1
|
Chen M, Guo P, Ru X, Chen Y, Zuo S, Feng H. Myelin sheath injury and repairment after subarachnoid hemorrhage. Front Pharmacol 2023; 14:1145605. [PMID: 37077816 PMCID: PMC10106687 DOI: 10.3389/fphar.2023.1145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) can lead to damage to the myelin sheath in white matter. Through classification and analysis of relevant research results, the discussion in this paper provides a deeper understanding of the spatiotemporal change characteristics, pathophysiological mechanisms and treatment strategies of myelin sheath injury after SAH. The research progress for this condition was also systematically reviewed and compared related to myelin sheath in other fields. Serious deficiencies were identified in the research on myelin sheath injury and treatment after SAH. It is necessary to focus on the overall situation and actively explore different treatment methods based on the spatiotemporal changes in the characteristics of the myelin sheath, as well as the initiation, intersection and common action point of the pathophysiological mechanism, to finally achieve accurate treatment. We hope that this article can help researchers in this field to further clarify the challenges and opportunities in the current research on myelin sheath injury and treatment after SAH.
Collapse
Affiliation(s)
- Mao Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yujie Chen, ; Shilun Zuo,
| | - Shilun Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yujie Chen, ; Shilun Zuo,
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Huang RY, Liu ZH, Weng WH, Chang CW. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B 2021; 9:4267-4286. [PMID: 33942822 DOI: 10.1039/d0tb02713h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taiwan.
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol Ther (Seoul) 2020; 28:34-44. [PMID: 31649208 PMCID: PMC6939692 DOI: 10.4062/biomolther.2019.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Jesús Perales-Adán
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| |
Collapse
|
5
|
Hu X, Zhou X, Li Y, Jin Q, Tang W, Chen Q, Aili D, Qian H. Application of stem cells and chitosan in the repair of spinal cord injury. Int J Dev Neurosci 2019; 76:80-85. [PMID: 31302172 DOI: 10.1016/j.ijdevneu.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cytology and histology obstacles have been the main barriers to multiple tissues injury repair. In search of the most promising treatment strategies for spinal cord injury (SCI), stem cell-based transplantation coupled with various materials/technologies have been explored extensively to enhance SCI repair. Chitosan (CS) has demonstrated immense potential for widespread application in the form of scaffolds and micro-particles for SCI repair. The current review summarizes the evidences for stem cell-based transplantation and CS in SCI repair. Stem cells transplantation, which plays a key role in the repair of SCI, mainly results from its neural differentiation potential and neurotrophic effects. Application of CS enhances the survival of grafted stem cells, upregulates the expression level of neurotrophic factors and heightens the neural differentiation of stem cells as well as the functional recovery of spinal cord. Meanwhile, CS can also be exploited as growth factors/RNA carriers to control the release of regenerating molecules which are beneficial to damage spinal cord repair.
Collapse
Affiliation(s)
- Xinyuan Hu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xinru Zhou
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yang Li
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Jin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wenjuan Tang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qun Chen
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dilhumar Aili
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Wei W, Huang Y, Li D, Gou HF, Wang W. Improved therapeutic potential of MSCs by genetic modification. Gene Ther 2018; 25:538-547. [PMID: 30254305 DOI: 10.1038/s41434-018-0041-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs), well-studied adult stem cells in various tissues, possess multi-lineage differentiation potential and anti-inflammatory properties. MSCs have been approved to regenerate lineage-specific cells to replace injured cells in tissues. MSCs are approved to treat inflammatory diseases. With the discovery of genes important for the repair of damaged tissues, MSCs genetically modified by such genes hold improved therapeutic potential. In this review, we summarised the uses of genetically modified MSCs to treat different diseases, including bone diseases, cardiovascular diseases, autoimmune diseases, central nervous system disorders, and cancer. To better understand the exact role of genetically modified MSCs, key mechanisms determining, which genes are selected to be used for modifying MSCs and improvements in post-genetic modification are discussed. Therapeutic benefits enhanced by genetic modifications are to be documented by further clinical studies.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yong Huang
- Department of Emergency, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Dan Li
- Department of Emergency, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong-Feng Gou
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Wang
- Department of Emergency, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China. .,Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
7
|
Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, Lu M, Nan Z, Rossignol J, Dunbar GL. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Restor Neurol Neurosci 2018; 35:395-411. [PMID: 28598857 DOI: 10.3233/rnn-160678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. METHODS Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). RESULTS The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. CONCLUSION The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.
