1
|
Eichorn FC, Kameda-Smith M, Fong C, Graham AK, Main C, Lu JQ. Polymicrobial brain abscesses: A complex condition with diagnostic and therapeutic challenges. J Neuropathol Exp Neurol 2024; 83:798-807. [PMID: 38874452 DOI: 10.1093/jnen/nlae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Brain abscesses (BA) are focal parenchymal infections that remain life-threatening conditions. Polymicrobial BAs (PBAs) are complex coinfections of bacteria or bacterial and nonbacterial pathogens such as fungi or parasites, with diagnostic and therapeutic challenges. In this article, we comprehensively review the prevalence, pathogenesis, clinical manifestations, and microbiological, histopathological, and radiological features of PBAs, as well as treatment and prognosis. While PBAs and monomicrobial BAs have some similarities such as nonspecific clinical presentations, PBAs are more complex in their pathogenesis, pathological, and imaging presentations. The diagnostic challenges of PBAs include nonspecific imaging features at early stages and difficulties in identification of some pathogens by routine techniques without the use of molecular analysis. Imaging of late-stage PBAs demonstrates increased heterogeneity within lesions, which corresponds to variable histopathological features depending on the dominant pathogen-induced changes in different areas. This heterogeneity is particularly marked in cases of coinfections with nonbacterial pathogens such as Toxoplasma gondii. Therapeutic challenges in the management of PBAs include initial medical therapy for possibly underrecognized coinfections prior to identification of multiple pathogens and subsequent broad-spectrum antimicrobial therapy to eradicate identified pathogens. PBAs deserve more awareness to facilitate prompt and appropriate treatment.
Collapse
Affiliation(s)
- Frances-Claire Eichorn
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| | | | - Crystal Fong
- Department of Radiology/Neuroradiology, McMaster University, Hamilton, Canada
| | - Alice K Graham
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| | - Cheryl Main
- Department of Pathology and Molecular Medicine/Microbiology, McMaster University, Hamilton, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Diagnostic and Molecular Pathology, McMaster University, Hamilton, Canada
| |
Collapse
|
2
|
Barros Oliveira CV, Paulino da Silva ME, de Lima JR, Tavares Moreira AM, Mendes Brito MJ, Coelho Gonçalves CA, Lemos de Barros JE, de Oliveira RM, Kamdem JP, Barros LM, Duarte AE. Correlations between the degree of infection by wild strain of Toxoplasma gondii in vitro and porcine hematological parameters. Exp Parasitol 2024; 261:108754. [PMID: 38636935 DOI: 10.1016/j.exppara.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The apicomplexa Toxoplasma gondii is capable of actively proliferating in numerous types of nucleated cells, and therefore has a high potential for dissemination and resistance. Thus, the present work aimed to correlate the inoculum concentrations and amount of post-infection parasites with porcine hematological parameters (including biochemistry) through in vitro culture. Porcine blood was incubated with different concentrations of parasites (1.2 × 107, 6/3/1.5 × 106 cells/mL), then the concentrations of red blood cells (RBC) and their morphology, total and differential leukocytes, and free peptides were evaluated. In addition, eight different blood samples analyzed before inoculation, where subsequent multivariate analysis was applied to correlate different variables with trophozoite concentration. The results showed no significant variation (p < 0.05) in the relative levels of free peptides, or the relative percentage of RBC at all the parasite concentrations tested. However, the normalized percentages of leukocytes and neutrophils showed a significant reduction, while those of lymphocytes, eosinophils and monocytes showed the opposite behavior. Semi-automatic processing of images exhibited significant microcytosis and hypochromia. The multivariate analysis revealed a positive correlation between the amount number of protozoa (AP) and the variables: "Red cells" and "Neutrophils", an indifference between the AP and the content of free peptides, and the concentration of monocytes in the samples; and a negative correlation for AP and the percentages of lymphocytes and eosinophils. Our results suggest that specific changes in hematological parameters may be associated with different degrees of parasitemia, demanding a thorough diagnostic process and adequate treatment.
