1
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Prato A, Cirnigliaro L, Maugeri F, Luca A, Giuliano L, Vitiello G, Errichiello E, Valente EM, Del Giudice E, Mostile G, Rizzo R, Barone R. Paroxysmal Dystonic Posturing Mimicking Nocturnal Leg Cramps as a Presenting Sign in an Infant with DCC Mutation, Callosal Agenesis and Mirror Movements. J Clin Med 2024; 13:1109. [PMID: 38398422 PMCID: PMC10889236 DOI: 10.3390/jcm13041109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Background/Objectives: Pathogenic variants in the deleted in colorectal cancer gene (DCC), encoding the Netrin-1 receptor, may lead to mirror movements (MMs) associated with agenesis/dysgenesis of the corpus callosum (ACC) and cognitive and/or neuropsychiatric issues. The clinical phenotype is related to the biological function of DCC in the corpus callosum and corticospinal tract development as Netrin-1 is implicated in the guidance of developing axons toward the midline. We report on a child with a novel inherited, monoallelic, pathogenic variant in the DCC gene. Methods: Standardized measures and clinical scales were used to assess psychomotor development, communication and social skills, emotional and behavioural difficulties. MMs were measured via the Woods and Teuber classification. Exome sequencing was performed on affected and healthy family members. Results: The patient's clinical presentation during infancy consisted of paroxysmal dystonic posturing when asleep, mimicking nocturnal leg cramps. A brain magnetic resonance imaging (MRI) showed complete ACC. He developed typical upper limb MMs during childhood and a progressively evolving neuro-phenotype with global development delay and behavioural problems. We found an intrafamilial clinical variability associated with DCC mutations: the proband's father and uncle shared the same DCC variant, with a milder clinical phenotype. The atypical early clinical presentation of the present patient expands the clinical spectrum associated with DCC variants, especially those in the paediatric age. Conclusions: This study underlines the importance of in-depth genetic investigations in young children with ACC and highlights the need for further detailed analyses of early motor symptoms in infants with DCC mutations.
Collapse
Affiliation(s)
- Adriana Prato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Federica Maugeri
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Antonina Luca
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Loretta Giuliano
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Giuseppina Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Ennio Del Giudice
- Child Neurology, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Giovanni Mostile
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
4
|
Collins Hutchinson ML, St-Onge J, Schlienger S, Boudrahem-Addour N, Mougharbel L, Michaud JF, Lloyd C, Bruneau E, Roux C, Sahly AN, Osterman B, Myers KA, Rouleau GA, Jimenez Cruz DA, Rivière JB, Accogli A, Charron F, Srour M. Defining the Genetic Landscape of Congenital Mirror Movements in 80 Affected Individuals. Mov Disord 2024; 39:400-410. [PMID: 38314870 DOI: 10.1002/mds.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Meagan L Collins Hutchinson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Judith St-Onge
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Lina Mougharbel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Clara Lloyd
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elena Bruneau
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric Roux
- Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ahmed N Sahly
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Bradley Osterman
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guy A Rouleau
- Montréal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | | | - Jean-Baptiste Rivière
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrea Accogli
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Myriam Srour
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Trouillard O, Dupaigne P, Dunoyer M, Doulazmi M, Herlin MK, Frismand S, Riou A, Legros V, Chevreux G, Veaute X, Busso D, Fouquet C, Saint-Martin C, Méneret A, Trembleau A, Dusart I, Dubacq C, Roze E. Congenital mirror movements are associated with defective polymerisation of RAD51. J Med Genet 2023; 60:1116-1126. [PMID: 37308287 DOI: 10.1136/jmg-2023-109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.