Collapse
Affiliation(s)
- Andrew Nathaniel Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Jessica Jane Matyas
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ryan Matthew Welchko
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Alison Delanie Goldsmith
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Sarah Elizabeth Zeiler
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Ming Lu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Zhenhong Nan
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Inst., 4677 Towne Centre Rd. Suite 101 Saginaw, MI, USA
| |
Collapse
|
8
|
Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother 2017; 91:693-706. [DOI: 10.1016/j.biopha.2017.04.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
|
9
|
Li J, Guo W, Xiong M, Zhang S, Han H, Chen J, Mao D, Yu H, Zeng Y. Erythropoietin facilitates the recruitment of bone marrow mesenchymal stem cells to sites of spinal cord injury. Exp Ther Med 2017; 13:1806-1812. [PMID: 28565771 PMCID: PMC5443180 DOI: 10.3892/etm.2017.4182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/26/2016] [Indexed: 12/28/2022] Open
Abstract
Despite the successes of bone marrow mesenchymal stem cell (BMSC) transplantation for the treatment of spinal cord injuries, only a small fraction of grafted cells migrate to the target areas. Therefore, there remains a need for more efficient strategies of BMSC delivery. The present study was designed to explore this. Rat models of spinal cord injury (SCI) were established and exposed to phosphate buffered saline (control), BMSCs or BMSCs + erythropoietin (EPO). Basso, Beattie and Bresnahan (BBB) locomotor scale and grid walk tests were then utilized to estimate neurological rehabilitation. Additionally, the following assays were performed: Immunofluorescence localization of BMSCs to the site of SCI; the transwell migration assay to detect in vitro cellular migration; the terminal deoxynucleotidyl transferase dUTP nick end labeling assay to determine the apoptotic index of the lesion; and western blotting analysis to evaluate the expression of vascular endothelial growth factor (VEGF) and brain derived neurotrophic factor (BDNF) at the site of SCI. The BBB scores of the BMSC + EPO treated group were significantly increased compared with the BMSC treatment group (P<0.05). For example, BMSC + EPO treated rats had a significantly decreased number of hind limb slips compared with the BMSC treatment group (P<0.05). Furthermore, EPO significantly increased the migration capacity of BMSCs compared with the control group (P<0.001). In addition, the apoptotic index of the BMSC + EPO group was significantly decreased compared with the BMSC group (P<0.05). Green fluorescent protein-labeled BMSCs were detected at the site of SCI in the BMSC and BMSCs + EPO groups, with the signal being notably stronger in the latter. Moreover, the expression of VEGF and BDNF in the BMSCs + EPO group was significantly increased compared with the BMSC group (P<0.05). In conclusion, the results of the present study indicate that EPO can facilitate the recruitment of BMSCs to sites of SCI, increase expression of BDNF and VEGF, and accelerate recovery of neurological function following SCI.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Xiong
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Shuangjie Zhang
- Department of Urology, Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Heng Han
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Jie Chen
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Dan Mao
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Hualong Yu
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Yun Zeng
- Department of Orthopedics, Dongfeng General Hospital of Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| |
Collapse
|
10
|
Xia T, Huang B, Ni S, Gao L, Wang J, Wang J, Chen A, Zhu S, Wang B, Li G, Zhu S, Li X. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed Pharmacother 2016; 86:354-362. [PMID: 28011383 DOI: 10.1016/j.biopha.2016.12.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022] Open
Abstract
This study describes the use of poly(propylene carbonate) (PPC) electrospun microfibres impregnated with a combination of dibutyryl cyclic adenosine monophosphate (db-cAMP) and chondroitinase ABC (ChABC) in the treatment of right-side hemisected spinal cord injury (SCI). Release of db-cAMP and/or ChABC from the microfibres was assessed in vitro using high-performance liquid chromatography (HPLC). Drug-impregnated microfibres were implanted into the hemisected thoracic spinal cord of rats, and treatment was evaluated using functional recovery examinations and immunohistochemistry. Our results demonstrated that the microfibres containing db-cAMP and/or ChABC displayed a stable and prolonged release of each agent. Sustained delivery of db-cAMP and/or ChABC was found to promote axonal regenerative sprouting, functional recovery, and reduced glial scar formation when compared to untreated control animals. The combination of both db-cAMP and ChABC was determined to be more effective than using either drug alone in the treatment of SCI. These findings demonstrate the feasibility of using PPC electrospun microfibres for multi-drug combination therapy in SCI.