Collapse
Affiliation(s)
| | - Maria Elenilda Paulino da Silva
- Laboratory for Research and Diagnosis of Tropical Diseases - LPDDT, Federal University of Pernambuco - UFPE, Recife, 50670-901, Brazil
| | - Jailson Renato de Lima
- Laboratory of Agricultural Entomology - LEA, Federal University of Cariri, Crato, 63113-140, Ceará, Brazil
| | - Amanda Maria Tavares Moreira
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Maria Jéssica Mendes Brito
- Center for Biological and Health Sciences - CCBS, Department of Biological Sciences, Regional University of Cariri - URCA, 63105-000, Crato, Ceara, Brazil
| | - Cicera Alane Coelho Gonçalves
- Laboratory of Semi-Arid Bioprospecting and Alternative Methods- LABSEMA, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - João Eudes Lemos de Barros
- Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | | | - Jean Paul Kamdem
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Luiz Marivando Barros
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Antonia Eliene Duarte
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
3
|
McGrath JJ, Lim CCW, Saha S. Cat Ownership and Schizophrenia-Related Disorders and Psychotic-Like Experiences: A Systematic Review and Meta-Analysis. Schizophr Bull 2024; 50:489-495. [PMID: 38041862 PMCID: PMC11059813 DOI: 10.1093/schbul/sbad168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
BACKGROUND It has been proposed that cat ownership may be a risk-modifying factor for schizophrenia-related disorders and psychotic-like experiences (PLE). This study aimed to systematically review and meta-analyze publications that reported the relationship between cat ownership and schizophrenia-related outcomes. METHODOLOGY We searched Medline, Embase, CINAHL, Web of Science, and gray literature for publications between January 1, 1980, and May 30, 2023, regardless of geographical location and language. Backward citation search methods were used to locate additional articles. We included studies that reported original data on cat ownership and schizophrenia-related outcomes. We meta-analyzed estimates based on broad definitions (cat ownership, cat bites, and cat contact) with estimates with or without covariate adjustments. We pooled comparable estimates using random-effects models and assessed the risk of bias, heterogeneity, and study quality. RESULTS We identified 1915 studies, of which 106 were chosen for full-text review, ultimately resulting in the inclusion of 17 studies. We found an association between broadly defined cat ownership and increased odds of developing schizophrenia-related disorders. For the studies reporting unadjusted odds ratios (OR; n = 10), the pooled OR was 2.14 (95% CI: 1.29-3.55). Exclusion of one outlier study resulted in a pooled OR (n = 9) of 1.56 (95% CI: 1.27-1.92). For the studies reporting adjusted estimates (n = 5), the pooled OR was 2.44 (95% CI: 1.59-3.73). After excluding one study with suboptimal exposure/design features, the pooled adjusted OR (n = 4) was 2.40 (95% CI: 1.50-3.86). We were unable to aggregate the estimates for the PLE outcomes because of the broad range of measures. CONCLUSIONS Our findings provide support for the hypothesis that cat exposure is associated with an increased risk of broadly defined schizophrenia-related disorders; however, the findings related to PLE as an outcome are mixed. There is a need for more high-quality studies in this field. PROSPERO REGISTRATION PROSPERO 2023 CRD42023426974. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023426974.
Collapse
Affiliation(s)
- John J McGrath
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Carmen C W Lim
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Sukanta Saha
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| |
Collapse
|
4
|
Flegr J, Chvátalová V, Příplatová L, Tureček P, Kodym P, Šebánková B, Kaňková Š. Cognitive Effects of Toxoplasma and CMV Infections: A Cross-Sectional Study of 557 Young Adults Considering Modulation by Sex and Rh Factor. Pathogens 2024; 13:363. [PMID: 38787216 PMCID: PMC11124290 DOI: 10.3390/pathogens13050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
One-third of humanity harbors a lifelong infection with Toxoplasma gondii, and probably about 80% are infected with human cytomegalovirus (CMV). This study aims to delineate the associations between toxoplasmosis and cognitive abilities and compare these to the associations with CMV. We evaluated the cognitive performance of 557 students, who had been examined for Toxoplasma and CMV infections, using intelligence, memory, and psychomotor tests. The results indicated cognitive impairments in seropositive individuals for both pathogens, with variations in cognitive impact related to sex and the Rh factor. Specifically, Toxoplasma infection was associated with lower IQ in men, whereas CMV was predominantly associated with worse performance by women when testing memory and reaction speeds. Analysis of the antibody concentrations indicated that certain Toxoplasma-associated cognitive detrimental effects may wane (impaired intelligence) or worsen (impaired reaction times) over time following infection. The findings imply that the cognitive impairments caused by both neurotropic pathogens are likely due to pathological changes in the brain rather than from direct manipulative action by the parasites.
