1
|
Li Z, Zhai S, Liu S, Chen C, Guo X, Hu P, Wang B, Zhang Y, Wei F, Liu Z. A sheep model of chronic cervical compressive myelopathy via an implantable wireless compression device. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1219-1227. [PMID: 35192070 DOI: 10.1007/s00586-022-07138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE This study aimed to establish an animal model in which we can precisely displace the spinal cord and therefore mimic the chronic spinal compression of cervical spondylotic myelopathy. METHODS In vivo intervertebral compression devices (IVCDs) connected with subcutaneous control modules (SCCMs) were implanted into the C2-3 intervertebral disk spaces of sheep and connected by Bluetooth to an in vitro control system. Sixteen sheep were divided into four groups: (Group A) control; (Group B) 10-week progressive compression, then held; (Group C) 20-week progressive compression, then held; and (Group D) 20-week progressive compression, then decompression. Electrophysiological analysis (latency and amplitude of the N1-P1-N2 wave in somatosensory evoked potentials, SEP), behavioral changes (Tarlov score), imaging test (encroachment ratio (ER) of intraspinal invasion determined by X-ray and CT scan), and histological examinations (hematoxylin and eosin, Nissl, and TUNEL staining) were performed to assess the efficacy of our model. RESULTS Tarlov scores gradually decreased as compression increased with time and partially recovered after decompression. The Pearson correlation coefficient between ER and time was r = 0.993 (p < 0.001) in Group B at 10 weeks and Groups C and D at 20 weeks. And ER was negatively correlated with the Tarlov score (r = -0.878, p < 0.001). As compression progressed, the SEP latency was significantly extended (p < 0.001), and the amplitude significantly decreased (p < 0.001), while they were both partially restored after decompression. The number of abnormal motor neurons and TUNEL-positive cells increased significantly (p < 0.001) with compression. CONCLUSION Our implantable and wireless intervertebral compression model demonstrated outstanding controllability and reproducibility in simulating chronic cervical spinal cord compression in animals.
Collapse
Affiliation(s)
- Zihe Li
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuheng Zhai
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shanshan Liu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinhu Guo
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Panpan Hu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Youyu Zhang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Feng Wei
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China. .,Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| |
Collapse
|
2
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cui HY, Wu YX, Li R, Li GS, Hu Y. A translational study of somatosensory evoked potential time-frequency components in rats, goats, and humans. Neural Regen Res 2021; 16:2269-2275. [PMID: 33818512 PMCID: PMC8354111 DOI: 10.4103/1673-5374.310693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Somatosensory evoked potentials (SEPs) have been widely used to assess neurological function in clinical practice. A good understanding of the association between SEP signals and neurological function is helpful for precise diagnosis of impairment location. Previous studies on SEPs have been reported in animal models. However, few studies have reported the relationships between SEP waveforms in animals and those in humans. In this study, we collected normal SEP waveforms and decomposed them into specific time-frequency components (TFCs). Our results showed three stable TFC distribution regions in intact goats and rats and in humans. After we induced spinal cord injury in the animal models, a greater number of small TFC distribution regions were observed in the injured goat and rat groups than in the normal group. Moreover, there were significant correlations (P < 0.05) and linear relationships between the main SEP TFCs of the human group and those of the goat and rat groups. A stable TFC distribution of SEP components was observed in the human, goat and rat groups, and the TFC distribution modes were similar between the three groups. Results in various animal models in this study could be translated to future clinical studies based on SEP TFC analysis. Human studies were approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (approval No. UM 05-312 T/975) on December 5, 2005. Rat experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of Li Ka Shing Faculty of Medicine of the University of Hong Kong (approval No. CULART 2912-12) on January 28, 2013. Goat experiments were approved by the Animal Ethics Committee of Affiliated Hospital of Guangdong Medical University (approval No. GDY2002132) on March 5, 2018.