Collapse
Affiliation(s)
- Tongliang Xia
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Lei Gao
- Jiyang County People's Hospital of Shandong Provence, 9# Xinyuan Street, Jinyang County, Jinan, 251400, PR China
| | - Jiangang Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Benlin Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shugan Zhu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China.
| |
Collapse
|
11
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
12
|
Abstract
Traumatic spinal cord injuries (SCIs) affect 1.3 million North Americans, producing devastating physical, social, and vocational impairment. Pathophysiologically, the initial mechanical trauma is followed by a significant secondary injury which includes local ischemia, pro-apoptotic signaling, release of cytotoxic factors, and inflammatory cell infiltration. Expedient delivery of medical and surgical care during this critical period can improve long-term functional outcomes, engendering the concept of "Time is Spine". We emphasize the importance of expeditious care while outlining the initial clinical and radiographic assessment of patients. Key evidence-based early interventions (surgical decompression, blood pressure augmentation, and methylprednisolone) are also reviewed, including findings of the landmark Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). We then describe other neuroprotective approaches on the edge of translation such as the sodium-channel blocker riluzole, the anti-inflammatory minocycline, and therapeutic hypothermia. We also review promising neuroregenerative therapies that are likely to influence management practices over the next decade including chondroitinase, Rho-ROCK pathway inhibition, and bioengineered strategies. The importance of emerging neural stem cell therapies to remyelinate denuded axons and regenerate neural circuits is also discussed. Finally, we outline future directions for research and patient care.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; McEwen Centre for Regenerative Medicine, UHN, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Spine Program, University of Toronto, Toronto, Ontario, Canada; McLaughlin Center in Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Ahuja CS, Fehlings M. Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. Stem Cells Transl Med 2016; 5:914-24. [PMID: 27130222 DOI: 10.5966/sctm.2015-0381] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Spinal cord injuries (SCIs) result in devastating lifelong disability for patients and their families. The initial mechanical trauma is followed by a damaging secondary injury cascade involving proapoptotic signaling, ischemia, and inflammatory cell infiltration. Ongoing cellular necrosis releases ATP, DNA, glutamate, and free radicals to create a cytotoxic postinjury milieu. Long-term regeneration of lost or injured networks is further impeded by cystic cavitation and the formation of an inhibitory glial-chondroitin sulfate proteoglycan scar. In this article, we discuss important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. We then explore exciting translational therapies on the horizon, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. Finally, we summarize the key neuroregenerative strategies of the next decade, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. Throughout, we emphasize the need for combinatorial approaches to this multifactorial problem and discuss relevant studies at the forefront of translation. We conclude by providing our perspectives on the future direction of SCI research. SIGNIFICANCE Spinal cord injuries (SCIs) result in devastating, lifelong disability for patients and their families. This article discusses important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. Translational therapies on the horizon are discussed, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. The key neuroregenerative strategies of the next decade are summarized, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. The need for combinatorial approaches to this multifactorial problem is emphasized, relevant studies at the forefront of translation are discussed, and perspectives on the future direction of SCI research are presented.
