1
|
Francis A, Santos M, Leal Rato M, Wintle YM, Brex P, Chen B, Cooper S, Dobson R, Geraldes R, Hemingway C, Huda S, Messina S, Ramdas S, Leite MI, Palace J. Study of seasonality of attacks in MOG antibody-associated disease. Mult Scler Relat Disord 2024; 90:105814. [PMID: 39151237 DOI: 10.1016/j.msard.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Seasonal variation in attacks of acute disseminated encephalomyelitis (ADEM1) is reported in some studies. Myelin oligodendrocyte glycoprotein (MOG) antibodies are found in up to 50 % of ADEM cases. Despite this, there has been no adequately powered study of seasonality in MOG antibody-associated disease (MOGAD). We sought to determine whether there was an effect of season on incidence of total attacks and onset attacks of MOGAD. METHODS We searched the large national Oxford-based NMO Service database to identify attacks of MOGAD occurring between 2010 and 2021. Month of each attack was extracted and Edwards' test of seasonal variation was applied to determine whether there was a seasonal effect on total attacks and onset attacks. RESULTS Neither incidence of total attacks nor incidence of onset attacks varied significantly by month. CONCLUSION There is no evidence of seasonal fluctuations in the incidence of MOGAD attacks in the UK.
Collapse
Affiliation(s)
- Anna Francis
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Monica Santos
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Miguel Leal Rato
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Peter Brex
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Bo Chen
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology: Wuhan, Hubei, China
| | - Sarah Cooper
- Neurology, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Ruth Dobson
- Department of Neurology, Royal London Hospital, London, UK
| | - Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Cheryl Hemingway
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Saif Huda
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Silvia Messina
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Sithara Ramdas
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
2
|
Kundapur D, Badeeb N, Mollanji E, Karanjia R, Lelli D, Albreiki D. Detecting seasonal trends in optic neuritis within the Ottawa region. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e142-e148. [PMID: 36731536 DOI: 10.1016/j.jcjo.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE In this study we aim to determine seasonal patterns underlying optic neuritis (ON) onset that may provide valuable epidemiologic information and help delineate causative or protective factors. DESIGN Single-centre retrospective chart review. METHODS A database search of centralized electronic health records was completed using diagnostic codes employed at the Ottawa Eye Institute for data collection. Charts were reviewed for documentation supporting a diagnosis of ON falling into the following categories: multiple sclerosis ON and clinically isolated syndrome ON, myelin oligodendrocyte glycoprotein ON, neuromyelitis optica ON, and idiopathic ON. Date of onset, biological sex, and age were extracted from each chart. Data were analyzed for calculation of frequency by season and overall pooled seasonal trends of all cases of ON. RESULTS From the 218 included patients with ON, there was no statistically significant seasonal correlation. The overall trend of ON was lowest in winter and spring (22% and 23%, respectively) and highest in summer and fall (28% and 27% respective). Divided further, multiple sclerosis ON or clinically isolated syndrome ON rates (n = 144) were lowest in the spring (21%) and highest in fall (29%); myelin oligodendrocyte glycoprotein ON rates (n = 25) were lowest in winter (16%) and highest in summer and fall (both at 32%); neuromyelitis optica ON rates (n = 16) were lowest in fall (12.5%) and highest in winter and summer (both at 31.25%); and idiopathic ON rates (n = 33) were lowest in fall (18%) and highest in spring (33%). CONCLUSIONS The overall ON seasonal trend appears to have a predilection for the summer and fall months, which may be explained by warmer weather and viral infections as risk factors for multiple sclerosis relapse during those seasons.
