1
|
Xu Z, Ji Y, Wen C, Gan J, Chen Z, Li R, Lin X, Dou J, Wang Y, Liu S, Shi Z, Wu H, Lu H, Chen H. Tracer kinetic model detecting heterogeneous blood-brain barrier permeability to water and contrast agent in Alzheimer's disease and dementia with Lewy bodies. Alzheimers Dement 2025; 21:e14529. [PMID: 39936244 DOI: 10.1002/alz.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Blood-brain barrier (BBB) breakdown is essential in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), whereas the variability in BBB permeability to water and contrast agent is less clear. METHODS We investigated BBB permeability to water and contrast agent simultaneously using a novel tracer kinetic model for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in 42 AD patients, 22 DLB patients, and 22 healthy controls. All participants underwent clinical, cognitive, and MRI assessments. RESULTS AD patients exhibited a significant reduction in the water exchange rates across the BBB, whereas DLB patients showed a significant increase in BBB permeability to contrast agent. Moreover, BBB permeability to both water and contrast agent in multiple brain regions demonstrated correlations with clinical severity. DISCUSSION The simultaneous evaluation of BBB permeability to water and contrast agent based on the proposed model highlights the heterogeneous patterns of BBB breakdown in AD and DLB. HIGHLIGHTS We measured blood-brain barrier (BBB) permeability to water and contrast agent based on dynamic contrast-enhanced magnetic resonance imaging. Alzheimer's disease (AD) is characterized by lower water exchange rates across the BBB. Dementia with Lewy bodies exhibits higher BBB permeability to contrast agent. BBB permeability is related to cognitive impairment and disease burden. BBB permeability to water was negatively associated with that to contrast agent.
Collapse
Affiliation(s)
- Ziming Xu
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhichao Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| | - Xiaoqi Lin
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| | - Jiaqi Dou
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Hao Lu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, School of Biomedicine Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang Z, Xia H, Shi J, Fan P, Cao Q, Ding Y, Du X, Yang X. Investigating the Genetic Association of 40 Biochemical Indicators with Parkinson's Disease. J Mol Neurosci 2024; 74:92. [PMID: 39365399 DOI: 10.1007/s12031-024-02273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The mechanisms of Parkinson's disease (PD) are not fully understood, which hinders the development of effective therapies. Research indicates that lower levels of biochemical indicators like bilirubin, vitamin D, and cholesterol may elevate the risk of PD. However, clinical studies on abnormal levels of biochemical indicators in PD patients' circulation are inconsistent, leading to ongoing debate about their association with PD. Here, we investigate the genetic correlation between 40 biochemical indicators and PD using a bidirectional two-sample Mendelian randomization (MR) approach to uncover potential causal relationships. Data from genome-wide association studies (GWAS) were utilized, with genetic variations from specific lineages serving as instrumental variables (IVs). The methodology followed the STROBE-MR checklist and adhered to the three principal assumptions of MR. Statistical analyses employed methods including inverse variance weighting (IVW), MR-Egger, weighted median, and weighted mode. Biochemical indicators including albumin, C-reactive protein (CRP), and sex hormone-binding globulin (SHBG) showed significant associations with PD risk. Elevated levels of albumin (OR = 1.246, 95% CI 1.006-1.542, P = 0.043) and SHBG (OR = 1.239, 95% CI 1.065-1.439, P = 0.005) were linked to higher PD risk. Conversely, increased CRP levels (OR = 0.663, 95% CI 0.517-0.851; P = 0.001) could potentially lower PD risk. The robustness of the results was confirmed through various MR analysis techniques, including assessments of directional pleiotropy and heterogeneity using MR-Egger intercept and MR-PRESSO methods. This study systematically reveals, for the first time at the genetic level, the relationship between 40 biochemical indicators and PD risk. Our research verifies the role of inflammation in PD and provides new genetic evidence, further advancing the understanding of PD pathogenesis. The study shows a positive correlation between albumin and SHBG with PD risk and a negative correlation between CRP and PD risk. This study identifies for the first time that SHBG may be involved in the onset of PD and potentially worsen disease progression.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Huan Xia
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Jianqiao Shi
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Peidong Fan
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Qiannan Cao
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yunfa Ding
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinyu Du