Collapse
Affiliation(s)
- Christopher S Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada McEwen Centre for Regenerative Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada Department of Surgery, University of Toronto, Toronto, Ontario, Canada Spine Program, University of Toronto, Toronto, Ontario, Canada McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
|
15
|
Hao F, Li A, Yu H, Liu M, Wang Y, Liu J, Liang Z. Enhanced Neuroprotective Effects of Combination Therapy with Bone Marrow-Derived Mesenchymal Stem Cells and Ginkgo biloba Extract (EGb761) in a Rat Model of Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2016; 23:41-57. [PMID: 26468875 DOI: 10.1159/000437429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We investigated whether Ginkgo biloba extract (EGb761) can provide neuroprotective effects and enhance the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model of experimental autoimmune encephalomyelitis (EAE). METHODS We examined the synergistic action of BMSCs combined with EGb761 treatment in EAE rats. The immunized rats received an intravenous injection of BMSCs or intraperitoneal administration of EGb761 or both on the day of the onset of clinical symptoms and for the following 21 days. Clinical severity scores were recorded daily and histopathological examination of the spinal cord and cytokine concentrations in the serum were studied on days 14 and 31 postimmunization. RESULTS Our results showed that combined treatment with BMSCs and EGb761 further decreased the disease severity, maximal clinical score and number of infiltrated mononuclear cells, especially CD3-positive T cells. We observed that the demyelination score and the density of axonal loss in the spinal cord were significantly reduced in mice receiving the combination therapy. The serum concentrations of the phosphorylated neurofilament heavy chain, tumor necrosis factor-α and interferon-γ were reduced in the combination-treatment group. CONCLUSION Our results suggest that combined treatment with BMSCs and EGb761 have a synergistic effect in rats with EAE by inhibiting the secretion of proinflammatory cytokines, demyelination and protecting axons and neurons.
Collapse
Affiliation(s)
- Fei Hao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
17
|
Ni S, Xia T, Li X, Zhu X, Qi H, Huang S, Wang J. Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection. Brain Res 2015; 1624:469-478. [PMID: 26315376 DOI: 10.1016/j.brainres.2015.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 06/25/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023]
Abstract
We describe the sustained delivery of chondroitinase ABC (ChABC) in the hemisected spinal cord using polypropylene carbonate (PPC) electrospun fibers with chitosan (CS) microspheres as a vehicle. PPC and ChABC-loaded CS microspheres were mixed with acetonitrile, and micron fibers were generated by electrospinning. ChABC release was assessed in vitro with high-performance liquid chromatography (HPLC) and revealed stabilized and prolonged release. Moreover, the released ChABC showed sustained activity. PPC-CS micron fibers with or without ChABC were then implanted into a hemisected thoracic spinal cord. In the following 4 weeks, we examined functional recovery and performed immunohistochemical analyses. We found that sustained delivery of ChABC promoted axon sprouting and functional recovery and reduced glial scarring; PPC-CS micron fibers without ChABC did not show these effects. The present findings suggest that PPC-CS micron fibers containing ChABC are a feasible option for spinal cord injury treatment. Furthermore, the system described here may be useful for local delivery of other therapeutic agents.
Collapse
Affiliation(s)
- Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China
| | - Tongliang Xia
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China
| | - Xiaodong Zhu
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China
| | - Hongxu Qi
- Institute of Polymer Science & Engineering, Tsinghua University, 30# Shuangqing Road, Beijing 100084, PR China
| | - Shanying Huang
- Key laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Health and Education, 107# Wenhua Xi Road, Jinan 250012, PR China
| | - Jiangang Wang
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China.
