1
|
Shah SZH, Rashid A, Majeed A, Ghafoor T, Azam N. Sanger Sequencing Reveals Novel Variants in GLO-1, ACE, and CBR1 Genes in Patients of Early and Severe Diabetic Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1540. [PMID: 39336582 PMCID: PMC11433688 DOI: 10.3390/medicina60091540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Diabetes is a global health issue, with approximately 50% of patients developing diabetic nephropathy (DN) and 25% experiencing early and severe forms of the disease. The genetic factors contributing to rapid disease progression in a subset of these patients are unclear. This study investigates genetic variations in the GLO-1, CBR-1, and ACE genes associated with early and severe DN. Materials and Methods: Sanger DNA sequencing of the exons of CBR1, GLO1, and ACE genes was conducted in 113 patients with early and severe DN (defined as occurring within 10 years of the diagnosis of diabetes and with eGFR < 45 mL/min/1.73 m2) and 100 controls. The impact of identified genetic variations was analyzed using computational protein models created in silico with SWISS-Model and SWISS-Dock for ligand binding interactions. Results: In GLO1, two heterozygous missense mutations, c.102G>T and c.147C>G, and one heterozygous nonsense mutation, c.148G>T, were identified in patients. The SNP rs1049346 (G>A) at location 6:38703061 (GRCh38) was clinically significant. The c.147C>G mutation (C19S) was associated with ligand binding disruption in the GLO1 protein, while the nonsense mutation resulted in a truncated, non-functional protein. In CBR1, two heterozygous variations, one missense c.358G>A, and one silent mutation c.311G>C were observed, with the former (D120N) affecting the active site. No significant changes were noted in ACE gene variants concerning protein structure or function. Conclusions: The study identifies four novel and five recurrent mutations/polymorphisms in GLO1, ACE, and CBR1 genes associated with severe DN in Pakistani patients. Notably, a nonsense mutation in GLO1 led to a truncated, non-functional protein, while missense mutations in GLO1 and CBR1 potentially disrupt enzyme function, possibly accelerating DN progression.
Collapse
Affiliation(s)
- Syed Zubair Hussain Shah
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Amir Rashid
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Asifa Majeed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (A.R.); (A.M.)
| | - Tariq Ghafoor
- Armed Forces Bone Marrow Transplant Center, Rawalpindi 46000, Pakistan;
| | - Nadeem Azam
- Pak Emirates Military Hospital, Rawalpindi 46000, Pakistan
| |
Collapse
|
2
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
3
|
Yin J, Ma G, Luo S, Luo X, He B, Liang C, Zuo X, Xu X, Chen Q, Xiong S, Tan Z, Fu J, Lv D, Dai Z, Wen X, Zhu D, Ye X, Lin Z, Lin J, Li Y, Chen W, Luo Z, Li K, Wang Y. Glyoxalase 1 Confers Susceptibility to Schizophrenia: From Genetic Variants to Phenotypes of Neural Function. Front Mol Neurosci 2021; 14:739526. [PMID: 34790095 PMCID: PMC8592033 DOI: 10.3389/fnmol.2021.739526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to investigate the role of glyoxalase 1 (Glo-1) polymorphisms in the susceptibility of schizophrenia. Using the real-time polymerase chain reaction (PCR) and spectrophotometric assays technology, significant differences in Glo-1 messenger ribonucleic acid (mRNA) expression (P = 3.98 × 10-5) and enzymatic activity (P = 1.40 × 10-6) were found in peripheral blood of first-onset antipsychotic-naïve patients with schizophrenia and controls. The following receiver operating characteristic (ROC) curves analysis showed that Glo-1 could predict the schizophrenia risk (P = 4.75 × 10-6 in mRNA, P = 1.43 × 10-7 in enzymatic activity, respectively). To identify the genetic source of Glo-1 risk in schizophrenia, Glo-1 polymorphisms (rs1781735, rs1130534, rs4746, and rs9470916) were genotyped with SNaPshot technology in 1,069 patients with schizophrenia and 1,023 healthy individuals. Then, the impact of risk polymorphism on the promoter activity, mRNA expression, and enzymatic activity was analyzed. The results revealed significant differences in the distributions of genotype (P = 0.020, false discovery rate (FDR) correction) and allele (P = 0.020, FDR correction) in rs1781735, in which G > T mutation significantly showed reduction in the promoter activity (P = 0.016), mRNA expression, and enzymatic activity (P = 0.001 and P = 0.015, respectively, GG vs. TT, in peripheral blood of patients with schizophrenia) of Glo-1. The expression quantitative trait locus (eQTL) findings were followed up with the resting-state functional magnetic resonance imaging (fMRI) analysis. The TT genotype of rs1781735, associated with lower RNA expression in the brain (P < 0.05), showed decreased neuronal activation in the left middle frontal gyrus in schizophrenia (P < 0.001). In aggregate, this study for the first time demonstrates how the genetic and biochemical basis of Glo-1 polymorphism culminates in the brain function changes associated with increased schizophrenia risk. Thus, establishing a combination of multiple levels of changes ranging from genetic variants, transcription, protein function, and brain function changes is a better predictor of schizophrenia risk.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao SAR, China.,Department of Psychology, Faculty of Social Sciences, University of Macau, Macao SAR, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xiang Zuo