Collapse
Affiliation(s)
- Oriane Trouillard
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Margaux Dunoyer
- Hôpital Pitié-Salpêtrière, Département de Neurologie, AP-HP, Paris, France
| | - Mohamed Doulazmi
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Biological Adaptation and Ageing, B2A, Sorbonne Université, F-75005 Paris, France
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Audrey Riou
- Service de génétique clinique & Service de neurologie, CHU Rennes, Rennes, France
| | - Véronique Legros
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Guillaume Chevreux
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Xavier Veaute
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Didier Busso
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Coralie Fouquet
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Cécile Saint-Martin
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique Médicale, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| | - Alain Trembleau
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Isabelle Dusart
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Caroline Dubacq
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Emmanuel Roze
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| |
Collapse
|
6
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
7
|
Mirror movements and callosal dysgenesis in a family with a DCC mutation: Neuropsychological and neuroimaging outcomes. Cortex 2023; 161:38-50. [PMID: 36889039 DOI: 10.1016/j.cortex.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Corpus callosum dysgenesis is a congenital abnormality whereby the corpus callosum fails to develop normally, and has been associated with a range of neuropsychological outcomes. One specific finding in some individuals with corpus callosum dysgenesis is "congenital mirror movement disorder", which is the presence of involuntary movements on one side of the body that mimic voluntary movements of the other side. Mirror movements have also been associated with mutations in the deleted in colorectal carcinoma (DCC) gene. The current study aims to comprehensively document the neuropsychological outcomes and neuroanatomical mapping of a family (a mother, daughter and son) with known DCC mutations. All three family members experience mirror movements, and the son additionally has partial agenesis of the corpus callosum (pACC). All family members underwent extensive neuropsychological testing, spanning general intellectual functioning, memory, language, literacy, numeracy, psychomotor speed, visuospatial perception, praxis and motor functioning, executive functioning, attention, verbal/nonverbal fluency, and social cognition. The mother and daughter had impaired memory for faces, and reduced spontaneous speech, and the daughter demonstrated scattered impairments in attention and executive functioning, but their neuropsychological abilities were largely within normal limits. By contrast, the son showed areas of significant impairment across multiple domains including reduced psychomotor speed, fine motor dexterity and general intellectual functioning, and he was profoundly impaired across areas of executive functioning and attention. Reductions in his verbal/non-verbal fluency, with relatively intact core language, resembled dynamic frontal aphasia. His relative strengths included aspects of memory and he demonstrated largely sound theory of mind. Neuroimaging revealed an asymmetric sigmoid bundle in the son, connecting, via the callosal remnant, the left frontal cortex with contralateral parieto-occipital cortex. Overall, this study documents a range of neuropsychological and neuroanatomical outcomes within one family with DCC mutations and mirror movements, including one with more severe consequences and pACC.
Collapse
|
8
|
Miasnikova A, Franz E. Brain dynamics in alpha and beta frequencies underlies response activation during readiness of goal-directed hand movement. Neurosci Res 2022; 180:36-47. [DOI: 10.1016/j.neures.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
9
|
Nissenkorn A, Yosovich K, Leibovitz Z, Hartman TG, Zelcer I, Hugirat M, Lev D, Lerman-Sagie T, Blumkin L. Congenital Mirror Movements Associated With Brain Malformations. J Child Neurol 2021; 36:545-555. [PMID: 33413009 DOI: 10.1177/0883073820984068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Congenital mirror movements are involuntary movements of a side of the body imitating intentional movements on the opposite side, appearing in early childhood and persisting beyond 7 years of age. Congenital mirror movements are usually idiopathic but have been reported in association with various brain malformations. METHODS We describe clinical, genetic, and radiologic features in 9 individuals from 5 families manifesting congenital mirror movements. RESULTS The brain malformations associated with congenital mirror movements were: dysplastic corpus callosum in father and daughter with a heterozygous