Collapse
Affiliation(s)
| | - Nooran Badeeb
- Department of Ophthalmology, School of Medicine, University of Jeddah, Jeddah, Saudi Arabia; Department of Ophthalmology, University of Ottawa, Ottawa, ON
| | - Eisi Mollanji
- University of Ottawa, Faculty of Medicine, Ottawa, ON
| | - Rustum Karanjia
- Department of Ophthalmology, University of Ottawa, Ottawa, ON
| | - Daniel Lelli
- Division of Neurology, University of Ottawa, Ottawa, ON
| | - Danah Albreiki
- Department of Ophthalmology, University of Ottawa, Ottawa, ON.
| |
Collapse
|
3
|
Zheng S, Wang Y, Geng J, Liu X, Huo L. Global trends in research on MOG antibody-associated disease: bibliometrics and visualization analysis. Front Immunol 2024; 15:1278867. [PMID: 38370410 PMCID: PMC10869486 DOI: 10.3389/fimmu.2024.1278867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Objective The purpose of this study was to investigate the current research status, focus areas, and developmental trends in the field of Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) through an analysis of scientific literature. Methods The relevant research articles on MOGAD published from 1947 to 2022 were retrieved from the Web of Science database. The quantitative output of MOGAD related research articles, their distribution by country/region, data on collaborative publishing, influential authors, high-yield institutions, keywords, hotspots, and development trends were analyzed. Additionally, visual knowledge maps were generated using VOSviewer and Citespace. Results There has been a steady increase in the number of MOGAD related publications indicating that the subject has garnered increasing interest among researchers globally. The United States has been the leading contributor with 496 papers (19.25%), followed by China (244, 9.63%), Japan (183, 7.10%), the United Kingdom (154, 5.98%), and Germany (149, 5.78%). Among these countries, the United Kingdom boasts the highest citation frequency at the rate of 46.49 times per paper. Furthermore, active collaboration in MOGAD related research is observed primarily between the United States and countries such as Canada, Germany, Australia, Italy, the United Kingdom and Japan. Mayo Clinic ranks first in total articles published (109) and frequency of citations per article (77.79). Takahashi Toshiyuki from Tohoku University is the most prolific author, while Multiple Sclerosis and Related Disorders is the most widely read journal in this field. "Disease Phenotype", "Treatment", "Novel Coronavirus Infection and Vaccination", "Immunopathological Mechanisms", "Clinical characteristics of children" and "Prognosis" are the primary keywords clusters in this field. "Novel Coronavirus Infection and Vaccination" and "Immunopathological Mechanisms" are research hotspots and have great development potential. Conclusion The past three decades have witnessed a significant expansion of research on MOGAD. The pathogenetic mechanism of MOGAD is poised to be the prominent research focus in this field in the foreseeable future.
Collapse
Affiliation(s)
- Shuhan Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Wang
- National Science Library, Chinese Academy of Sciences, Beijing, China
- Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Geng
- Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
- Department of Pharmaceutical Biotechnology, China Medical University-The Queen’s University if Belfast Joint College, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Hor JY, Fujihara K. Epidemiology of myelin oligodendrocyte glycoprotein antibody-associated disease: a review of prevalence and incidence worldwide. Front Neurol 2023; 14:1260358. [PMID: 37789888 PMCID: PMC10542411 DOI: 10.3389/fneur.2023.1260358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an inflammatory demyelinating disease of the central nervous system (CNS) with the presence of conformation-sensitive antibodies against MOG. The spectrum of MOGAD includes monophasic/relapsing optic neuritis, myelitis, neuromyelitis optica spectrum disorder (NMOSD) phenotype without aquaporin 4 (AQP4) antibodies, acute/multiphasic demyelinating encephalomyelitis (ADEM/MDEM)-like presentation, and brainstem and cerebral cortical encephalitis. There is no apparent female preponderance in MOGAD, and MOGAD can onset in all age groups (age at onset is approximately 30 years on average, and approximately 30% of cases are in the pediatric age group). While prevalence and incidence data have been available for AQP4+ NMOSD globally, such data are only beginning to accumulate for MOGAD. We reviewed the currently available data from population-based MOGAD studies conducted around the world: three studies in Europe, three in Asia, and one joint study in the Americas. The prevalence of MOGAD is approximately 1.3-2.5/100,000, and the annual incidence is approximately 3.4-4.8 per million. Among White people, the prevalence of MOGAD appears to be slightly higher than that of AQP4+ NMOSD. No obvious latitude gradient was observed in the Japanese nationwide survey. The data available so far showed no obvious racial preponderance or strong HLA associations in MOGAD. However, precedent infection was reported in approximately 20-40% of MOGAD cases, and this is worthy of further investigation. Co-existing autoimmune disorders are less common in MOGAD than in AQP4+ NMOSD, but NMDAR antibodies may occasionally be positive in patients with MOGAD. More population-based studies in different populations and regions are useful to further inform the epidemiology of this disease.