| |
Collapse
|
18
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 2015; 8:35. [PMID: 26283909 PMCID: PMC4515562 DOI: 10.3389/fnmol.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| |
Collapse
|
19
|
Sabapathy V, Tharion G, Kumar S. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions. Stem Cells Int 2015; 2015:132172. [PMID: 26240569 PMCID: PMC4512598 DOI: 10.1155/2015/132172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu 632002, India
| | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, Tamil Nadu 632002, India
| | - Sanjay Kumar
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu 632002, India
| |
Collapse
|
20
|
Combination of electroacupuncture and grafted mesenchymal stem cells overexpressing TrkC improves remyelination and function in demyelinated spinal cord of rats. Sci Rep 2015; 5:9133. [PMID: 25779025 PMCID: PMC5390924 DOI: 10.1038/srep09133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
This study attempted to graft neurotrophin-3 (NT-3) receptor (TrkC) gene modified mesenchymal stem cells (TrkC-MSCs) into the demyelinated spinal cord and to investigate whether electroacupuncture (EA) treatment could promote NT-3 secretion in the demyelinated spinal cord as well as further enhance grafted TrkC-MSCs to differentiate into oligodendrocytes, remyelination and functional recovery. Ethidium bromide (EB) was microinjected into the spinal cord of rats at T10 to establish a demyelinated model. Six groups of animals were prepared for the experiment: the sham, PBS, MSCs, MSCs+EA, TrkC-MSCs and TrkC-MSCs+EA groups. The results showed that TrkC-MSCs graft combined with EA treatment (TrkC-MSCs+EA group) significantly increased the number of OPCs and oligodendrocyte-like cells differentiated from MSCs. Immunoelectron microscopy showed that the oligodendrocyte-like cells differentiated from TrkC-MSCs formed myelin sheaths. Immunofluorescence histochemistry and Western blot analysis indicated that TrkC-MSCs+EA treatment could promote the myelin basic protein (MBP) expression and Kv1.2 arrangement trending towards the normal level. Furthermore, behavioural test and cortical motor evoked potentials detection demonstrated a significant functional recovery in the TrkC-MSCs+EA group. In conclusion, our results suggest that EA treatment can increase NT-3 expression, promote oligodendrocyte-like cell differentiation from TrkC-MSCs, remyelination and functional improvement of demyelinated spinal cord.
Collapse
|
21
|
Chen S, Wu B, Lin J. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury. Neural Regen Res 2015; 7:1445-53. [PMID: 25657678 PMCID: PMC4308773 DOI: 10.3969/j.issn.1673-5374.2012.19.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/14/2014] [Indexed: 01/19/2023] Open
Abstract
Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury.
Collapse
Affiliation(s)
- Shaoqiang Chen
- Department of Human Anatomy and Tissue Embryology, Fujian Medical University, Minhou 350108, Fujian Province, China
| | - Bilian Wu
- Department of Human Anatomy, Fujian Vcational and Technical College of Health, Minhou 350101, Fujian Province, China
| | - Jianhua Lin
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
22
|
Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 2015; 293:113-21. [PMID: 25596473 DOI: 10.1016/j.cellimm.2015.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/12/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory neurodegenerative disease of central nervous system (CNS). Although the main cause of MS is not clear, studies suggest that MS is an autoimmune disease which attacks myelin sheath of neurons. There are different therapeutic regimens for MS patients including interferon (IFN)-β, glatiramer acetate (GA), and natalizumab. However, such therapies are not quite effective and are associated with some side effects. So which, there is no complete therapeutic method for MS patients. Regarding the potent immunomodulatory effects of mesenchymal stem cells (MSCs) and their ameliorative effects in experimental autoimmune encephalopathy (EAE), it seems that MSCs may be a new therapeutic method in MS therapy. MSC transplantation is an approach to regulate the immune system in the region of CNS lesions. In this review, we have tried to discuss about the immunomodulatory properties of MSCs and their therapeutic mechanisms in MS patients.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Abstract
Stem cell-based interventions aim to use special regenerative cells (stem cells) to facilitate neuronal function beyond the site of the injury. Many studies involving animal models of spinal cord injury (SCI) suggest that certain stem cell-based therapies may restore function after SCI. Currently, in case of spinal cord injuries, new discoveries with clinical implications have been continuously made in basic stem cell research, and stem cell-based approaches are advancing rapidly toward application in patients. There is a huge base of preclinical evidence in vitro and in animal models which suggests the safety and clinical efficacy of cellular therapies after SCI. Despite this, data from clinical studies is not very encouraging and at times confounding. Here, we have attempted to cover preclinical and clinical evidence base dealing with safety, feasibility and efficacy of cell based interventions after SCI. The limitations of preclinical data and the reasons underlying its failure to translate in a clinical setting are also discussed. Based on the evidence base, it is suggested that a multifactorial approach is required to address this situation. Need for standardized, stringently designed multi-centric clinical trials for obtaining validated proof of evidence is also highlighted.