- Department of Neurology, Jiangsu Provincial People's Hospital, Nanjing, 210029, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
3
|
Gan J, Xu Z, Chen Z, Liu S, Lu H, Wang Y, Wu H, Shi Z, Chen H, Ji Y. Blood-brain barrier breakdown in dementia with Lewy bodies. Fluids Barriers CNS 2024; 21:73. [PMID: 39289698 PMCID: PMC11406812 DOI: 10.1186/s12987-024-00575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction has been viewed as a potential underlying mechanism of neurodegenerative disorders, possibly involved in the pathogenesis and progression of Alzheimer's disease (AD). However, a relation between BBB dysfunction and dementia with Lewy bodies (DLB) has yet to be systematically investigated. Given the overlapping clinical features and neuropathology of AD and DLB, we sought to evaluate BBB permeability in the context of DLB and determine its association with plasma amyloid-β (Aβ) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS For this prospective study, we examined healthy controls (n = 24, HC group) and patients diagnosed with AD (n = 29) or DLB (n = 20) between December 2020 and April 2022. Based on DCE-MRI studies, mean rates of contrast agent transfer from intra- to extravascular spaces (Ktrans) were calculated within regions of interest. Spearman's correlation and multivariate linear regression were applied to analyze associations between Ktrans and specific clinical characteristics. RESULTS In members of the DLB (vs HC) group, Ktrans values of cerebral cortex (p = 0.024), parietal lobe (p = 0.007), and occipital lobe (p = 0.014) were significantly higher; and Ktrans values of cerebral cortex (p = 0.041) and occipital lobe (p = 0.018) in the DLB group were significantly increased, relative to those of the AD group. All participants also showed increased Ktrans values of parietal ( β = 0.391; p = 0.001) and occipital ( β = 0.357; p = 0.002) lobes that were significantly associated with higher scores of the Clinical Dementia Rating, once adjusted for age and sex. Similarly, increased Ktrans values of cerebral cortex ( β = 0.285; p = 0.015), frontal lobe ( β = 0.237; p = 0.043), and parietal lobe ( β = 0.265; p = 0.024) were significantly linked to higher plasma Aβ1-42/Aβ1-40 ratios, after above adjustments. CONCLUSION BBB leakage is a common feature of DLB and possibly is even more severe than in the setting of AD for certain regions of the brain. BBB leakage appears to correlate with plasma Aβ1-42/Aβ1-40 ratio and dementia severity.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziming Xu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhichao Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, 6 Jizhao Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Hao Lu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hao Wu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, 6 Jizhao Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhihong Shi
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, 6 Jizhao Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Huijun Chen
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, 6 Jizhao Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
4
|
Li M, Gan J, Yang X, Liu S, Ji Y. Cerebrospinal fluid/serum albumin ratio in patients with Lewy body disease: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1390036. [PMID: 38756533 PMCID: PMC11096505 DOI: 10.3389/fnagi.2024.1390036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Abnormal cerebrospinal fluid (CSF)/serum albumin ratio (Qalb) levels have been observed in patients with cognitive impairment. Few studies have specifically focused on Lewy Body Disease (LBD), and the results were controversial. Thus, we conducted this systematic review and meta-analysis to investigate Qalb levels in patients with LBD by including data from different studies. Method We systematically searched PubMed, Embase, Cochrane Library, and Web of Science databases for a collection of studies containing studies comparing Qalb levels in patients with LBD and healthy controls (including healthy controls and other dementia subtypes). In the initial search, 86 relevant papers were retrieved. Standardized mean differences (SMD) in Qalb levels were calculated using a random effects model. Results A total of 13 eligible studies were included. Mean Qalb levels were significantly higher in patients with LBD compared to healthy older adults [standardized mean difference (SMD): 2.95, 95% confidence interval (CI): 0.89-5.00, Z = 2.81, p = 0.005]; and were significantly higher in patients with LBD than in patients with Alzheimer's disease (AD) (SMD: 1.13, 95% CI: 0.42-1.83, Z = 3.15, p = 0.002);whereas mean Qalb levels were significantly higher in patients with frontotemporal lobar degeneration (FTLD) compared to those with AD (SMD: 1.13, 95% CI,0.14-2.13, Z = 2.24, p = 0.03). Conclusion Qalb levels were significantly elevated in LBD patients compared with normal older adults and were higher than those in AD patients and FTLD patients, which helped in the differential diagnosis of LBD from other neurodegenerative diseases. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024496616.