p.Met1* mutation in DCC; hypoplastic corpus callosum, dysgyria, and malformed vermis in a mother and son with a heterozygous p.Thr312Met mutation in TUBB3; dysplastic corpus callosum, dysgyria, abnormal vermis, and asymmetric ventricles in a father and 2 daughters with a heterozygous p.Arg121Trp mutation in TUBB; hypoplastic corpus callosum, dysgyria, malformed basal ganglia and abnormal vermis in a patient with a heterozygous p.Glu155Asp mutation in TUBA1A; hydrocephalus, hypoplastic corpus callosum, polymicrogyria, and cerebellar cysts in a patient with a homozygous p.Pro312Leu mutation in POMGNT1. CONCLUSION DCC, TUBB3, TUBB, TUBA1A, POMGNT1 cause abnormal axonal guidance via different mechanisms and result in congenital mirror movements associated with brain malformations.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Yosovich
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, 58883Wolfson Medical Center, Holon, Israel
| | - Zvi Leibovitz
- Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Tamar Gur Hartman
- Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| | - Itay Zelcer
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Mohammad Hugirat
- Pediatric Neurology Unit, 61172HaEmek Medical Center, Afula, Israel
| | - Dorit Lev
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Rina Mor Institute of Medical Genetics, 58883Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Fetal Neurology Clinic, 58883Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Metabolic Neurogenetic Service, 58883Wolfson Medical Center, Holon, Israel.,Pediatric Neurology Unit, 58883Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Movement Disorders Service, 58883Wolfson Medical Center, Holon, Israel
| |
Collapse
|
10
|
Thams S, Islam M, Lindefeldt M, Nordgren A, Granberg T, Tesi B, Barbany G, Nilsson D, Paucar M. Heterozygous variants in DCC: Beyond congenital mirror movements. NEUROLOGY-GENETICS 2020; 6:e526. [PMID: 33209984 PMCID: PMC7670573 DOI: 10.1212/nxg.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
Objective To perform a comprehensive characterization of a cohort of patients with congenital mirror movements (CMMs) in Sweden. Methods Clinical examination with the Woods and Teuber scale for mirror movements (MMs), neuroimaging, navigated transcranial magnetic stimulation (nTMS), and massive parallel sequencing (MPS) were applied. Results The cohort is ethnically diverse and includes a total of 7 patients distributed in 2 families and 2 sporadic cases. The degree of MMs was variable in this cohort. MPS revealed 2 novel heterozygous frameshift variants in DCC netrin 1 receptor (DCC). Two siblings harboring the pathogenic variant in c.1466_1476del display a complex syndrome featuring MMs and in 1 case receptive-expressive language disorder, chorea, epilepsy, and agenesis of the corpus callosum. The second DCC variant, c.1729delG, was associated with a typical benign CMM phenotype. No variants in DCC, NTN1, RAD51, or DNAL4 were found for the 2 sporadic CMM cases. However, one of these sporadic cases had concomitant high-risk myelodysplastic syndrome and a homozygous variant in ERCC excision repair like 2 (ERCC6L2). Reorganized corticospinal projection patterns to upper extremities were demonstrated with nTMS. Conclusions The presence of chorea expands the clinical spectrum of syndromes associated with variants in DCC. Biallelic pathogenic variants in ERCC6L2 cause bone marrow failure, but a potential association with CMM remains to be studied in larger cohorts.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Mominul Islam
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Franz EA. Characterizing the phenotypes of congenital mirror movements and other rare genetic disorders. Dev Med Child Neurol 2020; 62:669. [PMID: 32157690 DOI: 10.1111/dmcn.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
|
12
|
Sagi-Dain L, Kurolap A, Ilivitzki A, Mory A, Paperna T, Kedar R, Gonzaga-Jauregui C, Peleg A, Baris Feldman H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am J Med Genet A 2019; 182:205-212. [PMID: 31697046 DOI: 10.1002/ajmg.a.61404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022]
Abstract
Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Anat Ilivitzki
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Pediatric Radiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Reuven Kedar
- Obstetrics and Gynecology department, Carmel Medical Center, Haifa, Israel
| | | | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Maudrich T, Kenville R, Nikulin VV, Maudrich D, Villringer A, Ragert P. Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. Neuroscience 2019; 406:300-313. [DOI: 10.1016/j.neuroscience.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
14
|