Collapse
Affiliation(s)
- Harvinder Singh Chhabra
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India,Address for correspondence: Dr. Harvinder Singh Chhabra, Indian Spinal Injuries Centre, Sector C, Vasant Kunj, New Delhi - 110 070, India. E-mail:
| | - Kanchan Sarda
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India
| |
Collapse
|
24
|
Dong Y, Yang L, Yang L, Zhao H, Zhang C, Wu D. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury. Neural Regen Res 2014; 9:1520-4. [PMID: 25317169 PMCID: PMC4192969 DOI: 10.4103/1673-5374.139478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/18/2022] Open
Abstract
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.
Collapse
Affiliation(s)
- Yuzhen Dong
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Libin Yang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Lin Yang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Hongxing Zhao
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Chao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| | - Dapeng Wu
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan Province, China
| |
Collapse
|
25
|
Liu Z, He B, Zhang RY, Zhang K, Ding Y, Ruan JW, Ling EA, Wu JL, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Preinduced With Neurotrophin-3 and Retinoic Acid Into Oligodendrocyte-Like Cells in Demyelinated Spinal Cord of Rats. Cell Transplant 2014; 24:1265-81. [PMID: 24856958 DOI: 10.3727/096368914x682099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord. We also sought to determine whether increased NT-3 could further enhance NR-MSCs overexpressing the tyrosine receptor kinase C (TrkC) to differentiate into more oligodendrocyte-like cells, resulting in increased remyelination and nerve conduction in the spinal cord. Our results showed that NT-3 and RA increased transcription of TrkC mRNA in cultured MSCs. EA increased NT-3 levels and promoted differentiation of oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated spinal cord. There was evidence of myelin formation by grafted NR-MSCs. In addition, NR-MSC transplantation combined with EA treatment (the NR-MSCs + EA group) reduced demyelination and promoted remyelination. Furthermore, the conduction of cortical motor-evoked potentials has improved compared to controls. Together, our data suggest that preinduced MSC transplantation combined with EA treatment not only increased MSC differentiation into oligodendrocyte-like cells forming myelin sheaths, but also promoted remyelination and functional improvement of nerve conduction in the demyelinated spinal cord.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge? Stem Cells 2014; 32:829-43. [DOI: 10.1002/stem.1579] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Dorothée Cantinieaux
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Cécile Coste
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Bernard Rogister
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
- GIGA, Development, Stem Cells and Regenerative Medicine Unit; University of Liège; Liège Belgium
- Department of Neurology; Centre Hospitalier Universitaire de Liège; Liège Belgium
| | - Rachelle Franzen
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Sabine Wislet-Gendebien
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| |
Collapse
|
27
|
Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 2014; 23:910-21. [PMID: 24325427 DOI: 10.1089/scd.2013.0426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remyelination remains a challenging issue in spinal cord injury (SCI). In the present study, we cocultured Schwann cells (SCs) and neural stem cells (NSCs) with overexpression of neurotrophin-3 (NT-3) and its high affinity receptor tyrosine kinase receptor type 3 (TrkC), respectively, in a gelatin sponge (GS) scaffold. This was aimed to generate a tissue-engineered neural scaffold and to investigate whether it could enhance myelination after a complete T10 spinal cord transection in adult rats. Indeed, many NT-3 overexpressing SCs (NT-3-SCs) in the GS scaffold assumed the formation of myelin. More strikingly, a higher incidence of NSCs overexpressing TrkC differentiating toward myelinating cells was induced by NT-3-SCs. By transmission electron microscopy, the myelin sheath showed distinct multilayered lamellae formed by the seeded cells. Eighth week after the scaffold was transplanted, some myelin basic protein (MBP)-positive processes were observed within the transplantation area. Remarkably, certain segments of myelin derived from NSC-derived myelinating cells and NT-3-SCs were found to ensheath axons. In conclusion, we show here that transplantation of the GS scaffold promotes exogenous NSC-derived myelinating cells and SCs to form myelins in the injury/transplantation area of spinal cord. These findings thus provide a neurohistological basis for the future application or transplantation using GS neural scaffold to repair SCI.