Collapse
Affiliation(s)
- Moyu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
5
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 PMCID: PMC10928768 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
6
|
Ricci F, Martorana A, Bonomi CG, Serafini C, Mercuri NB, Koch G, Motta C. Effect of Vascular Risk Factors on Blood-Brain Barrier and Cerebrospinal Fluid Biomarkers Along the Alzheimer's Disease Continuum: A Retrospective Observational Study. J Alzheimers Dis 2024; 97:599-607. [PMID: 38160356 DOI: 10.3233/jad-230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction could favor the pathogenesis and progression of Alzheimer's disease (AD). Vascular risk factors (VRF) could worsen BBB integrity, thus promoting neurode generation. OBJECTIVE To investigate BBB permeability and its relation with VRF along the AD continuum (ADc). Cerebrospinal fluid (CSF) Amyloid (A) and p-tau (T) levels were used to stratify patients. METHODS We compared CSF/plasma albumin ratio (QAlb) of 131 AD patients and 24 healthy controls (HC). APOE genotype and VRF were evaluated for each patient. Spearman's Rho correlation was used to investigate the associations between Qalb and CSF AD biomarkers. Multivariate regression analyses were conducted to explore the relationship between Qalb and AD biomarkers, sex, age, cognitive status, and VRF. RESULTS QAlb levels did not show significant difference between ADc patients and HC (p = 0.984). However, QAlb was significantly higher in A + T-compared to A + T+ (p = 0.021). In ADc, CSF p-tau demonstrated an inverse correlation with QAlb, a finding confirmed in APOE4 carriers (p = 0.002), but not in APOE3. Furthermore, in APOE4 carriers, sex, hypertension, and hypercholesterolemia were associated with QAlb (p = 0.004, p = 0.038, p = 0.038, respectively), whereas only sex showed an association in APOE3 carriers (p = 0.026). CONCLUSIONS BBB integrity is preserved in ADc. Among AT categories, A + T-have a more permeable BBB than A + T+. In APOE4 carriers, CSF p-tau levels display an inverse association with BBB permeability, which in turn, seems to be affected by VRF. These data suggest a possible relationship between BBB efficiency, VRF and CSF p-tau levels depending on APOE genotype.
Collapse
Affiliation(s)
- Francesco Ricci
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara G Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Serafini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola B Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS SantaLucia, Rome, Italy
- Department of Neuroscience and Rehabilitation, Human Physiology Unit, University of Ferrara, Ferrara, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Musaeus CS, Gleerup HS, Hasselbalch SG, Waldemar G, Simonsen AH. Progression of Blood-Brain Barrier Leakage in Patients with Alzheimer's Disease as Measured with the Cerebrospinal Fluid/Plasma Albumin Ratio Over Time. J Alzheimers Dis Rep 2023; 7:535-541. [PMID: 37313491 PMCID: PMC10259070 DOI: 10.3233/adr-230016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Background Studies have found a disruption of the blood-brain barrier (BBB) in patients with Alzheimer's disease (AD), but there is little evidence of the changes in the BBB over time. The cerebrospinal fluid's (CSF) protein concentration can be used as an indirect measurement for the permeability of the BBB using the CSF/plasma albumin quotient (Q-Alb) or total CSF protein. Objective In the current study, we wanted to investigate the changes in Q-Alb in patients with AD over time. Methods A total of 16 patients diagnosed with AD, who had at least two lumbar punctures performed, were included in the current study. Results The difference in Q-Alb over time did not show a significant change. However, Q-Alb increased over time if the time interval was > 1 year between the measurements. No significant associations between Q-Alb and age, Mini-Mental State Examination, or AD biomarkers were found. Conclusion The increase in Q-Alb suggests that there is an increased leakage through the BBB, which may become more prominent as the disease progresses. This may be a sign of progressive underlying vascular pathology, even in patients with AD without major vascular lesions. More studies are needed to further understand the role of BBB integrity in patients with AD over time and the association with the progression of the disease.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Helena Sophia Gleerup