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Qing Chen
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
4
|
Tao H, Chen Z, Wu J, Chen J, Chen Y, Fu J, Sun C, Zhou H, Zhong W, Zhou X, Li K. DNA Methylation Signature of Epileptic Encephalopathy-Related Pathogenic Genes Encoding Ion Channels in Temporal Lobe Epilepsy. Front Neurol 2021; 12:692412. [PMID: 34393975 PMCID: PMC8358672 DOI: 10.3389/fneur.2021.692412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is characterized by highly abnormal synchronous discharge of brain neurons, and ion channels are fundamental in the generation and modulation of neural excitability. Considering that abnormal methylation can either activate or repress genes, this study was designed to explore the DNA methylation signature of pathogenic genes encoding ion channels in temporal lobe epilepsy (TLE). In total, 38 TLE patients and 38 healthy controls were enrolled in the study, and genomic DNA and total protein of the lymphocytes were extracted from peripheral blood samples to assess methylation and protein levels. The DNA methylation levels of all 12 genes examined were significantly lower in the TLE group than in the control group. After false-positive correction, 83.3% (10/12) of these genes, namely, gamma-aminobutyric acid type A receptor subunit beta1 (GABRB1), gamma-aminobutyric acid type A receptor subunit beta2 (GABRB2), gamma-aminobutyric acid type A receptor subunit beta1 (GABRB3), glutamate ionotropic receptor NMDA type subunit 1 (GRIN1), glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), hyperpolarization activated cyclic nucleotide gated potassium channel 1 (HCN1), potassium voltage-gated channel subfamily A member 2 (KCNA2), potassium voltage-gated channel subfamily B member 1 (KCNB1), and potassium sodium-activated channel subfamily T member 1 (KCNT1), were still differentially expressed. Among these ion channels, HCN1 and KCNA2 were selected to evaluate the effects of DNA methylation, and the levels of these proteins were inversely upregulated in the TLE group compared to the control group. As the genes identified as having differential methylation levels are involved in both excitatory and inhibitory ion channels, this study observed by binary logistic regression that hypermethylated GARAB1 was an independent risk factor for TLE, indicating that the overwhelming effect of ion channels on TLE is probably inhibitory from the perspective of DNA methylation. All these findings support the involvement of DNA methylation in TLE pathologies, but the mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zengqiang Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianhao Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Neurology & Neurosurgery Division, Stroke Center, Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Wan Y, Yang ZQ. LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell Cycle 2020; 19:419-431. [PMID: 31948324 DOI: 10.1080/15384101.2020.1711578] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is crucial to understand the molecular mechanisms involved in epileptogenesis. This study aims to investigate the role of lncRNA NEAT1, miR-129-5p and Notch signaling pathway in epilepsy. In this research, temporal lobe tissues were collected from patients with epilepsy and healthy controls. The CTX-TNA cells were treated with IL-1β to establish as epilepsy cell model, which were then manipulated the expression level of NEAT1, miR-129-5p and Notch1 to investigate their roles in the epilepsy progression. The expression levels of RNA and protein in temporal lobe tissues and epilepsy cell model were determined by RT-qPCR, western blotting or ELISA, respectively. MTT assay was utilized to analyze the cell viability. Dual-luciferase reporter assay was used to explore the interaction relationship between lncRNA NEAT1, miR-129-5p and Notch1. Silencing NEAT1 significantly reduced the expression levels of IL-6, COX-2 and TNF-α in epilepsy cell model. The overexpression of NEAT1 suppressed the expression level of miR-129-5p. Inhibiting miR-129-5p significantly increased the expression of IL-6, COX-2, TNF-α and Notch1. Furthermore, the expression levels of IL-6, COX-2 and TNF-α were increased after overexpressing Notch1 in miR-129-5p mimics-treated