Collapse
Affiliation(s)
- Bi-Qin Lai
- 1 Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University , Guangzhou, China
| | | | | | | | | |
Collapse
|
28
|
The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials 2013; 35:1924-31. [PMID: 24331711 DOI: 10.1016/j.biomaterials.2013.11.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023]
Abstract
Cell therapy for nervous tissue repair is limited by low transplant survival. We investigated the effects of a polyurethane-based reverse thermal gel, poly(ethylene glycol)-poly(serinol hexamethylene urethane) (ESHU) on bone marrow stromal cell (BMSC) transplant survival and repair using a rat model of spinal cord contusion. Transplantation of BMSCs in ESHU at three days post-contusion resulted in a 3.5-fold increase in BMSC survival at one week post-injury and a 66% increase in spared nervous tissue volume at four weeks post-injury. These improvements were accompanied by enhanced hindlimb motor and sensorimotor recovery. In vitro, we found that ESHU protected BMSCs from hydrogen peroxide-mediated death, resulting in a four-fold increase in BMSC survival with two-fold fewer BMSCs expressing the apoptosis marker, caspase 3 and the DNA oxidation marker, 8-oxo-deoxyguanosine. We argue that ESHU protected BMSCs transplanted is a spinal cord contusion from death thereby augmenting their effects on neuroprotection leading to improved behavioral restoration. The data show that the repair effects of intraneural BMSC transplants depend on the degree of their survival and may have a widespread impact on cell-based regenerative medicine.
Collapse
|
29
|
Xia T, Ni S, Li X, Yao J, Qi H, Fan X, Wang J. Sustained delivery of dbcAMP by poly(propylene carbonate) micron fibers promotes axonal regenerative sprouting and functional recovery after spinal cord hemisection. Brain Res 2013; 1538:41-50. [PMID: 24076153 DOI: 10.1016/j.brainres.2013.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 01/25/2023]
Abstract
This study describes the use of poly(propylene carbonate) (PPC) electrospun fibers as vehicle for the sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the hemisected spinal cord. The dbcAMP and PPC were uniformly mixed with acetonitrile; then, electrospinning was used to generate micron fibers. The release of dbcAMP was assessed by ELISA in vitro. Our results showed that the encapsulation of dbcAMP in the fibers led to stable and prolonged release in vitro. The PPC micron fibers containing dbcAMP and the PPC micron fibers without dbcAMP were then implanted into the hemisected thoracic spinal cord, followed by testing of the functional recovery and immunohistochemistry. Compared with the control group, sustained delivery of dbcAMP promoted axonal regenerative sprouting and functional recovery and reduced glial scar formation, and the PPC micron fibers without dbcAMP did not have these effects. Our findings demonstrated the feasibility of using PPC electrospun fibers containing dbcAMP for spinal cord injury. The approach described here also will provide a platform for the potential delivery of other axon-growth-promoting or scar-inhibiting agents.