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Gan J, Yang X, Zhang G, Li X, Liu S, Zhang W, Ji Y. Alzheimer's disease pathology: pathways between chronic vascular risk factors and blood-brain barrier dysfunction in a cohort of patients with different types of dementia. Front Aging Neurosci 2023; 15:1088140. [PMID: 37213537 PMCID: PMC10194826 DOI: 10.3389/fnagi.2023.1088140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Blood brain barrier (BBB) breakdown is considered a potential mechanism of dementia. The Alzheimer's disease (AD) biomarkers and vascular factors are also associated with BBB permeability. Objective In the present study, the combination effects of neuropathological biomarkers of AD and chronic vascular risk factors for BBB were investigated. Methods The cerebrospinal fluid (CSF)/serum albumin ratio (Qalb), an indicator of BBB permeability, was measured in a total of 95 hospitalized dementia patients. The demographics, clinical information, and laboratory tests were collected from the inpatient records. The CSF neuropathological biomarkers of AD and apolipoprotein E (APOE) genotype were also collected. The mediation analysis model was used to calculate the associations among neuropathological biomarkers of AD (mediator), the Qalb, and chronic vascular risk factors. Results Three types of dementia, AD (n = 52), Lewy body dementia (LBD, n = 19), and frontotemporal lobar degeneration (n = 24), were included with a mean Qalb of 7.18 (± 4.36). The Qalb was significantly higher in dementia patients with type 2 diabetes mellitus (T2DM, p = 0.004) but did not differ based on the presence of APOE ε4 allele, CMBs, or amyloid/tau/neurodegeneration (ATN) framework. The Qalb was negatively associated with the levels of Aβ1-42 (B = -20.775, p = 0.009) and Aβ1-40 (B = -305.417, p = 0.005) and positively associated with the presence of T2DM (B = 3.382, p < 0.001) and the levels of glycosylated hemoglobin (GHb, B = 1.163, p < 0.001) and fasting blood glucose (FBG, B = 1.443, p < 0.001). GHb is a direct chronic vascular risk factor for higher Qalb (total effect B = 1.135, 95% CI: 0.611-1.659, p < 0.001). Ratios of Aβ1-42/Aβ1-40 or t-tau/Aβ1-42 were mediators of the association between the Qalb and GHb; the direct effect of GHb on the Qalb was 1.178 (95% CI: 0.662-1.694, p < 0.001). Conclusion Glucose exposure can directly or indirectly affect BBB integrity through Aβ and tau, indicating glucose affects BBB breakdown and glucose stability plays an important role in dementia protection and management.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guili Zhang
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xudong Li
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhang
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Yong Ji
| |
Collapse
|
9
|
Cheng Z, Dai L, Wu Y, Cao Y, Chai X, Wang P, Liu C, Ni M, Gao F, Wang Q, Lv X. Correlation of blood-brain barrier leakage with cerebral small vessel disease including cerebral microbleeds in Alzheimer's disease. Front Neurol 2023; 14:1077860. [PMID: 36873442 PMCID: PMC9978776 DOI: 10.3389/fneur.2023.1077860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Background Blood-brain barrier (BBB) damage is considered an important part of Alzheimer's disease (AD) progression, and cerebral small-vessel disease (CSVD) is commonly associated with AD. However, the relationship between BBB damage, small cerebrovascular lesions, especially cerebral microbleeds (CMBs), and amyloid and tau biomarkers remains controversial. Therefore, our study aimed to further investigate their association in our cohort of patients with AD. Methods A total of 139 individuals were divided into probable AD (18F-florbetapir PET positive, n = 101) and control group (cognitively normal, n = 38). The levels of cerebrospinal fluid (CSF) and plasma t-tau, p-tau181, Aβ40, Aβ42, and albumin were measured using corresponding commercial assay kits, and the CSF/plasma albumin ratio (Qalb), an indicator of BBB dysfunction, was calculated. CSVD burden and the number of CMBs were defined using magnetic resonance imaging. Results Patients with AD had higher Qalb (p = 0.0024), higher numbers of CMBs (p = 0.03), and greater CSVD burden (p < 0.0001). In the AD group, CMBs and CSVD correlated with a higher Qalb (p = 0.03), and the numbers of CMBs negatively correlated with CSF Aβ42 (p = 0.02). Conclusion Blood-brain barrier damage was accompanied by a more severe burden of CSVD, including CMB, in patients with AD.