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Veronika Chvátalová
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Lenka Příplatová
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Petr Tureček
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Petr Kodym
- National Reference Laboratory for Toxoplasmosis, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Blanka Šebánková
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Šárka Kaňková
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| |
Collapse
|
5
|
Kisiel M, Bass VM, Fong C, Graham AK, Yahya S, Eichorn FC, Lannon M, Kameda-Smith M, Reddy KKV, Lu JQ. Clinicopathologic characteristics of Nocardia brain abscesses: Necrotic and non-necrotic foci of various stages. J Neurol Sci 2024; 456:122850. [PMID: 38142539 DOI: 10.1016/j.jns.2023.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Nocardia brain abscesses are rare bacterial infections associated with a high mortality rate, and their preoperative diagnosis can be difficult for various reasons including a nonspecific clinical presentation. While late-stage nocardial brain abscesses may be radiologically characteristic, early-stage lesions are nonspecific and indistinguishable from another inflammatory/infectious process and other mimics. Despite the paucity of previous histopathological descriptions, histopathological examination is critical for the identification of the pathogen, lesion stage(s), and possible coexisting pathology. In this study, we examined the clinical, radiological and histopathological features of 10 patients with brain nocardiosis. Microscopic findings were analysed in correlation with clinical and radiological features in 9 patients, which revealed that brain nocardiosis was characterized by numerous necrotic and non-necrotic foci of various stages (I-IV) along with Nocardia identification, as well as the leptomeningeal involvement in most cases, and co-infection of brain nocardiosis with toxoplasmosis in 2 patients. The imaging features were characteristic with a multilobulated/bilobed ring-enhancing appearance in 8 patients including 2 patients with multiple lobulated and non-lobulated lesions and 1 patient showing the progression from a non-lobulated to lobulated lesion. These findings suggest that nocardial brain abscesses particularly at late-stages share common characteristics. Nevertheless, given the complex pathologic features, including possible co-infection by other pathogens, nocardial brain abscesses remain a therapeutic challenge.
Collapse
Affiliation(s)
- Marta Kisiel
- Department of Pathology and Molecular Medicine, Canada
| | | | - Crystal Fong
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sultan Yahya
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Canada.
| |
Collapse
|
6
|
de Melo SA, Pinto SD, Ferreira EDS, Brotas R, Marinho EPM, da Silva VA, Monte RL, Feitoza PVS, Reis MF, Almeida TVR, Ferreira LCDL, Bastos MDS. Molecular diagnosis of opportunistic infections in the central nervous system of HIV-infected adults in Manaus, Amazonas. Front Med (Lausanne) 2024; 10:1298435. [PMID: 38264048 PMCID: PMC10803427 DOI: 10.3389/fmed.2023.1298435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background Opportunistic infections in the central nervous system (CNS) of people with HIV/AIDS (PLWHA) remain significant contributors to morbidity and mortality, especially in resource-limited scenarios. Diagnosing these infections can be challenging, as brain imaging is non-specific and expensive. Therefore, molecular analysis of cerebrospinal fluid (CSF) may offer a more accurate and affordable method for diagnosing pathogens. Methods We conducted extensive real-time PCR testing (qPCR) on CSF to evaluate etiological agents in PLWHA with neurological manifestations. Primers targeting DNA from specific pathogens, including cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), John Cunningham virus (JCV), Toxoplasma gondii, and human T-lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2), were used. Results Cerebrospinal fluid samples revealed 90 pathogens (36.7%). Toxoplasma gondii was the most frequently detected pathogen, found in 22 samples (30.5%). Other pathogens included Cryptococcus sp. (7.7%), EBV (5.3%), CMV, VZV, and JCV (4.0% each). Conclusion Despite antiretroviral therapy and medical follow-up, opportunistic central nervous system infections remain frequent in PLWHA. Herpesviruses are commonly detected, but T. gondii is the most prevalent opportunistic pathogen in our study population. Therefore, molecular diagnosis is a crucial tool for identifying opportunistic infections, even in patients undergoing treatment.