Vosberg DE, Beaulé V, Torres-Berrío A, Cooke D, Chalupa A, Jaworska N, Cox SML, Larcher K, Zhang Y, Allard D, Durand F, Dagher A, Benkelfat C, Srour M, Tampieri D, La Piana R, Joober R, Lepore F, Rouleau G, Pascual-Leone A, Fox MD, Flores C, Leyton M, Théoret H. Neural function in DCC mutation carriers with and without mirror movements. Ann Neurol 2019; 85:433-442. [PMID: 30666715 PMCID: PMC6444183 DOI: 10.1002/ana.25418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
Abstract
Objective Recently identified mutations of the axon guidance molecule receptor gene, DCC, present an opportunity to investigate, in living human brain, mechanisms affecting neural connectivity and the basis of mirror movements, involuntary contralateral responses that mirror voluntary unilateral actions. We hypothesized that haploinsufficient DCC+/− mutation carriers with mirror movements would exhibit decreased DCC mRNA expression, a functional ipsilateral corticospinal tract, greater “mirroring” motor representations, and reduced interhemispheric inhibition. DCC+/− mutation carriers without mirror movements might exhibit some of these features. Methods The participants (n = 52) included 13 DCC+/− mutation carriers with mirror movements, 7 DCC+/− mutation carriers without mirror movements, 13 relatives without the mutation or mirror movements, and 19 unrelated healthy volunteers. The multimodal approach comprised quantitative real time polymerase chain reaction, transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI) under resting and task conditions, and measures of white matter integrity. Results Mirror movements were associated with reduced DCC mRNA expression, increased ipsilateral TMS‐induced motor evoked potentials, increased fMRI responses in the mirroring M1 and cerebellum, and markedly reduced interhemispheric inhibition. The DCC+/− mutation, irrespective of mirror movements, was associated with reduced functional connectivity and white matter integrity. Interpretation Diverse connectivity abnormalities were identified in mutation carriers with and without mirror movements, but corticospinal effects and decreased peripheral DCC mRNA appeared driven by the mirror movement phenotype. ANN NEUROL 2019;85:433–442.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Vincent Beaulé
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Angélica Torres-Berrío
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Danielle Cooke
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Amanda Chalupa
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Institute of Mental Health Research, affiliated with the University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin Larcher
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Yu Zhang
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Dominique Allard
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - France Durand
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Myriam Srour
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Roberta La Piana
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Franco Lepore
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Guy Rouleau
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hugo Théoret
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P. Structural Neural Correlates of Physiological Mirror Activity During Isometric Contractions of Non-Dominant Hand Muscles. Sci Rep 2018; 8:9178. [PMID: 29907835 PMCID: PMC6003937 DOI: 10.1038/s41598-018-27471-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mirror Activity (MA) describes involuntarily occurring muscular activity in contralateral homologous limbs during unilateral movements. This phenomenon has not only been reported in patients with neurological disorders (i.e. Mirror Movements) but has also been observed in healthy adults referred to as physiological Mirror Activity (pMA). However, despite recent hypotheses, the underlying neural mechanisms and structural correlates of pMA still remain insufficiently described. We investigated the structural correlates of pMA during isometric contractions of hand muscles with increasing force demands on a whole-brain level by means of voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). We found significant negative correlations between individual tendencies to display pMA and grey matter volume (GMV) in the right anterior cingulate cortex (ACC) as well as fractional anisotropy (FA) of white matter (WM) tracts of left precuneus (PrC) during left (non-dominant) hand contractions. No significant structural associations for contractions of the right hand were found. Here we extend previously reported functional associations between ACC/PrC and the inhibtion of intrinsically favoured mirror-symmetrical movement tendencies to an underlying structural level. We provide novel evidence that the individual structural state of higher order motor/executive areas upstream of primary/secondary motor areas might contribute to the phenomen of pMA.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, 04103, Germany.,Berlin School of Mind and Brain, Mind and Brain Institute, Berlin, 10099, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.