Collapse
Affiliation(s)
- Zhaozhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Linbin Dai
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuqin Cao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianliang Chai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
CSF α-Synuclein and Tau as Biomarkers for Dementia With Lewy Bodies: A Systematic Review and Meta-analysis. Alzheimer Dis Assoc Disord 2022; 36:368-373. [PMID: 36183420 DOI: 10.1097/wad.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/30/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE This study investigated whether α-synuclein and tau in cerebrospinal fluid (CSF) can be used as biomarkers to diagnose dementia with Lewy bodies (DLB). MATERIALS AND METHODS We retrieved 3303 studies with "Dementia with Lewy bodies," "α-synuclein," and "tau" as keywords. We formulated screening criteria, and 2 researchers completed the screening, quality evaluation, and data extraction tasks. Finally, 35 studies related to tau, and 14 studies related to α-synuclein were included. Review Manager 5.4 and Stata16 were used for meta-analysis. Subgroup, sensitivity, and meta-regression analyses were performed to identify sources of heterogeneity and strengthen the results. RESULTS Compared with the control group, DLB patients showed significantly higher CSF levels of tau [weighted mean difference=81.36 (59.82, 102.91); Z =7.40; P <0.00001], and lower CSF levels of α-synuclein [weighted mean difference=-95.25 (-162.02, -28.48); Z =2.80; P =0.005]. Mini-Mental State Examination (MMSE) score, male ratio, and disease duration were not sources of heterogeneity on subgroup and meta-regression analyses. Sensitivity analysis revealed no significant differences. CONCLUSIONS Higher levels of tau and lower levels of α-synuclein were found in the CSF of patients with DLB compared with the control group. Therefore, CSF tau and α-synuclein levels may be diagnostic biomarkers for DLB.
Collapse
|
11
|
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, Haydarian E, Li S, Fang Y, Li P, Pakosh M, Tartaglia MC, Masellis M, Swardfager W. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 101:119-128. [PMID: 35760718 DOI: 10.1016/j.parkreldis.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed evidence supports blood-brain barrier (BBB) dysfunction in Lewy body spectrum diseases. METHODS We compare biofluid markers in people with idiopathic Parkinson's disease (PD) and people with PD dementia (PDD) and/or dementia with Lewy bodies (DLB), compared with healthy controls (HC). Seven databases were searched up to May 10, 2021. Outcomes included cerebrospinal fluid to blood albumin ratio (Qalb), and concentrations of 7 blood protein markers that also reflect BBB disruption and/or neurodegenerative co-pathology. We further explore differences between PD patients with and without evidence of dementia. Random-effects models were used to obtain standardized mean differences (SMD) with 95% confidence interval. RESULTS Of 13,949 unique records, 51 studies were meta-analyzed. Compared to HC, Qalb was higher in PD (NPD/NHC = 224/563; SMD = 0.960 [0.227-1.694], p = 0.010; I2 = 92.2%) and in PDD/DLB (NPDD/DLB/NHC = 265/670; SMD = 1.126 [0.358-1.893], p < 0.001; I2 = 78.2%). Blood neurofilament light chain (NfL) was higher in PD (NPD/NHC = 1848/1130; SMD = 0.747 [0.442-1.052], p < 0.001; I2 = 91.9%) and PDD/DLB (NPDD/DLB/NHC = 183/469; SMD = 1.051 [0.678-1.423], p = 0.004; I2 = 92.7%) than in HC. p-tau 181 (NPD/NHC = 276/164; SMD = 0.698 [0.149-1.247], p = 0.013; I2 = 82.7%) was also higher in PD compared to HC. In exploratory analyses, blood NfL was higher in PD without dementia (NPDND/NHC = 1005/740; SMD = 0.252 [0.042-0.462], p = 0.018; I2 = 71.8%) and higher in PDD (NPDD/NHC = 100/111; SMD = 0.780 [0.347-1.214], p < 0.001; I2 = 46.7%) compared to HC. Qalb (NPDD/NPDND = 63/191; SMD = 0.482 [0.189-0.774], p = 0.010; I2<0.001%) and NfL (NPDD/NPDND = 100/223; SMD = 0.595 [0.346-0.844], p < 0.001; I2 = 3.4%) were higher in PDD than in PD without dementia. CONCLUSIONS Biofluid markers suggest BBB disruption and neurodegenerative co-pathology involvement in common Lewy body diseases. Greater evidence of BBB breakdown was seen in Lewy body disease with cognitive impairment.