cells. The expression levels of Notch1, JAG1, and HES1 were decreased after transfecting with sh-NEAT1. However, compared with sh-NEAT1 group, the expression levels of Notch1, JAG1, HES1, IL-6 and TNF-α were reversed by miR-129-5p inhibition or Notch1 overexpression. The present study verified that lncRNA NEAT1 affected inflammatory response of epilepsy by suppressing miR-129-5p and further regulating Notch signaling pathway in IL-1β-induced epilepsy cell model.Abbreviations: CNS: Central nervous system; lncRNAs: Long noncoding RNAs; NEAT1: Nuclear-enriched abundant transcript 1; miRNAs: MicroRNAs; ATCC: American Type Culture Collection; DMEM: Dulbecco's Modified Eagle Medium; FBS: Fetal bovine serum; ELISA: Enzyme-linked immunosorbent assay; RT-qPCR: Reverse transcription-quantitative polymerase chain reaction; SD: Standard deviation; ANOVA: Analysis of variance; LPS: Ligand lipopolysaccharide; GLO1: Glyoxalase I.
Collapse
Affiliation(s)
- Yi Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
6
|
Jiang L, Wang J, Wang Z, Huang W, Yang Y, Cai Z, Li K. Role of the Glyoxalase System in Alzheimer's Disease. J Alzheimers Dis 2019; 66:887-899. [PMID: 30400091 DOI: 10.3233/jad-180413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disease. The main pathological features of AD are the formation of amyloid-β deposits in the anterior cerebral cortex and hippocampus as well as the formation of intracellular neurofibrillary tangles. Thus far, accumulating evidence shows that glycation is closely related to AD. As a final product resulting from the crosslinking of a reducing sugar or other reactive carbonyls and a protein, the advanced glycation end products have been found to be associated with the formation of amyloid-β and neurofibrillary tangles in AD. As a saccharification inhibitor, the glyoxalase system and its substrate methylglyoxal (MG) were certified to be associated with AD onset and development. As an active substance of AGEs, MG could cause direct or indirect damage to nerve cells and tissues. MG is converted to D-lactic acid after decomposition by the glyoxalase system. Under normal circumstances, MG metabolism is in a dynamic equilibrium, whereas MG accumulates in cells in the case of aging or pathological states. Studies have shown that increasing glyoxalase activity and reducing the MG level can inhibit the generation of oxidative stress and AGEs, thereby alleviating the symptoms and signs of AD to some extent. This paper focuses on the relevant mechanisms of action of the glyoxalase system and MG in the pathogenesis of AD, as well as the potential of inhibiting the production of advanced glycation end products in the treatment of AD.
Collapse
Affiliation(s)
- Lianying Jiang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiafeng Wang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhigang Wang
- Department of Neurosurgery, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yixia Yang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Donato L, Scimone C, Nicocia G, Denaro L, Robledo R, Sidoti A, D'Angelo R. GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case-control study in a Sicilian population. Mol Biol Rep 2018; 45:1349-1355. [PMID: 30099685 DOI: 10.1007/s11033-018-4295-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, whose excess can cause oxidative stress. In retinitis pigmentosa (RP), the prevalent cause of blindness just during working life in the industrialized countries, oxidative stress represents one of the possible mechanisms leading to death of cones following that of rods in the retina. To date, the causes of secondary death of cones remain unclear and among proposed mechanisms are: the deprivation of trophic factors normally produced by healthy rods, a compromised uptake of nutrients to cones due to irreversible destruction of RPE-cone outer segment, microglial activation and following release of pro-inflammatory cytokines and rod-derived toxins. In present paper, role of oxidative stress due to an excess of MGO was evaluated. In particular, we wanted to determine whether single nucleotide polymorphisms (SNPs) in GLO1 influence enzyme activity, contributing to cone death in advanced RP. 120 healthy controls and 80 RP patients from Sicilian population were genotyped for three GLO1 common SNPs, rs1130534 (c.372A>T, p.G124G), rs2736654 (c.A332C, p.E111A) and rs1049346 (c.-7C>T, 5'-UTR). While c.A332C polymorphism was not associated with RP, c.372A>T showed an allelic association (T372 allele frequency = 70% vs 60% in controls, p = 0.0071). Conversely, c.-7C>T showed both genotypic (χ2 = 68.0952; p = 1.634e-15) and allelic associations (χ2 = 51.7094; p = 6.435e-13): mutated allele frequency was higher in controls than in patients, suggesting its possible protective role. RP susceptibility may be associated with two of the analyzed GLO1 polymorphisms (rs1130534 and rs1049346).