Collapse
Affiliation(s)
- Jyh Yung Hor
- Department of Neurology, Penang General Hospital, Penang, Malaysia
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Koriyama, Japan
- Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| |
Collapse
|
5
|
Richter D, Bartig D, Tönges L, Kümpfel T, Schwake C, Gold R, Krogias C, Ayzenberg I. Inpatient care of neuromyelitis optica spectrum disorder in Germany: Nationwide analysis from 2010 to 2021. Mult Scler J Exp Transl Clin 2023; 9:20552173231184433. [PMID: 37435571 PMCID: PMC10331198 DOI: 10.1177/20552173231184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Background Despite tremendous development in the treatment of neuromyelitis optica spectrum disorder (NMOSD), less is known about the characteristics of hospitalized patients and inpatient care utilization. Objective To investigate the development of inpatient NMOSD case numbers and implemented immunotherapies in the last decade in Germany. Methods We conducted a nationwide retrospective study using an administrative database of all hospitalized NMOSD patients between 2010 and 2021. We evaluated yearly data on case numbers, demographics, treatment regimens, and seasonal variations of apheresis therapy as a surrogate marker of severe relapse incidence. Results During the observational period case number of inpatients substantially increased (2010:n = 463, 2021:n = 992). The mean age was 48.1 ± 2.5 years (74% females). The pooled yearly rate of plasmapheresis/immunoadsorption was 14% (95% CI [13-15%]), without seasonal variations. Its application peaked in 2013 (18%, 95% CI [15-21%]) with decreasing trend since. Predominant immunotherapy was rituximab (40%, 95% CI [34-45%]), followed by tocilizumab (4%, 95% CI [3-5%]) since 2013 and eculizumab (4%, 95% CI [3-5%]) since 2020. Inpatient mortality ranged between 0% and 1% per year. Conclusions Inpatient case numbers of NMOSD substantially increased during the past decade, probably reflecting improving disease awareness. In parallel with the administration of highly effective therapies rate of apheresis therapies decreased. A stable apheresis rate over the year makes seasonal variations of the steroid-refractive relapses unlikely.
Collapse
Affiliation(s)
- Daniel Richter
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Dirk Bartig
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
- DRG Market, Osnabrück, Germany
| | - Lars Tönges
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
| | - Tania Kümpfel
- LMU Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - Carolin Schwake
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St Josef-Hospital Bochum, Ruhr University Bochum, Germany
| |
Collapse
|
6
|
Orlandi R, Mariotto S, Gajofatto A. Prevalence, incidence, and season distribution of MOG antibody-associated disease in the province of Verona, Italy. Mult Scler Relat Disord 2022; 63:103884. [DOI: 10.1016/j.msard.2022.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
7
|
Carnero Contentti E, Lopez PA, Pettinicchi JP, Criniti J, Pappolla A, Miguez J, Patrucco L, Cristiano E, Liwacki S, Tkachuk V, Balbuena ME, Vrech C, Deri N, Correale J, Marrodan M, Ysrraelit MC, Leguizamon F, Luetic G, Menichini ML, Tavolini D, Mainella C, Zanga G, Burgos M, Hryb J, Barboza A, Lazaro L, Alonso R, Fernández Liguori N, Nadur D, Chercoff A, Alonso Serena M, Caride A, Paul F, Rojas JI. Seasonal variation in attacks of neuromyelitis optica spectrum disorders and multiple sclerosis: Evaluation of 794 attacks from a nationwide registry in Argentina. Mult Scler Relat Disord 2021; 58:103466. [PMID: 34929456 DOI: 10.1016/j.msard.2021.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Identification of triggers that potentially instigate attacks in neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) has remained challenging. We aimed to analyze the seasonality of NMOSD and MS attacks in an Argentinean cohort seeking differences between the two disorders. METHODS A retrospective study was conducted in a cohort of NMOSD and MS patients followed in specialized centers from Argentina and enrolled in RelevarEM, a nationwide, longitudinal, observational, non-mandatory registry of MS/NMOSD patients. Patients with complete relapse data (date, month and year) at onset and during follow-up were included. Attack counts were analyzed by month using a Poisson regression model with the median monthly attack count used as reference. RESULTS A total of 551 patients (431 MS and 120 NMOSD), experiencing 236 NMOSD-related attacks and 558 MS-related attacks were