Collapse
Affiliation(s)
- Yuen Yan Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther Kim
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Renata Elez
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zebarth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jocelyn Tan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jiamin Liao
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Haydarian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Siming Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yaolu Fang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Peihao Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maureen Pakosh
- Library & Information Services, UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
13
|
Musaeus CS, Gleerup HS, Høgh P, Waldemar G, Hasselbalch SG, Simonsen AH. Cerebrospinal Fluid/Plasma Albumin Ratio as a Biomarker for Blood-Brain Barrier Impairment Across Neurodegenerative Dementias. J Alzheimers Dis 2021; 75:429-436. [PMID: 32280104 DOI: 10.3233/jad-200168] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have shown an association between disruption of the blood-brain-barrier (BBB) and dementias of different etiologies. The protein concentration of cerebrospinal fluid (CSF) can be used as an indirect measurement for the permeability of the BBB using the CSF/plasma albumin quotient (Q-Alb) or total CSF protein. OBJECTIVE In the current study, we wanted to investigate Q-Alb and CSF protein concentration in dementias of different etiologies and the possible confounding factors. METHODS A total of 510 patients and healthy controls were included in the current study. The patients were diagnosed with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), vascular dementia (VaD), or frontotemporal dementia (FTD). RESULTS We found that Q-Alb was significantly different between the groups (p = 0.002, F = 3.874). Patients with DLB and VaD showed the largest Q-Alb. Although not significant for CSF total protein, we found the same overall pattern for DLB and VaD. When examining confounding factors, we found a positive association with age and a lower Fazekas score in DLB as compared to VaD. CONCLUSION These results suggest that Q-Alb can contribute to our understanding of the pathophysiological mechanisms in DLB, and Q-Alb may serve as a supplementary diagnostic marker. Furthermore, we found a positive association with age, which may be due to differences in vascular co-morbidities. In addition, in patients with DLB, the increased Q-Alb is not due to vascular lesions. Studies are needed to validate the possible diagnostic value of Q-Alb in a larger cohort.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helena Sophia Gleerup
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Høgh
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Gmitterova K, Varges D, Schmitz M, Zafar S, Maass F, Lingor P, Zerr I. Chromogranin A Analysis in the Differential Diagnosis Across Lewy Body Disorders. J Alzheimers Dis 2021; 73:1355-1361. [PMID: 31929170 DOI: 10.3233/jad-191153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chromogranin A (CgA) is a general marker of gut endocrine cells, which are part of the "gut-brain axis" in Parkinson's disease (PD). OBJECTIVE We analyzed CgA as a marker of synaptic dysfunction to assess its role in the differential diagnosis across different Lewy body disorders. METHODS We analyzed the CgA levels in the cerebrospinal fluid (CSF) and serum from 54 patients covering the spectrum of Lewy body disorders [13 Parkinson's disease (PD), 17 Parkinson's disease dementia (PDD), 24 dementia with Lewy bodies (DLB)] and 14 controls using an ELISA. RESULTS A positive correlation was noted between CSF and serum CgA levels (ρ= 0.47, 95% CI: 0.24 to 0.65, p < 0.0001). The highest values of CgA in CSF and in serum were measured in DLB and there was a significant difference between DLB and PDD (p = 0.03 and p = 0.004). The serum levels of CgA in controls achieved lower values compared to DLB (p = 0.006). There was a gradual increase in serum levels from PD to PDD and DLB. An inverse correlation was seen between the CSF level of CgA and Aβ42 (ρ = -0.296, 95% CI: -0.51 to -0.04, p = 0.02). CONCLUSION The incorporation of CgA analysis as an additional biomarker may be useful in the diagnostic work-up of Lewy body dementia. CgA analysis may be relevant in distinguishing DLB from PDD patients and presumably early stages of PD. Our data on altered serum levels in DLB pave the way to the development of blood-based parameters for the differential diagnosis, which however needs to be confirmed in a prospective study.
Collapse
Affiliation(s)
- Karin Gmitterova
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany.,Second Department of Neurology, Comenius University, Bratislava, Slovakia.,Department of Neurology, Slovak Medical University in Bratislava, Slovakia
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| |
Collapse
|
15
|
Fernandes DC, Reis RL, Oliveira JM. Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discov Today 2020; 26:754-768. [PMID: 33202252 DOI: 10.1016/j.drudis.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Clinical trials continue to fall short regarding drugs to effectively treat brain-affecting diseases. Although there are many causes of these shortcomings, the most relevant are the inability of most therapeutic agents to cross the blood-brain barrier (BBB) and the failure to translate effects from animal models to patients. In this review, we analyze the most recent developments in BBB, neural, and neurovascular models, analyzing their impact on the drug development process by considering their quantitative and phenotypical characterization. We offer a perspective of the state-of-the-art of the models that could revolutionize the pharmaceutical industry.