| |
Collapse
|
16
|
Bierhals T, Korenke GC, Baethmann M, Marín LL, Staudt M, Kutsche K. Novel DCC variants in congenital mirror movements and evaluation of disease-associated missense variants. Eur J Med Genet 2018; 61:329-334. [DOI: 10.1016/j.ejmg.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
|
17
|
Reply to “Movement-related neural processing in people with congenital mirror movements beyond the (cortical) surface”. Clin Neurophysiol 2018; 129:709-710. [DOI: 10.1016/j.clinph.2017.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022]
|
18
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Méneret A, Franz EA, Trouillard O, Oliver TC, Zagar Y, Robertson SP, Welniarz Q, Gardner RJM, Gallea C, Srour M, Depienne C, Jasoni CL, Dubacq C, Riant F, Lamy JC, Morel MP, Guérois R, Andreani J, Fouquet C, Doulazmi M, Vidailhet M, Rouleau GA, Brice A, Chédotal A, Dusart I, Roze E, Markie D. Mutations in the netrin-1 gene cause congenital mirror movements. J Clin Invest 2017; 127:3923-3936. [PMID: 28945198 DOI: 10.1172/jci95442] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.
Collapse
Affiliation(s)
- Aurélie Méneret
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, , University of Otago, Dunedin, New Zealand
| | - Oriane Trouillard
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Thomas C Oliver
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yvrick Zagar
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Quentin Welniarz
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - R J MacKinlay Gardner
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cécile Gallea
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Myriam Srour
- Department of Neurology and Neurosurgery, and.,Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Christel Depienne
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Institut de Génétique et de Biologie moléculaire et cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine L Jasoni
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caroline Dubacq
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Florence Riant
- AP-HP, Groupe hospitalier Lariboisière-Fernand Widal, Laboratoire de Génétique, Paris, France.,INSERM, UMR S740, Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Charles Lamy
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marie-Pierre Morel
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Raphael Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Coralie Fouquet
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et Vieillissement, Paris, France
| | - Marie Vidailhet
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, and.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Fédération de Génétique, Département de Génétique et de Cytogénétique, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Emmanuel Roze
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - David Markie
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Franz EA, Fu Y. Pre-movement planning processes in people with congenital mirror movements. Clin Neurophysiol 2017; 128:1985-1993. [PMID: 28829982 DOI: 10.1016/j.clinph.2017.07.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/26/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-movement processes were investigated in people with Congenital mirrormovement (CMM), a rare disorder in which bilateral movement (mirroring) occurs in the upper distal extremities (primarily the hands and fingers) during intended unilateral movements. Abnormal density of ipsilateral corticospinal projections is an established hallmark of CMM. This study tested whether the Lateralised Readiness Potential (LRP), which reflects movement planning and readiness, is also abnormal in people with CMM. METHODS Twenty-eight neurologically-normal controls and 8 people with CMM were tested on a unimanual Go/No-go task while electroencephalography (EEG) was recorded to assess the LRP. RESULTS No significant group differences were found in reaction time (RT). However, significantly smaller LRP amplitudes were found, on average, in the CMM group compared to Controls at central-motor (C3,C4) sites in stimulus-locked and response-locked epochs; similar group differences were also found at further frontal sites (F3,F4) during response-locked epochs. CONCLUSIONS Abnormal brain activity in pre-movement processes associated with response planning and preparation is present in people with CMM. SIGNIFICANCE Aberrant bilateral activity during pre-movement processes is clearly implicated; whether part of the etiology of CMM, or as a mechanism of neuro-compensation, is not yet known.