Collapse
Affiliation(s)
- Luigi Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Concetta Scimone
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Lucia Denaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Antonina Sidoti
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy. .,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Tao H, Zhou X, Zhao B, Li K. Conflicting Effects of Methylglyoxal and Potential Significance of miRNAs for Seizure Treatment. Front Mol Neurosci 2018; 11:70. [PMID: 29556176 PMCID: PMC5845011 DOI: 10.3389/fnmol.2018.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
According to an update from the World Health Organization, approximately 50 million people worldwide suffer from epilepsy, and nearly one-third of these individuals are resistant to the currently available antiepileptic drugs, which has resulted in an insistent pursuit of novel strategies for seizure treatment. Recently, methylglyoxal (MG) was demonstrated to serve as a partial agonist of the gamma-aminobutyric acid type A (GABAA) receptor and to play an inhibitory role in epileptic activities. However, MG is also a substrate in the generation of advanced glycation end products (AGEs) that function by activating the receptor of AGEs (RAGE). The AGE/RAGE axis is responsible for the transduction of inflammatory cascades and appears to be an adverse pathway in epilepsy. This study systematically reviewed the significance of GABAergic MG, glyoxalase I (GLO1; responsible for enzymatic catalysis of MG cleavage) and downstream RAGE signaling in epilepsy. This work also discussed the potential of miRNAs that target multiple mRNAs and introduced a preliminary scheme for screening and validating miRNA candidates with the goal of reconciling the conflicting effects of MG for the future development of seizure treatments.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Abdul-Maksoud RS, Elsayed WS, Elsayed RS. The influence of glyoxalase 1 gene polymorphism on its expression at different stages of breast cancer in Egyptian women. Genes Cancer 2017; 8:799-807. [PMID: 29321821 PMCID: PMC5755725 DOI: 10.18632/genesandcancer.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim To assess the association of GLO1 C332C gene polymorphism with breast cancer risk at different stages of the disease and to investigate the effect of this gene polymorphism on its mRNA expression and enzyme activity. Methods GLO1 C332C gene polymorphism was analyzed by PCR-RFLP in 100 healthy controls and 200 patients with breast cancer (100 patients with stage I & II and 100 patients with stage III & IV). GLO1 mRNA expression was measured by real time PCR. Serum GLO1 enzyme activity was measured colorimetrically. Results GLO1 A allele was associated with increased risk of breast cancer [OR (95%CI)= 2.8(1.9-4.1), P < 0.001]. Its frequency was significantly higher among advanced stages of breast cancer compared with localized tumors (OR (95%CI)= 1.9(1.3-2.9), p < 0.001). GLO1 mRNA expression and enzyme activity were significantly higher in breast cancer patients compared to controls and they were much higher in the advanced stages of the disease (P < 0.001). Carriers of AA genotype showed higher GLO1 expression and enzyme activity compared with carriers of CC genotype. Conclusion GLO1 C332C SNP was associated with overexpression of GLO1 mRNA and higher enzyme activity in breast cancer patients suggesting its role in the development of breast cancer and its progression from localized to advanced.
Collapse
Affiliation(s)
| | - Walid Sh Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
10
|
Lim KS, Ng CC, Chan CK, Foo WS, Low JSY, Tan CT. Ethnic variation of genetic (idiopathic) generalized epilepsy in Malaysia. Seizure 2017; 45:24-27. [DOI: 10.1016/j.seizure.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
|