Collapse
Affiliation(s)
- Diogo C Fernandes
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Parkinson's and Lewy body dementia CSF biomarkers. Clin Chim Acta 2019; 495:318-325. [PMID: 31051162 DOI: 10.1016/j.cca.2019.04.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
Abstract
The clinical diagnosis of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) is challenging due to highly variable clinical presentation and clinical and pathological overlap with other neurodegenerative diseases. Since cerebrospinal fluid (CSF) mirrors the pathological changes taking place in the brain, it represents a promising source of biomarkers. With respect to classical AD biomarkers, low CSF Aβ42 levels have shown a robust prognostic value in terms of development of cognitive impairment in PD and DLB. In the differential diagnosis between AD and DLB, a potential role of t-tau, p-tau and Aβ42/Aβ38 ratio has been demonstrated. Regarding CSF α-synuclein (α-syn) species, lower levels of total α-synuclein (t-α-syn) and higher concentration of oligomeric-α-synuclein (o-α-syn) and phosphorylated α-synuclein (p-α-syn) have been observed in PD. Furthermore, the detection of "pro-aggregating" α-synuclein has enabled the discrimination of patients affected by synucleinopathies with high sensitivity and specificity. New promising biomarkers are emerging: GCase activity (reduced in PD and DLB patients vs. controls), CSF/serum albumin ratio (increased in PD and DLB), fatty-acid-binding protein (increased in AD and DLB vs. PD), visinin-like protein-1 (increased in AD vs. DLB) and monoamines (useful in differential diagnosis among PD and DLB). These encouraging results need to be confirmed by future studies.
Collapse
|
17
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Skillbäck T, Delsing L, Synnergren J, Mattsson N, Janelidze S, Nägga K, Kilander L, Hicks R, Wimo A, Winblad B, Hansson O, Blennow K, Eriksdotter M, Zetterberg H. CSF/serum albumin ratio in dementias: a cross-sectional study on 1861 patients. Neurobiol Aging 2017; 59:1-9. [PMID: 28779628 DOI: 10.1016/j.neurobiolaging.2017.06.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
Abstract
A connection between dementias and blood-brain barrier (BBB) dysfunction has been suggested, but previous studies have yielded conflicting results. We examined cerebrospinal fluid (CSF)/serum albumin ratio in a large cohort of patients diagnosed with Alzheimer's disease (AD, early onset [EAD, n = 130], late onset AD [LAD, n = 666]), vascular dementia (VaD, n = 255), mixed AD and VaD (MIX, n = 362), Lewy body dementia (DLB, n = 50), frontotemporal dementia (FTD, n = 56), Parkinson's disease dementia (PDD, n = 23), other dementias (other, n = 48), and dementia not otherwise specified (NOS, n = 271). We compared CSF/serum albumin ratio to 2 healthy control groups (n = 292, n = 20), between dementia diagnoses, and tested biomarker associations. Patients in DLB, LAD, VaD, MIX, other, and NOS groups had higher CSF/serum albumin ratio than controls. CSF/serum albumin ratio correlated with CSF neurofilament light in LAD, MIX, VaD, and other groups but not with AD biomarkers. Our data show that BBB leakage is common in dementias. The lack of association between CSF/serum albumin ratio and AD biomarkers suggests that BBB dysfunction is not inherent to AD but might represent concomitant cerebrovascular pathology.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Louise Delsing
- Department of Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden.