Collapse
Affiliation(s)
- Tongliang Xia
- Department of Neurosurgery, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Peng C, Yin X, Li M, He T, Li G. Construction of a eukaryotic expression plasmid for human retina-derived neurotrophin-3. Neural Regen Res 2013; 8:1031-40. [PMID: 25206397 PMCID: PMC4145883 DOI: 10.3969/j.issn.1673-5374.2013.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Neurotrophin-3 (NT-3) can promote the repair of central nervous system and retinal damage. In previous reports, NT-3 has been expressed by viral vectors. However, plasmid vectors have a safer profile compared with viral vectors in clinical studies. This study recombined amplified human retinal NT-3 with a eukaryotic expression plasmid containing green fluorescent protein (GFP) to construct an NT-3 expression plasmid, pEGFP-N1-NT-3. The transfection efficiency 48 hours after pEGFP-N1-NT-3 transfection to 293T cells was 50.06 ± 2.78%. Abundant NT-3-GFP was expressed in 293T cells as observed by fluorescence microscopy, suggesting the construct pEGFP-N1-NT-3 effectively expressed and secreted NT-3-GFP. Secretory vesicles containing NT-3-GFP were observed in a constant location in cells by laser scan confocal microscopy, indicating the expression and secretion processes of NT-3 in eukaryotic cells were in accordance with the physical synthesis processes of secreted proteins. Western blot assay showed that pro-NT-3-GFP had a molecular weight of 56 kDa, further confirming NT-3-GFP expression. At 48 hours after transfection, the concentration of NT-3 in culture medium was 22.3 ng/mL, suggesting NT-3 produced by pEGFP-N1-NT-3 was efficiently secreted. This study constructed a human retinal-derived NT-3 eukaryotic expression plasmid that efficiently expressed and secreted NT-3.
Collapse
Affiliation(s)
- Chunxia Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Mengda Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Ting He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| |
Collapse
|
31
|
Kamei N, Kwon SM, Alev C, Nakanishi K, Yamada K, Masuda H, Ishikawa M, Kawamoto A, Ochi M, Asahara T. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. J Neurol Sci 2013; 328:41-50. [PMID: 23498368 DOI: 10.1016/j.jns.2013.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Human blood-derived CD133(+) cell populations, which are believed to represent a hematopoietic/endothelial progenitor fraction, have the ability to promote the repair of injured spinal cord in animal models. However, the mechanisms by which CD133(+) cell transplantation promotes spinal cord regeneration remain to be clarified. Another possible hurdle on the way to clinical applicability of these cells is their scarce representation in the overall population of mononuclear cells. We therefore analyzed and compared ex-vivo expanded human cord blood derived CD133(+) cells with freshly isolated CD133(+) cells as well as corresponding CD133(-) control mononuclear cells in respect to their ability to promote spinal cord repair using in vitro assays and cell transplantation into a mouse spinal cord injury model. In vitro, expanded cells as well as fresh CD133(+) cells formed endothelial progenitor cell (EPC) colonies, whereas CD133(-) cells formed no EPC colonies. In vivo, the administration of fresh CD133(+) and expanded cells enhanced angiogenesis, astrogliosis, axon growth and functional recovery after injury. In contrast, the administration of CD133(-) cells failed to promote axon growth and functional recovery, but moderately enhanced angiogenesis and astrogliosis. In addition, high-dose administration of expanded cells was highly effective in the induction of regenerative processes at the injured spinal cord.
Collapse
Affiliation(s)
- Naosuke Kamei
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
33
|
Nichols NL, Punzo AM, Duncan ID, Mitchell GS, Johnson RA. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats. Neuroscience 2012; 229:77-87. [PMID: 23159317 DOI: 10.1016/j.neuroscience.2012.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor functions are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by significant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14-day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease.
Collapse
Affiliation(s)
- N L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States.
| | | | | | | | | |
Collapse
|