enrolled. The mean age at disease onset in NMOSD was 39.5 ± 5.8 vs. 31.2 ± 9.6 years in MS (p < 0.01). Mean follow-up time was 6.1 ± 3.0 vs. 7.4 ± 2.4 years (p < 0.01), respectively. Most of the included patients were female in both groups (79% vs. 60%, p < 0.01). We found a peak of number of attacks in June (NMOSD: 28 attacks (11.8%) vs MS: 33 attacks (5.9%), incidence rate ratio 1.82, 95%CI 1.15-2.12, p = 0.03), but no differences were found across the months in both disorders when evaluated separately. Strikingly, we observed a significant difference in the incidence rate ratio of attacks during the winter season when comparing NMOSD vs. MS (NMOSD: 75 attacks (31.7%) vs MS: 96 attacks (17.2%), incidence rate ratio 1.82, 95%CI 1.21-2.01, p = 0.02) after applying Poisson regression model. Similar results were observed when comparing the seropositive NMOSD (n = 75) subgroup vs. MS. CONCLUSIONS Lack of seasonal variation in MS and NMOSD attacks was observed when evaluated separately. Future epidemiological studies about the effect of different environmental factors on MS and NMOSD attacks should be evaluated prospectively in Latin America population.
Collapse
Affiliation(s)
- Edgar Carnero Contentti
- Department of Neurosciences, Neuroimmunology Unit, Hospital Alemán, Av. Pueyrredón 1640, Buenos Aires C1118AAT, Argentina.
| | - Pablo A Lopez
- Department of Neurosciences, Neuroimmunology Unit, Hospital Alemán, Av. Pueyrredón 1640, Buenos Aires C1118AAT, Argentina
| | - Juan Pablo Pettinicchi
- Department of Neurosciences, Neuroimmunology Unit, Hospital Alemán, Av. Pueyrredón 1640, Buenos Aires C1118AAT, Argentina
| | - Juan Criniti
- Department of Neurosciences, Neuroimmunology Unit, Hospital Alemán, Av. Pueyrredón 1640, Buenos Aires C1118AAT, Argentina
| | - Agustín Pappolla
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Miguez
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Patrucco
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Susana Liwacki
- Clínica Universitaria Reina Fabiola, Córdoba, Argentina; Servicio de Neurología - Hospital Córdoba, Córdoba, Argentina
| | - Verónica Tkachuk
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología - Hospital de Clínicas José de San Martín, CABA, Argentina
| | - María E Balbuena
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología - Hospital de Clínicas José de San Martín, CABA, Argentina
| | - Carlos Vrech
- Departamento de Enfermedades desmielinizantes - Sanatorio Allende, Córdoba, Argentina
| | - Norma Deri
- Centro de Investigaciones Diabaid, CABA, Argentina
| | | | | | | | | | | | | | | | | | - Gisela Zanga
- Unidad asistencial César Milstein, CABA, Argentina
| | - Marcos Burgos
- Servicio de Neurología - Hospital San Bernardo, Salta, Argentina
| | - Javier Hryb
- Servicio de Neurología - Hospital Carlos G. Durand, CABA, Argentina
| | | | | | | | | | - Débora Nadur
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología - Hospital de Clínicas José de San Martín, CABA, Argentina; Hospital Naval, CABA, Argentina
| | - Aníbal Chercoff
- Sección de Enfermedades Desmielinizantes - Hospital Británico, CABA, Argentina
| | | | - Alejandro Caride
- Department of Neurosciences, Neuroimmunology Unit, Hospital Alemán, Av. Pueyrredón 1640, Buenos Aires C1118AAT, Argentina
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, CABA, Argentina; Servicio de Neurología, Hospital Universitario de CEMIC, CABA, Argentina
| |
Collapse
|
8
|
Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD. Int J Mol Sci 2021; 22:ijms22157925. [PMID: 34360690 PMCID: PMC8347572 DOI: 10.3390/ijms22157925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-based therapies are gaining momentum as promising treatments for rare neurological autoimmune diseases, including neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. The development of targeted cell therapies is hampered by the lack of adequate animal models that mirror the human disease. Most cell-based treatments, including HSCT, CAR-T cell, tolerogenic dendritic cell and mesenchymal stem cell treatment have entered early stage clinical trials or have been used as rescue treatment in treatment-refractory cases. The development of antigen-specific cell-based immunotherapies for autoimmune diseases is slowed down by the rarity of the diseases, the lack of surrogate outcomes and biomarkers that are able to predict long-term outcomes and/or therapy effectiveness as well as challenges in the manufacturing of cellular products. These challenges are likely to be overcome by future research.