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Ryan Hicks
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Anders Wimo
- Centre for Research and Development, Uppsala University/County Council of Gävleborg, Gävle, Sweden; Division for Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Bengt Winblad
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden; Department Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Kaj Blennow
- Department of Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Eriksdotter
- Department Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden; Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Henrik Zetterberg
- Department of Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
19
|
Janelidze S, Hertze J, Nägga K, Nilsson K, Nilsson C, Wennström M, van Westen D, Blennow K, Zetterberg H, Hansson O. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 2016; 51:104-112. [PMID: 28061383 PMCID: PMC5754327 DOI: 10.1016/j.neurobiolaging.2016.11.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023]
Abstract
Blood-brain barrier (BBB) dysfunction might be an important component of many neurodegenerative disorders. In this study, we investigated its role in dementia using large clinical cohorts. The cerebrospinal fluid (CSF)/plasma albumin ratio (Qalb), an indicator of BBB (and blood-CSF barrier) permeability, was measured in a total of 1015 individuals. The ratio was increased in patients with Alzheimer's disease, dementia with Lewy bodies or Parkinson's disease dementia, subcortical vascular dementia, and frontotemporal dementia compared with controls. However, this measure was not changed during preclinical or prodromal Alzheimer's disease and was not associated with amyloid positron emission tomography or APOE genotype. The Qalb was increased in diabetes mellitus and correlated positively with CSF biomarkers of angiogenesis and endothelial dysfunction (vascular endothelial growth factor, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1). In healthy elderly, high body mass index and waist-hip ratio predicted increased Qalb 20 years later. In summary, BBB permeability is increased in major dementia disorders but does not relate to amyloid pathology or APOE genotype. Instead, BBB impairment may be associated with diabetes and brain microvascular damage.
Collapse
Affiliation(s)
- Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Joakim Hertze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Karin Nilsson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | | - Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Wallenberg Laboratory, Malmö, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences, Diagnostic radiology, Lund University, Lund, Sweden; Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
20
|
Cerebrospinal α-synuclein in α-synuclein aggregation disorders: tau/α-synuclein ratio as potential biomarker for dementia with Lewy bodies. J Neurol 2016; 263:2271-2277. [DOI: 10.1007/s00415-016-8259-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
|
21
|
Brandhonneur N, Noury F, Bruyère A, Saint-Jalmes H, Le Corre P. PBPK model of methotrexate in cerebrospinal fluid ventricles using a combined microdialysis and MRI acquisition. Eur J Pharm Biopharm 2016; 104:117-30. [PMID: 27142258 DOI: 10.1016/j.ejpb.2016.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/08/2016] [Accepted: 04/18/2016] [Indexed: 12/09/2022]
Abstract
The objective of the study was to evaluate the distribution of methotrexate (MTX) in cerebrospinal fluid (CSF) lateral ventricles and in cisterna magna after 3rd intraventricular CSF administration in a rabbit model. MTX or gadolinium chelate (Gd-DOTA) was administered in the 3rd ventricle with a local microdialysis to study the pharmacokinetics at the site of administration and with a simultaneous magnetic resonance imaging (MRI) acquisition in the 3rd ventricle, the lateral ventricles and in the cisterna magna. A specific CSF Physiologically Based Pharmacokinetic (PBPK) model was then extrapolated for MTX from Gd-DOTA data. The relative contribution of elimination and distribution processes to the overall disposition of MTX and Gd-DOTA in the 3rd ventricle was similar (i.e., around 60% for CLE and 40% for CLI) suggesting that Gd-DOTA was a suitable surrogate marker for MTX disposition in ventricular CSF. The PBPK predictions for MTX both in CSF of the 3rd ventricle and in plasma were in accordance with the in vivo results. The present study showed that the combination of local CSF microdialysis with MRI acquisition of the brain ventricles and a PBPK model could be a useful methodology to estimate the drug diffusion within CSF ventricles after direct brain CSF administration. Such a methodology would be of interest to clinicians for a rationale determination and optimization of drug dosing parameters in the treatment of leptomeningeal metastases.
Collapse
Affiliation(s)
- Nolwenn Brandhonneur
- Université de Rennes 1, Rennes, France; Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, IRSET U1085, Rennes, France
| | - Fanny Noury
- Université de Rennes 1, Rennes, France; LTSI, INSERM, UMR 1099, Rennes, France
| | - Arnaud Bruyère
- Université de Rennes 1, Rennes, France; Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, IRSET U1085, Rennes, France
| | - Hervé Saint-Jalmes
- Université de Rennes 1, Rennes, France; LTSI, INSERM, UMR 1099, Rennes, France; CRLCC, Centre Eugène Marquis, Rennes, France
| | - Pascal Le Corre
- Université de Rennes 1, Rennes, France; Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, IRSET U1085, Rennes, France; Pôle Pharmacie, CHU de Rennes, France.
| |
Collapse
|
22
|
CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol 2016; 138-140:36-53. [DOI: 10.1016/j.pneurobio.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
|