1
|
Brezavar D, Bonnen PE. Incidence of PKAN determined by bioinformatic and population-based analysis of ~140,000 humans. Mol Genet Metab 2019; 128:463-469. [PMID: 31540697 PMCID: PMC8610229 DOI: 10.1016/j.ymgme.2019.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Panthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.1.33), an essential regulatory enzyme in CoA biosynthesis. Clinical presentation includes dystonia, rigidity, bradykinesia, dysarthria, pigmentary retinopathy and dementia with variable age of onset ranging from childhood to adulthood. In order to provide an accurate incidence estimate of PKAN, we conducted a systematic review of the literature and databases for pathogenic mutations and constructed a bioinformatic profile for pathogenic missense variants in PANK2. We then studied the gnomAD cohort of ~140,000 unrelated adults from global populations to determine the allele frequency of the variants in PANK2 reported pathogenic for PKAN and for those additional variants identified in gnomAD that met bioinformatics criteria for being potentially pathogenic. Incidence was estimated based on three different models using the allele frequencies of pathogenic PKAN variants with or without those bioinformatically determined to be potentially pathogenic. Disease incidence calculations showed PKAN incidence ranging from 1:396,006 in Europeans, 1:1,526,982 in Africans, 1:480,826 in Latino, 1:523,551 in East Asians and 1:531,118 in South Asians. These results indicate PKAN is expected to occur in approximately 2 of every 1 million live births globally outside of Africa, and has a much lower incidence 1 in 1.5 million live births in the African population.
Collapse
Affiliation(s)
- Daniel Brezavar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Wang ZB, Liu JY, Xu XJ, Mao XY, Zhang W, Zhou HH, Liu ZQ. Neurodegeneration with brain iron accumulation: Insights into the mitochondria dysregulation. Biomed Pharmacother 2019; 118:109068. [PMID: 31404774 DOI: 10.1016/j.biopha.2019.109068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
NBIA (Neurodegeneration with brain iron accumulation) is a group of inherited neurologic disorders characterized by marked genetic heterogeneity, in which iron atypical accumulates in basal ganglia resulting in brain magnetic resonance imaging changes, histopathological abnormalities, and neuropsychiatric clinical symptoms. With the rapid development of high-throughput sequencing technologies, ten candidate genes have been identified, including PANK2, PLA2G6, C19orf12, WDR45, FA2H, ATP13A2, FTL, CP, C2orf37, and COASY. They are involved in seemingly unrelated cellular pathways, such as iron homeostasis (FTL, CP), lipid metabolism (PLA2G6, C19orf12, FA2H), Coenzyme A synthesis (PANK2, COASY), and autophagy (WDR45, ATP13A2). In particular, PANK2, COASY, PLA2G6, and C19orf12 are located on mitochondria, which associate with certain subtypes of NBIA showing mitochondria dysregulation. However, the relationships among those four genes are still unclear. Therefore, this review is specifically focused on dysregulation of mitochondria in NBIA and afore-mentioned four genes, with summaries of both pathological and clinical findings.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, PR China
| | - Xiao-Jing Xu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Xiao-Yuan Mao
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| |
Collapse
|
3
|
Paraskevas GP, Yapijakis C, Bougea A, Constantinides V, Bourbouli M, Stamboulis E, Kapaki E. Novel PANK2 mutation in the first Greek compound heterozygote patient with pantothenate-kinase-associated neurodegeneration. SAGE Open Med Case Rep 2017; 5:2050313X17720101. [PMID: 28781879 PMCID: PMC5521331 DOI: 10.1177/2050313x17720101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022] Open
Abstract
Pantothenate-kinase-associated neurodegeneration is the most common autosomal recessive form of neurodegeneration with brain iron accumulation. Less than 100 mutations in PANK2 gene (20p13) are responsible for classic and atypical cases. We report here the first Greek case of atypical pantothenate-kinase-associated neurodegeneration, confirmed by molecular analysis that revealed two trans-acting mutations. Our findings highlight the possible role of rare variants contributing to disease risk and possibly to variable clinical phenotype.
Collapse
Affiliation(s)
- George P Paraskevas
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Yapijakis
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Bougea
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Constantinides
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Bourbouli
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Stamboulis
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- First Department of Neurology, Cognitive and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Atypical pantothenate kinase-associated neurodegeneration: Clinical description of two brothers and a review of the literature. Rev Neurol (Paris) 2017. [PMID: 28629633 DOI: 10.1016/j.neurol.2017.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two clinical forms of pantothenate kinase-associated neurodegeneration (PKAN) have been described: typical PKAN and atypical PKAN. Atypical PKAN has later onset and a slower course of disease. This report describes two siblings with the atypical form of PKAN, combining dystonia, irritability and a dysmorphia syndrome. In addition, a review of the literature was carried out for all published cases of atypical PKAN to gather descriptions of its various clinical presentations, age of onset and MRI findings, and to highlight the different treatments used for PKAN patients.
Collapse
|
5
|
Open-Label Fosmetpantotenate, a Phosphopantothenate Replacement Therapy in a Single Patient with Atypical PKAN. Case Rep Neurol Med 2017; 2017:3247034. [PMID: 28567317 PMCID: PMC5439260 DOI: 10.1155/2017/3247034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 01/22/2023] Open
Abstract
Objective. Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder with variable onset, rate of progression, and phenotypic expression. Later-onset, more slowly progressive PKAN often presents with neuropsychiatric as well as motor manifestations that include speech difficulties, progressive dystonia, rigidity, and parkinsonism. PKAN is caused by biallelic PANK2 mutations, a gene that encodes pantothenate kinase 2, a regulatory enzyme in coenzyme A biosynthesis. Current therapeutic strategies rely on symptomatic relief. We describe the treatment of the first, later-onset PKAN patient with oral fosmetpantotenate (previously known as RE-024), a novel replacement therapy developed to bypass the enzymatic defect. Methods. This was an open-label, uncontrolled, 12-month treatment with fosmetpantotenate of a single patient with a later-onset, moderately severe, and slowly progressive form of PKAN. Results. The patient showed improvement in all clinical parameters including the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia Scale, the EuroQol five-dimensional three-level (EQ-5D-3L) scale, timed 25-foot walk test, and electroglottographic speech analysis. Fosmetpantotenate was well-tolerated with only transient liver enzyme elevation which normalized after dose reduction and did not recur after subsequent dose increases. Conclusions. Fosmetpantotenate showed promising results in a single PKAN patient and should be further studied in controlled trials.
Collapse
|
6
|
Sami N, Kumar V, Islam A, Ali S, Ahmad F, Hassan I. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Mol Neurobiol 2016; 54:5085-5106. [PMID: 27544236 DOI: 10.1007/s12035-016-0046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.
Collapse
Affiliation(s)
- Neha Sami
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|