Collapse
Affiliation(s)
| | | | | | - Reinan Brotas
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | | | - Rossiclea Lins Monte
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | | | - Taynná V. Rocha Almeida
- Departamento de Formação em Emergências em Saúde Pública, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | | |
Collapse
|
7
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|
8
|
Brito RMDM, da Silva MCM, Vieira-Santos F, de Almeida Lopes C, Souza JLN, Bastilho AL, de Barros Fernandes H, de Miranda AS, de Oliveira ACP, de Almeida Vitor RW, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice. Brain Behav Immun Health 2023; 30:100652. [PMID: 37396335 PMCID: PMC10308216 DOI: 10.1016/j.bbih.2023.100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023] Open
Abstract
Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Carolina Machado da Silva
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Heliana de Barros Fernandes
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Laboratory of Toxoplasmosis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Mamfaluti T, Firdausa S, Siregar ML, Hasan M, Murdia M. A case report of a successful alternative regiment therapy for toxoplasma encephalitis in AIDS patients. Heliyon 2023; 9:e18293. [PMID: 37539148 PMCID: PMC10395520 DOI: 10.1016/j.heliyon.2023.e18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction AIDS patients are more susceptible to opportunistic diseases, such as toxoplasma encephalitis, because of weakened immune systems. Toxoplasma encephalitis manifests as a severe neurological crisis in HIV patients. The standard initial treatments are sulfadiazine and pyrimethamine. This case presents an HIV patient treated with an alternative regimen for toxoplasma encephalitis. Case description A young Acehnese man, 32 years old, arrived at the emergency unit after complaining of a general seizure 2 hours before arrival. He has a history of a two-week fever and white patches on his tongue and oral cavity. The result of the HIV test was positive, and after a thorough examination, he was diagnosed with toxoplasma encephalitis. The patient was given cotrimoxazole 960 mg twice daily and clindamycin 600 mg four times daily as an alternative treatment. Clinical improvement was reported after six weeks of therapy. Conclusion A case of toxoplasma encephalitis was reported. The first-line treatment for toxoplasma encephalitis is pyrimethamine and sulfadiazine; however, the patient was treated with cotrimoxazole and clindamycin as an alternative treatment. Clinical improvement was used to assess the success of therapy. Cotrimoxazole and clindamycin can be utilized as alternative regiment therapy if the first-line treatment option is unavailable.
Collapse
Affiliation(s)
- Teuku Mamfaluti
- Department of Internal Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Sarah Firdausa
- Department of Internal Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center for Collaboration in Health Science, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Masra Lena Siregar
- Department of Internal Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center for Collaboration in Health Science, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Maryatun Hasan
- Department of Internal Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Murdia Murdia
- Resident of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
10
|
Abstract
Toxoplasma gondii infection in the central nervous system commonly occurs among immunodeficient patients. Its prevalence is high in countries with a high burden of HIV and low coverage of antiretroviral drugs. The brain is one of the predilections for T. gondii infection due to its low inflammatory reaction, and cerebral toxoplasmosis occurs solely due to the reactivation of a latent infection rather than a new infection. Several immune elements have recently been recognized to have an essential role in the immunopathogenesis of cerebral toxoplasmosis. Although real-time isothermal amplification, next-generation sequencing, and enzyme-linked aptamer assays from blood samples have been the recommended diagnostic tools in some in-vivo studies, a combination of clinical symptoms, serology examination, and neuroimaging are still the daily standard for the presumptive diagnosis of cerebral toxoplasmosis and early anti-toxoplasma administration. Clinical trials are needed to find a new therapy that is less likely to affect folate synthesis, have neuroprotective properties, or cure the latent phase of infection. The development of a vaccine is being extensively tested in animals, but its efficacy and safety for humans are still not proven.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Savira Ekawardhani
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
11
|
|
12
|
Cerebral Toxoplasmosis as an Uncommon Complication of Biologic Therapy for Rheumatoid Arthritis: Case Report and Review of the Literature. Brain Sci 2022; 12:brainsci12081050. [PMID: 36009113 PMCID: PMC9405725 DOI: 10.3390/brainsci12081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Toxoplasmosis is one of the most common opportunistic infections, mainly reported in patients with acquired immunodeficiency syndrome (AIDS). Patients with rheumatoid arthritis (RA) have also been linked to reactivation of toxoplasmosis due to immunosuppressive treatment, although biologic drugs have seldom been implicated. We present a case of cerebral toxoplasmosis in a 62-year-old female patient with RA after initiation of biologic therapy (adalimumab). The patient had detectable serum IgG antibodies to toxoplasma gondii, was also on chronic treatment with other non-biologic drugs and presented with worsening disorientation, unsteady gait and left hemiparesis. Imaging studies showed a space-occupying lesion in the right basal ganglia with ring-enhancement. Brain biopsy confirmed the diagnosis of toxoplasmosis and the patient was treated with pyrimethamine and sulfadiazine for 6 weeks, showing complete recovery on follow-up. A review of the literature yielded other four case reports of cerebral toxoplasmosis implying biologic drugs; however, data concerning toxoplasmosis serologic testing, prophylaxis and treatment in these patients are lacking. Each case must be carefully evaluated prior to treatment and a high-index of suspicion in seropositive patients is warranted. Since the use of biologic drugs is increasing, further research is needed to establish practical guidelines for seropositive patients receiving immunosuppressive treatment.
Collapse
|
13
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|