Collapse
Affiliation(s)
- E A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand.
| | - Y Fu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand
| |
Collapse
|
21
|
Jack AI, Rochford KC, Friedman JP, Passarelli AM, Boyatzis RE. Pitfalls in Organizational Neuroscience: A Critical Review and Suggestions for Future Research. ORGANIZATIONAL RESEARCH METHODS 2017. [DOI: 10.1177/1094428117708857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential of neuroscience to be a viable framework for studying human behavior in organizations depends on scholars’ ability to evaluate, design, analyze, and accurately interpret neuroscientific research. Prior to the publishing of this special issue, relatively little guidance has been available in the management literature for scholars seeking to integrate neuroscience and organization science in a balanced, informative and methodologically rigorous manner. In response to this need, we address design logic and inferential issues involved in evaluating and conducting neuroscience research capable of informing organizational science. Specifically, neuroscience methods of functional magnetic resonance imaging, electroencephalography, lesion studies, transcranial magnetic stimulation, and transcranial direct current stimulation are reviewed, with attention to how these methods might be combined to achieve convergent evidence. We then discuss strengths and limitations of various designs, highlighting the issue of reverse inference as precarious yet necessary for organizational neuroscience. We offer solutions for addressing limitations related to reverse inference, and propose features that allow stronger inferences to be made. The article concludes with a review of selected empirical work in organizational neuroscience in light of these critical design features.
Collapse
Affiliation(s)
- Anthony I. Jack
- Department of Philosophy, Case Western Reserve University, Cleveland, OH, USA
| | - Kylie C. Rochford
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| | - Jared P. Friedman
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| | - Angela M. Passarelli
- Department of Management and Marketing, College of Charleston, Charleston, SC, USA
| | - Richard E. Boyatzis
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
22
|
Congenital mirror movements in a patient with alpha-dystroglycanopathy due to a novel POMK mutation. Neuromuscul Disord 2017; 27:239-242. [DOI: 10.1016/j.nmd.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
|
23
|
Whole-exome sequencing of 228 patients with sporadic Parkinson's disease. Sci Rep 2017; 7:41188. [PMID: 28117402 PMCID: PMC5259721 DOI: 10.1038/srep41188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1% of the population over 65 years characterized clinically by both motor and non-motor symptoms accompanied by the preferential loss of dopamine neurons in the substantia nigra pars compacta. Here, we sequenced the exomes of 244 Parkinson's patients selected from the Oxford Parkinson's Disease Centre Discovery Cohort and, after quality control, 228 exomes were available for analyses. The PD patient exomes were compared to 884 control exomes selected from the UK10K datasets. No single non-synonymous (NS) single nucleotide variant (SNV) nor any gene carrying a higher burden of NS SNVs was significantly associated with PD status after multiple-testing correction. However, significant enrichments of genes whose proteins have roles in the extracellular matrix were amongst the top 300 genes with the most significantly associated NS SNVs, while regions associated with PD by a recent Genome Wide Association (GWA) study were enriched in genes containing PD-associated NS SNVs. By examining genes within GWA regions possessing rare PD-associated SNVs, we identified RAD51B. The protein-product of RAD51B interacts with that of its paralogue RAD51, which is associated with congenital mirror movements phenotypes, a phenotype also comorbid with PD.
Collapse
|
24
|
Glendining KA, Markie D, Gardner RJM, Franz EA, Robertson SP, Jasoni CL. A novel role for the DNA repair gene Rad51 in Netrin-1 signalling. Sci Rep 2017; 7:39823. [PMID: 28057929 PMCID: PMC5216413 DOI: 10.1038/srep39823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in RAD51 have recently been linked to human Congenital Mirror Movements (CMM), a developmental disorder of the motor system. The only gene previously linked to CMM encodes the Netrin-1 receptor DCC, which is important for formation of corticospinal and callosal axon tracts. Thus, we hypothesised that Rad51 has a novel role in Netrin-1-mediated axon development. In mouse primary motor cortex neurons, Rad51 protein was redistributed distally down the axon in response to Netrin-1, further suggesting a functional link between the two. We next manipulated Rad51 expression, and assessed Netrin-1 responsiveness. Rad51 siRNA knockdown exaggerated Netrin-1-mediated neurite branching and filopodia formation. RAD51 overexpression inhibited these responses, whereas overexpression of the CMM-linked R250Q mutation, a predicted loss-of-function, had no effect. Thus, Rad51 appears to negatively regulate Netrin-1 signalling. Finally, we examined whether Rad51 might operate by modulating the expression of the Unc5 family, known negative regulators of Netrin-1-responsiveness. Unc5b and Unc5c transcripts were downregulated in response to Rad51 knockdown, and upregulated with RAD51 overexpression, but not R250Q. Thus, Rad51 negatively regulates Netrin-1 signalling, at least in part, by modulating the expression of Unc5s. Imbalance of positive and negative influences is likely to lead to aberrant motor system development resulting in CMMs.
