO pathogenesis. This notion is supported by recent studies showing the potential pathogenic role of NMO-IgG as an initiator of NMO lesions. However, a demonstration of the involvement of NMO-IgG by the development of active immunization and passive transfer in animal models is still needed. This review focuses on the new concepts of NMO based on its pathophysiology and clinical characteristics. Potential management strategies for NMO in light of its pathomechanism are also discussed.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | | | | |
Collapse
|
48
|
Kim SM, Kim JS, Heo YE, Yang HR, Park KS. Cortical oscillopsia without nystagmus, an isolated symptom of neuromyelitis optica spectrum disorder with anti-aquaporin 4 antibody. Mult Scler 2011; 18:244-7. [PMID: 21828199 DOI: 10.1177/1352458511414149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuromyelitis optica (NMO), mainly affecting optic nerve and spinal cord, can also manifest diverse ocular symptoms due to brain abnormalities. We present a cortical oscillopsia without nystagmus or head tremor in a patient with neuromyelitis optica spectrum disorder (NMOSD) with anti-aquaporin 4 antibody. This rare ocular manifestation, which is easily underestimated owing to absence of the typical nystagmus, can be an initial manifestation of NMOSD.
Collapse
Affiliation(s)
- Sung-Min Kim
- Department of Neurology, Seoul National University, College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|