Collapse
|
9
|
Costamagna G, Abati E, Bresolin N, Comi GP, Corti S. Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. J Neurol 2021; 268:1580-1591. [PMID: 32804279 PMCID: PMC7429942 DOI: 10.1007/s00415-020-10149-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
The novel Coronavirus disease-19 (COVID-19) pandemic has posed several challenges for neuromuscular disorder (NMD) patients. The risk of a severe course of SARS-CoV-2 infection is increased in all but the mildest forms of NMDs. High-risk conditions include reduced airway clearance due to oropharyngeal weakness and risk of worsening with fever, fasting or infection Isolation requirements may have an impact on treatment regimens administered in hospital settings, such as nusinersen, glucosidase alfa, intravenous immunoglobulin, and rituximab infusions. In addition, specific drugs for SARS-CoV2 infection under investigation impair neuromuscular function significantly; chloroquine and azithromycin are not recommended in myasthenia gravis without available ventilatory support and prolonged prone positioning may influence options for treatment. Other therapeutics may affect specific NMDs (metabolic, mitochondrial, myotonic diseases) and experimental approaches for Coronavirus disease 2019 may be offered "compassionately" only after consulting the patient's NMD specialist. In parallel, the reorganization of hospital and outpatient services may change the management of non-infected NMD patients and their caregivers, favouring at-distance approaches. However, the literature on the validation of telehealth in this subgroup of patients is scant. Thus, as the first wave of the pandemic is progressing, clinicians and researchers should address these crucial open issues to ensure adequate caring for NMD patients. This manuscript summarizes available evidence so far and provides guidance for both general neurologists and NMD specialists dealing with NMD patients in the time of COVID-19.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Elena Abati
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
10
|
Akaishi T, Fujimori J, Takahashi T, Misu T, Takai Y, Nishiyama S, Kaneko K, Ogawa R, Abe M, Ishii T, Aoki M, Fujihara K, Nakashima I. Seasonal variation of onset in patients with anti-aquaporin-4 antibodies and anti-myelin oligodendrocyte glycoprotein antibody. J Neuroimmunol 2020; 349:577431. [PMID: 33147540 DOI: 10.1016/j.jneuroim.2020.577431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to determine the seasonal impact on the clinical onset of inflammatory neurological diseases of the central nervous system by analyzing the onset month with information on clinical manifestations in Japanese patients. As a result, patients with anti-aquaporin-4 antibodies (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSD) showed spring-summer predominance of the clinical onset. Conversely, patients with anti-myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease showed autumn-winter predominance of the clinical onset. Both seasonal variations were irrespective of the clinical manifestation. Environmental factors with seasonal variation influence the development of neurological conditions related to AQP4-IgG and MOG-IgG.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
11
|
Seasonal variation in relapse of neuromyelitis optica spectrum disorders: A retrospective study in China. J Neuroimmunol 2020; 347:577351. [DOI: 10.1016/j.jneuroim.2020.577351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
|