Collapse
Affiliation(s)
- Hong-Yan Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yi-Xin Wu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rong Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guang-Sheng Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Guangdong Province, China
| | - Yong Hu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Orthopaedics and Traumatology, The University of Hong Kong -Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Sun X, Liu XZ, Wang J, Tao HR, Zhu T, Jin WJ, Shen KP. Changes in neurological and pathological outcomes in a modified rat spinal cord injury model with closed canal. Neural Regen Res 2020; 15:697-704. [PMID: 31638094 PMCID: PMC6975156 DOI: 10.4103/1673-5374.266919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most animal spinal cord injury models involve a laminectomy, such as the weight drop model or the transection model. However, in clinical practice, many patients undergo spinal cord injury while maintaining a relatively complete spinal canal. Thus, open spinal cord injury models often do not simulate real injuries, and few previous studies have investigated whether having a closed spinal canal after a primary spinal cord injury may influence secondary processes. Therefore, we aimed to assess the differences in neurological dysfunction and pathological changes between rat spinal cord injury models with closed and open spinal canals. Sprague-Dawley rats were randomly divided into three groups. In the sham group, the tunnel was expanded only, without inserting a screw into the spinal canal. In the spinal cord injury with open canal group, a screw was inserted into the spinal canal to cause spinal cord injury for 5 minutes, and then the screw was pulled out, leaving a hole in the vertebral plate. In the spinal cord injury with closed canal group, after inserting a screw into the spinal canal for 5 minutes, the screw was pulled out by approximately 1.5 mm and the flat end of the screw remained in the hole in the vertebral plate so that the spinal canal remained closed; this group was the modified model, which used a screw both to compress the spinal cord and to seal the spinal canal. At 7 days post-operation, the Basso-Beattie-Bresnahan scale was used to measure changes in neurological outcomes. Hematoxylin-eosin staining was used to assess histopathology. To evaluate the degree of local secondary hypoxia, immunohistochemical staining and western blot assays were applied to detect the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Compared with the spinal cord injury with open canal group, in the closed canal group the Basso-Beattie-Bresnahan scores were lower, cell morphology was more irregular, the percentage of morphologically normal neurons was lower, the percentages of HIF-1α- and VEGF-immunoreactive cells were higher, and HIF-1α and VEGF protein expression was also higher. In conclusion, we successfully established a rat spinal cord injury model with closed canal. This model could result in more serious neurological dysfunction and histopathological changes than in open canal models. All experimental procedures were approved by the Institutional Animal Care Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, China (approval No. HKDL201810) on January 30, 2018.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Zhen Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wang
- Department of Pathology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Rong Tao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jie Jin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Ping Shen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Yang C, Yu B, Ma F, Lu H, Huang J, You Q, Yu B, Qiao J, Feng J. What is the optimal sequence of decompression for multilevel noncontinuous spinal cord compression injuries in rabbits? BMC Neurol 2017; 17:44. [PMID: 28231826 PMCID: PMC5324218 DOI: 10.1186/s12883-017-0824-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/16/2017] [Indexed: 11/20/2022] Open
Abstract
Background In recent years, multilevel spinal cord injuries (SCIs) have gained a substantial amount of attention from clinicians and researchers. Multilevel noncontinuous SCI patients cannot undergo the multiple steps of a one-stage operation because of a poor general condition or a lack of proper surgical approaches. The surgeon subsequently faces the decision of whether to initially relieve the rostral or caudal compression. In this study, we established a spinal cord compression model involving two noncontinuous segments in rabbits to evaluate the effects of differences in decompression order on the functional recovery of the spinal cord. Methods A Fogarty catheter was inserted into the epidural space through a hole in T6-7 and advanced 3 cm rostrally or caudally. Following successful model establishment, which was demonstrated by an evaluation of evoked potentials, balloons of different volumes (40 μl or 50 μl) were inflated in the experimental groups, whereas no balloons were inflated in the control group. The experimental groups underwent the first decompression in the rostral or caudal area at 1 week post-injury; the second decompression was performed at 2 weeks post-injury. For 6 weeks post-injury, the animals were tested to determine behavioral scores, somatosensory evoked potentials (SEPs) and radiographic imaging changes; histological and apoptosis assay results were subsequently analyzed. Results The behavioral test results and onset latency of the SEPs indicated that there were significant differences between priority rostral decompression (PRD) and priority caudal decompression (PCD) in the 50-μl compression group at 6 weeks post-injury; however, there were no significant differences between the two procedures in the 40-μl group at the same time point. Moreover, there were no significant peak-to-peak amplitude differences between the two procedures in the 50-μl compression group. Conclusions The findings of this study suggested that preferential rostral decompression was more beneficial than priority caudal decompression with respect to facilitating spinal cord functional recovery in rabbits with severe paraplegia and may provide clinicians with a reference for the clinical treatment of multiple-segment spinal cord compression injuries.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Baoqing Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Jianmin Huang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Bin Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Jianlan Qiao
- Department of Radiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Jianjun Feng
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
6
|
Kwiecien GJ, Siemionow W. Somatosensory Evoked Potential Model for Assessment of Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|