Collapse
Affiliation(s)
- K A Glendining
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - D Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - R J M Gardner
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - E A Franz
- Department of Psychology and fMRIOtago, University of Otago, Dunedin, New Zealand
| | - S P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - C L Jasoni
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Trouillard O, Koht J, Gerstner T, Moland S, Depienne C, Dusart I, Méneret A, Ruiz M, Dubacq C, Roze E. Congenital Mirror Movements Due to RAD51: Cosegregation with a Nonsense Mutation in a Norwegian Pedigree and Review of the Literature. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:424. [PMID: 27830107 PMCID: PMC5099496 DOI: 10.7916/d8bk1cnf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/17/2016] [Indexed: 12/01/2022]
Abstract
Background Autosomal dominant congenital mirror movements (CMM) is a neurodevelopmental disorder characterized by early onset involuntary movements of one side of the body that mirror intentional movements on the contralateral side; these persist throughout life in the absence of other neurological symptoms. The main culprit genes responsible for this condition are RAD51 and DCC. This condition has only been reported in a few families, and the molecular mechanisms linking RAD51 mutations and mirror movements (MM) are poorly understood. Methods We collected demographic, clinical, and genetic data of a new family with CMM due to a truncating mutation of RAD51. We reviewed the literature to identify all reported patients with CMM due to RAD51 mutations. Results We identified a heterozygous nonsense mutation c.760C>T (p.Arg254*) in eight subjects: four with obvious and disabling MM, and four with a mild phenotype. Including our new family, we identified 32 patients from 6 families with CMM linked to RAD51 variants. Discussion Our findings further support the involvement of RAD51 in CMM pathogenesis. Possible molecular mechanisms involved in CMM pathogenesis are discussed.
Collapse
Affiliation(s)
- Oriane Trouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Jeanette Koht
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | | | | | - Christel Depienne
- Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France; Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Aurélie Méneret
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marta Ruiz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Dubacq
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Emmanuel Roze
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
26
|
Beaulé V, Tremblay S, Lafleur LP, Ferland MC, Lepage JF, Théoret H. Modulation of physiological mirror activity with transcranial direct current stimulation over dorsal premotor cortex. Eur J Neurosci 2016; 44:2730-2734. [DOI: 10.1111/ejn.13385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Beaulé
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Sara Tremblay
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Louis-Philippe Lafleur
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Marie C. Ferland
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Jean-François Lepage
- Centre de Recherche du CHU Sherbrooke; Sherbrooke QC Canada
- Université du Québec à Trois-Rivières; Trois-Rivières QC Canada
| | - Hugo Théoret
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| |
Collapse
|
27
|
Sag E, Gocmen R, Yildiz FG, Ozturk Z, Temucin C, Teksam O, Utine E. Congenital Mirror Movements in Gorlin Syndrome: A Case Report With DTI and Functional MRI Features. Pediatrics 2016; 137:e20151771. [PMID: 26917672 DOI: 10.1542/peds.2015-1771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
Congenital mirror movements are rare conditions that define the inability to perform unimanual movements. Gorlin syndrome, also known as nevoid basal cell carcinoma syndrome, is a genetic disorder with multiple nevi predisposing to basal cell carcinoma, odontogenic keratocysts, and skeletal malformations. Herein we report on an adolescent patient with Gorlin syndrome and coexisting congenital mirror movements. To our knowledge, this is the first patient in the literature who has both of these very rare conditions.
Collapse
Affiliation(s)
| | | | - F Gokcem Yildiz
- Institute of Neurologic Science and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|